I'm tuning parameters with custom summaryFunction in caret.
I originally thought that if I set K-fold cross validation and input data has N points, performance will be measured with N/K data points.
However, apparently it seems not correct because when I extract data$pred by using browser() which is the handed data to summary function, it only had 10 data.
Since the input(df) has over 500 data points, this number is way smaller than my expectation.
Why does it only have 10 data? Is there any way to increase this?(=performance testing with more large data points)
Any kind of help is needed. Thank you.
sigma.list <- seq(1, 5, 1)
c.list <- seq(1, 10, 1)
met <- "FValue"
#define evaluation function
eval <- function(data, lev = NULL, model = NULL){
mat <- table(data$pred, data$obs)
pre <- mat[1,1]/sum(mat[1,]) #precision
rec <- mat[1,1]/sum(mat[,1]) #recall
res <- c("Precision"=pre, "Recall"=rec, "FValue"=2*pre*rec/(pre+rec))
browser()
res
}
#define train control
tc <- trainControl(method = "cv",
number = 5,
summaryFunction = eval,
classProbs = TRUE,
)
#tune with caret
svm.tune <- train(Flag~.,
data = df,
method = "svmRadial",
tuneGrid = expand.grid(C=c.list, sigma=sigma.list),
trControl = tc,
metric = met
)
After tracking this down, it appears this is normal caret behavior.
I think that caret is essentially verifying that your summaryFunction is working properly by passing fake data (of length 10) to it. The function inside caret that is doing this is evalSummaryFunction.
I'm not quite sure what I'm doing in the RStudio's debugger but this code in train.default:
testSummary <- evalSummaryFunction(y, wts = weights,
ctrl = trControl, lev = classLevels, metric = metric,
method = method)
perfNames <- names(testSummary)
calls evalSummaryFunction which looks like:
function (y, wts = NULL, perf = NULL, ctrl, lev, metric, method)
{
n <- if (class(y)[1] == "Surv")
nrow(y)
else length(y)
if (class(y)[1] != "Surv") {
if (is.factor(y)) {
values <- rep_len(levels(y), min(10, n))
pred_samp <- factor(sample(values), levels = lev)
obs_samp <- factor(sample(values), levels = lev)
}
else {
pred_samp <- sample(y, min(10, n))
obs_samp <- sample(y, min(10, n))
}
}
else {
pred_samp <- y[sample(1:n, min(10, n)), "time"]
obs_samp <- y[sample(1:n, min(10, n)), ]
}
testOutput <- data.frame(pred = pred_samp, obs = obs_samp)
if (!is.null(perf)) {
if (is.vector(perf))
stop("`perf` should be a data frame", call. = FALSE)
perf <- perf[sample(1:nrow(perf), nrow(testOutput)),
, drop = FALSE]
testOutput <- cbind(testOutput, perf)
}
if (ctrl$classProbs) {
for (i in seq(along = lev)) testOutput[, lev[i]] <- runif(nrow(testOutput))
testOutput[, lev] <- t(apply(testOutput[, lev], 1, function(x) x/sum(x)))
}
else {
if (metric == "ROC" & !ctrl$classProbs)
stop("train()'s use of ROC codes requires class probabilities. See the classProbs option of trainControl()")
}
if (!is.null(wts))
testOutput$weights <- sample(wts, min(10, length(wts)))
testOutput$rowIndex <- sample(1:n, size = nrow(testOutput))
ctrl$summaryFunction(testOutput, lev, method)
}
It appears that 10 is the length of fake data caret passes to your summary function to evaluate it (make sure it is working properly?).
If anyone can verify/explain better that this is what caret is actually doing, please post.
Related
So I'm trying to process the data ("final_ts") in order to make a forecast for the time series using kernel functions and doing parallel computing. The analysis is made this way: 1) analyse the empirical time series, 2) run a standard variable
selection to subset only those variables and their time-lags that provide the best validation error. 3) Run the same analysis described above to choose the optimal regularization parameters and kernel function of the regularized algorithm. As a result I show the RMSE (root mean squared error).
The code is not mine, and I'm trying to set it without problems, but as I do not have so much experience, I can't understand how to solve (I've spent 2 days trying to find the solution so if you help me I would be so grateful) the problem which occured: "The object '....' not found".
So the MAIN CODE looks like this (I'll try to make explanation on what happens, please don't judge me):
#download the libraries:
rm(list=ls(all=TRUE))
suppressMessages(library(Matrix))
suppressMessages(library(quantreg))
suppressMessages(library(parallel))
suppressMessages(library(compiler))
suppressMessages(library(lars))
suppressMessages(library(elasticnet))
suppressMessages(library(caret))
options(warn=-1)
#####################################################################################
#Download the sources (I'll show them in the end as a code)
###########Take the file###
ShowPlot = FALSE
lags = TRUE
ModelName = 'final_ts'
FileName = paste(ModelName, '.txt', sep = '')
########Calculate the logspace and the standard error functions #################
logspace <- function(d1, d2, n) exp(log(10)*seq(d1, d2, length.out=n))
std_err <- function(x) sd(x)/sqrt(length(x))
############# Choose the kernel function: we have 4 of them, but we try the second one #####
Kernel.Options = c('Exponential.Kernel', 'Epanechnikov.Kernel', 'TriCubic.Kernel', 'Matern.Kernel')
Regression.Kernel = Kernel.Options[1]
############# Choose the parameters for cross validation ####
lambda = logspace(-3,0,15)
if(Regression.Kernel == 'Exponential.Kernel'){
tht = seq(from = 0., to = 10, length = 30)
}else{
tht = seq(from = 0.1, to = 3, length = 20)
}
parameters_on_grid = expand.grid(tht, lambda)
### Read Time series
d = as.matrix(read.table(FileName, header= T))
######################
original.Embedding = c('Pro', 'Syn','Piceu')
original.TargetList = original.Embedding
d = d[, original.Embedding]
#### Here you take combinations of lags (best lag are 1 - 2) #####
x.lag = 1; y.lag = 2; z.lag = 1
sp.lag.selection = c(x.lag, y.lag, z.lag)
lagged.time.series = make.lagged.ts(d, sp.lag.selection)
d = lagged.time.series$time.series
original.col = lagged.time.series$original.variables
if(lags == TRUE){ var.sel = original.col; }else{ var.sel = colnames(d)}
##### Names and embedding in the laged dataset
if(lags == TRUE){ colnames(d) = Embedding = TargetList = LETTERS[1:ncol(d)]}else{
Embedding = TargetList = original.Embedding
}
##### length of training and test set (2 points for testing, 28 - for training)
length.testing = 2
length.training = nrow(d) - length.testing
#### Preserve training for the interactions
ts.train.preserved = d[1:length.training, var.sel]
std.ts.train = Standardizza(ts.train.preserved)
#### Preserve testing for the test (you want your algorithm to learn the real structure of the model)
ts.test.preserved = d[(length.training + 1):nrow(d), var.sel]
#### Training set:
d.training = Standardizza(d[1:length.training, ])
#### You now need to standardize the test set using mean and sd of the training set
d.testing = Standardizza.test(ts.test.preserved,ts.train.preserved)
############## Prepare for parallel computing
Lavoratori = detectCores() - 2
cl <- parallel::makeCluster(Lavoratori, setup_strategy = "sequential")
####
RegressionType = ELNET_fit_
alpha = 0.85
### should you compute all the variables or not?
BestModel = BestModelLOOCV(cl, d.training, TargetList, Embedding, parameters_on_grid, RegressionType,alpha)
I also found a fourmula for calculation of kernel function (it may be put in a SPECIAL r (SOURCE 1)):
Exponential.Kernel <- function(dst, theta){
dbar <- mean(dst)
krnl <- exp(-theta*dst/dbar)
return(krnl)
}
Exponential.Kernel <- cmpfun(Exponential.Kernel)
The formulas for finding the best leave-one-out cross-validation parameters is below (SOURCE 2):
########################### Cross Validation (Leave-one-out) ##################################
BestModelLOOCV <- function(cl, X, TargetList, Embedding, grid, RegressionType,alpha){
mine_output = Jacobian_(cl, X, TargetList, Embedding, grid, RegressionType,alpha)
theta_opt = mine_output$th
lambda_opt = mine_output$lm
mine_c0 = mine_output$c0
mine_output = mine_output$J
J_ = list()
C0_ = do.call(cbind, lapply(1:ncol(X), function(x, M) unlist(M[[x]]), mine_c0))
colnames(C0_) = sapply(TargetList,function(x) paste("c0_", x, sep = ""))
for(k in 1:(nrow(X) - 1)){
J_[[k]] = do.call(rbind, lapply(1:ncol(X), function(x, M, i) unlist(M[[x]][i,]), mine_output, k))
rownames(J_[[k]]) = Embedding
colnames(J_[[k]]) = Embedding
}
BestCoefficients = list()
BestCoefficients$J = J_
BestCoefficients$c0 = C0_
BestParameters = list()
BestParameters$BestTH = theta_opt
BestParameters$BestLM = lambda_opt
return(list(BestCoefficients = BestCoefficients, BestParameters = BestParameters))
}
#####Compute the jacobian
Jacobian_ <- function(cl, X, TargetList, Embedding, grid, RegressionType,alpha){
J = c0 = list()
th = lm = c()
n_ = 1
FUN = match.fun(RegressionType)
for(trg in TargetList){
RegularizedParameters <- LOOCrossValidation(cl, X, trg, Embedding, grid, RegressionType,alpha)
########## Now compute the optimum regularized coefficients
J[[n_]] = FUN(X, trg, Embedding, RegularizedParameters$BestTH, RegularizedParameters$BestLM,alpha)
th = c(th, RegularizedParameters$BestTH)
lm = c(lm, RegularizedParameters$BestLM)
c0[[n_]] = J[[n_]]$c0
J[[n_]] = J[[n_]][-1]
n_ = n_ + 1
}
return(list(J = J, c0 = c0, th = th, lm = lm))
}
In order to compute the elastic-net regularization function you may use this formula (SOURCE 3):
ELNET_fit_ <- function(time.series, targ_col, Embedding, theta, lambda,alp){
Edim <- length(Embedding)
coeff_names <- sapply(colnames(time.series),function(x) paste("d", targ_col, "d", x, sep = ""))
block <- cbind(time.series[2:dim(time.series)[1],targ_col],time.series[1:(dim(time.series)[1]-1),])
block <- as.data.frame(apply(block, 2, function(x) (x-mean(x))/sd(x)))
lib <- 1:dim(block)[1]
pred <- 1:dim(block)[1]
coeff <- array(0,dim=c(length(pred),Edim + 1))
colnames(coeff) <- c('c0', coeff_names)
coeff <- as.data.frame(coeff)
for (ipred in 1:length(pred)){
libs = lib[-pred[ipred]]
q <- matrix(as.numeric(block[pred[ipred],2:dim(block)[2]]),
ncol=Edim, nrow=length(libs), byrow = T)
distances <- sqrt(rowSums((block[libs,2:dim(block)[2]] - q)^2))
### Kernel
Krnl = match.fun(Regression.Kernel)
Ws = Krnl(distances, theta)
############ Fit function
x = as.matrix(block[libs,2:dim(block)[2]])
y = as.matrix(block[libs,1])
x = x[seq_along(y), ]
y = y[seq_along(y)]
Ws = Ws[seq_along(y)]
x = Ws * cbind(1, x)
y = Ws * y
fit <- enet(x, y, lambda = lambda, normalize = TRUE, intercept = FALSE)
coeff[ipred,] <- predict(fit, s = alp, type="coefficients", mode="fraction")$coefficients
}
return(coeff)
}
ELNET_fit_ <- cmpfun(ELNET_fit_)
The auxiliary formulas for computation are as follows (SOURCE 4):
TakeLag <- function(X, species.to.lag, num.lag){
tmp = matrix(0, nrow(X), num.lag)
tmp[,1] = X[,species.to.lag]
tmp[1, 1] = NA
tmp[2:nrow(X), 1] = X[1:(nrow(X) - 1), species.to.lag]
if(num.lag > 1){
for(lag. in 2:num.lag){
tmp[,lag.] = X[,species.to.lag]
tmp[1, lag.] = NA
tmp[2:nrow(X), lag.] = tmp[1:(nrow(tmp) - 1), lag.-1]
}
}
tmp
}
make.lagged.ts <- function(X,sp.lag.selection ){
### X = time series
### sp.lag is a vector whose entry are the lags of each variable
### e.g., sp.lag = c(x.lag, y.lag, ..., u.lag)
s = list()
for(i in 1:length(sp.lag.selection)){
Lag.sp = TakeLag(X, original.Embedding[i], sp.lag.selection[i])
s[[i]] = cbind(X[,original.Embedding[i]], Lag.sp)
}
X = do.call(cbind,s)
### Remove the NA
X = X[-c(1:max(sp.lag.selection)),]
### Save the position of the unlagged variables
original.col = c()
for(k in 1:length(sp.lag.selection)){
if(k == 1){ original.col = c(original.col, 1)}else{
num.lags = sum(unlist(lapply(1:(k-1), function(x,X) X[x], sp.lag.selection)))
original.col = c(original.col, k + num.lags )
}
}
return(list(time.series = X, original.variables = original.col))
}
take.coeff <- function(X, col.to.extract, original.emb){
### To use when prediction are made using lagged variables
### Take as input the sequence X of Jacobian along the attractor
### and the species to look at
### return a new sequence of Jacobian of the interaction among those species
m = lapply(1:length(X$J), function(t, M, specie) M$J[[t]][specie,specie],
X, col.to.extract)
for(i in 1:length(m)){
colnames(m[[i]]) = rownames(m[[i]]) =original.emb
}
return(m)
}
Standardizza <- function(X){
### This return y = (x-meanx)/stdx
for(i in 1:ncol(X)){
X[,i] = (X[,i]- mean(X[,i]))/sd(X[,i])
}
return(X)
}
Standardizza.test <- function(X, Y){
### X = test set
### Y = training set
### This return y = (x-meanY)/stdY
for(i in 1:ncol(X)){
X[,i] = (X[,i]- mean(Y[,i]))/sd(Y[,i])
}
return(X)
}
###########################
#### Here you compute the quality of the forecast as mean correlation coefficient
The problem in the main code sounds like: object 'Regression.Kernel' not found, but I see it in the code, it's written. Maybe the problem is connected with the type of it? But if I take away the quotes in order to make it a "closure", I cannot impose the function restrictions.
Please, help me if you can as I don't know how to solve.
The original dataset ("final_ts.txt"):
decy Temp CTD_S OxFix Pro Syn Piceu Naneu
2011.74221 27.60333 36.20700 27.26667 58638.33333 13107.00000 799.66667 117.66667
2011.74401 26.97950 36.13400 27.05000 71392.50000 13228.50000 1149.00000 116.50000
2011.74617 24.99750 35.34450 24.80000 264292.00000 27514.00000 2434.50000 132.50000
2011.74692 24.78400 35.25800 25.82500 208996.50000 39284.00000 3761.75000 220.75000
2011.74774 27.34225 35.86800 27.82500 114617.25000 23115.00000 2337.00000 139.75000
2011.74950 26.47875 36.18175 27.20000 97008.00000 9775.75000 855.50000 77.50000
2011.75583 26.86500 36.14575 27.47500 76255.00000 10226.75000 783.00000 99.50000
2011.75654 27.04550 36.04950 27.60000 95017.75000 10546.25000 915.25000 77.75000
2011.75962 27.06567 36.46367 26.56667 75750.00000 10194.33333 687.00000 44.00000
2011.76101 27.44700 36.48150 27.90000 38556.50000 8204.75000 791.25000 118.75000
2011.76169 27.32325 36.50075 27.80000 29848.50000 8995.50000 727.00000 159.25000
2011.76245 26.87050 36.57350 26.40000 36323.50000 10897.00000 792.00000 87.50000
2011.76349 27.43900 36.89325 27.90000 17308.50000 9678.50000 559.00000 149.00000
2011.77171 26.74050 36.90550 26.10000 20976.50000 7516.00000 489.50000 41.50000
2011.77224 26.53500 36.77500 27.22500 27229.00000 7578.00000 606.75000 159.50000
2011.77288 26.65450 36.78500 27.32500 37897.50000 10493.50000 1008.75000 209.50000
2011.77444 27.24150 36.73800 26.80000 15551.00000 8159.50000 479.00000 70.50000
2011.77505 26.67560 36.74240 27.30000 27887.80000 5290.80000 510.00000 101.20000
2011.77568 27.65125 36.69225 28.10000 12850.00000 9944.75000 640.75000 120.00000
2011.77693 28.11500 36.32750 27.85000 5694.00000 10288.50000 507.00000 32.00000
2011.77751 28.61950 36.26325 28.72500 20486.75000 10465.00000 430.50000 82.75000
2011.77814 28.60425 36.23100 28.70000 27974.50000 6977.25000 554.00000 80.50000
2011.77968 28.47200 35.69000 28.40000 126778.00000 2840.00000 537.00000 27.00000
2011.78087 28.89400 35.60650 28.35000 49250.00000 5533.00000 1004.00000 5.50000
2011.78190 28.74100 35.46200 28.80000 35698.00000 1298.00000 308.00000 23.00000
2011.78713 28.80500 35.50100 28.70000 99450.00000 5410.00000 637.50000 50.50000
2011.78887 28.39250 35.90900 28.25000 116562.00000 3758.50000 582.50000 60.00000
2011.79078 28.10550 36.40150 28.20000 13403.00000 11285.00000 472.00000 73.50000
2011.79261 27.25650 36.78350 27.45000 11205.00000 10576.00000 630.00000 74.00000
Please, help if you have any guess as I don't have an idea what has gone wrong.
This is the problem instructions I was given.
Build a K-NN classifier, use 5-fold cross-validation to evaluate its performance based on average accuracy.
Report accuracy measure for k = 2, ..., 10
Write your code below (Hint: you need a loop within a loop, with the outer loop going through each value of k and inner loop going through each fold):
You can manually try k=2,...,10, but try to use a outer loop through each value of k.
I was given 2 for loops. One for Creating folds and the other for calculating k=1:10, which are listed below.
# Given data
library(datasets)
data(iris)
library(dplyr)
normalize = function(x){
return ((x - min(x))/(max(x) - min(x)))}
# normalize
Iris_normalized = IrisData %>% mutate_at(1:4, normalize)
# Create folds
cv = createFolds(y = IrisData$class, k = 5)
accuracy = c()
for (test_rows in cv) {
IrisData_train = IrisData[-test_rows,]
IrisData_test = IrisData[test_rows,]
tree = rpart(class ~ ., data = IrisData_train,
method = "class", parms = list(split = "information"))
pred_tree = predict(tree, IrisData_test, type = "class")
cm = confusionMatrix(pred_tree, IrisData_test[,5])
accuracy = c(accuracy, cm$overall[1])
}
print(mean(accuracy))
# Manual K validation
SSE_curve <- c()
for (k in 1:10) {
print(k)
kcluster = kmeans(utility_normalized, center = k)
sse = kcluster$tot.withinss
print(sse)
SSE_curve[k] = sse
}
So if I am understanding the instructions correctly. I need to:
Create 5 folds using normalized data with a for loop and set.seed.
Use a for loop to find the accuracy in k=1:10 for each fold.
I am not sure how these 2 for-loops combine to give me this result in the instructions.
I imagine the code you provide is just an example and this question sounds a lot like a student homework problem. You should at least provide your effort so far.
However here are two possible solutions:
1)two nested for-loop:
library(class)
library(dplyr)
data("iris")
normalize = function(x){
return ((x - min(x))/(max(x) - min(x)))}
# normalize
Iris_normalized = iris %>% mutate_at(1:4, normalize)
av_accuracy <- as.list(2:10)
for (k in 2:10) {
set.seed(4)
cv <- createFolds(y = Iris_normalized$Species, k = 5)
accuracy <- c()
for (i in cv) {
IrisData_train = Iris_normalized[-i,]
IrisData_test = Iris_normalized[i,]
tree <- knn(IrisData_train[,-5],IrisData_test[,-5],cl=IrisData_train$Species,k=k)
cm <- confusionMatrix(tree, IrisData_test[,5])
accuracy <- c(accuracy, cm$overall[1])
}
av_accuracy[[k-1]] <- mean(accuracy)
}
results <- data.frame(k=2:10,mean.accuracy=unlist(av_accuracy))
using the caret framework, which is built exactly for this kind of task:
control <- trainControl(method = "cv",5,returnResamp="all",)
grid <- expand.grid(k=2:10)
fit <-
train(
Species ~ .,
data = Iris_normalized,
trControl = control,
tuneGrid = grid,
method = "knn"
)
fit$results
I'm trying to perform multiple LASSO regressions in R using the following code:
library(readxl)
data <-read_excel("data.xlsx") # 20x20 matrix
library(glmnet)
library(coefplot)
A <- as.matrix(data)
results <- lapply(seq_len(ncol(A)), function(i) {
list(
fit_lasso = glmnet(A[, -i], A[, i], standardize = T, alpha = 1),
cvfit = cv.glmnet(A[, -i] , A[, i] , standardize = TRUE , type.measure = "mse" , nfolds = 10 , alpha = 1)
)
})
coefficients <- lapply(results, function(x, fun) fun(coef(x$cvfit, s = "lambda.min")), function(x) x[x[, 1L] != 0L, 1L, drop = FALSE])
My output results results in a Large list (20 elements, 1MB) with 20 same LASSO output but for 20 variables and coefficients output is only the significant variables in each case.
I notice that for the same dataset the results are not always the same - maybe because of lambda changing values in each run? not sure. I want to make my code to find the same lambda.min's and give always the same results when I run the dataset. I believe a set.seed() might manage it but can't figure out how to sufficiently include it.
How can I always make it print the same outputs for a specific dataset?
I got it to produce the same lambda.min values from run to run just by putting set.seed() before the list. Then, you're setting the seed for the random draws of the cross-validation runs.
library(readxl)
data <-read_excel("data.xlsx") # 20x20 matrix
library(glmnet)
library(coefplot)
A <- as.matrix(data)
set.seed(54234)
results <- lapply(seq_len(ncol(A)), function(i) {
list(
fit_lasso = glmnet(A[, -i], A[, i], standardize = T, alpha = 1),
cvfit = cv.glmnet(A[, -i] , A[, i] , standardize = TRUE , type.measure = "mse" , nfolds = 10 , alpha = 1)
)
})
coefficients <- lapply(results, function(x, fun) fun(coef(x$cvfit, s = "lambda.min")), function(x) x[x[, 1L] != 0L, 1L, drop = FALSE])
I am using recursive feature elimination from the R package 'caret'
Linear regression works fine for my problem, therfore I am using functions = lmFuncs insinde my control function.
But I would like to test this setup again without an intercept, is this possible?
My current code:
control <- rfeControl(functions = lmFuncs
, verbose = FALSE
)
results <- rfe(df_train
, df_train
, rfeControl=control
)
I would also go for a custom function, but I do not know how.
Many thanks in advance.
Edit:
I found the answer after having a deeper look into the caret package.
lmFuncs without Intercept:
lmFuncs_wo_intercept <- list(
summary = defaultSummary,
fit = function(x, y, first, last, ...) {
tmp <- if(is.data.frame(x)) x else as.data.frame(x, stringsAsFactors = TRUE)
tmp$y <- y
#lm(y~., data = tmp) #old
lm(y~0+., data = tmp) #new
},
pred = function(object, x) {
if(!is.data.frame(x)) x <- as.data.frame(x, stringsAsFactors = TRUE)
predict(object, x)
},
rank = function(object, x, y) {
coefs <- abs(coef(object))
#coefs <- coefs[names(coefs) != "(Intercept)"] # old
coefs[is.na(coefs)] <- 0
vimp <- data.frame(Overall = unname(coefs),
var = names(coefs))
rownames(vimp) <- names(coefs)
vimp <- vimp[order(vimp$Overall, decreasing = TRUE),, drop = FALSE]
vimp
},
selectSize = pickSizeBest,
selectVar = pickVars
)
lmFuncs is your linear regression? I this case you could try to fit a second linear regression without the intercept and then apply the feature elimination function
I'm wanting to write a function that will (hopefully) work in the raster calculator in the raster package. What I'm trying to do is regress each cell value against a vector of Time. There are multiple examples of this, but what I would like to do is for the method to try 1 type of regression (gls, controlling for AR1 residual errors), but if for some reason that regression throws an error (perhaps there is no AR1 structure in the residuals) then to revert back to simple OLS regression.
I've written two functions for the regression. One for gls:
# function for calculating the trend, variability, SNR, and residuals for each pixel
## this function will control for AR1 structure in the residuals
funTrAR1 <- function(x, ...) {if (sum(is.na(x)) >= 1) { NA } else {
mod <- nlme::gls(x ~ Year, na = na.omit, method = "REML", verbose = TRUE,
correlation = corAR1(form = ~ Year, fixed = FALSE),
control = glsControl(tolerance = 1e-3, msTol = 1e-3, opt = c("nlminb", "optim"),
singular.ok = TRUE, maxIter = 1000, msMaxIter = 1000))
slope <- mod$coefficients[2]
names(slope) <- "Trend"
var <- sd(mod$residuals)
names(var) <- "Variability"
snr <- slope/var
names(snr) <- "SNR"
residuals <- c(stats::quantile(
mod$residuals, probs = seq(0,1,0.25),
na.rm = TRUE, names = TRUE, type = 8),
base::mean(mod$residuals, na.rm = TRUE))
names(residuals) <- c("P0", "P25", "P50", "P75", "P100", "AvgResid")
return(c(slope, var, snr, residuals))}
}
and for OLS:
# function for calculating the trend, variability, SNR, and residuals for each pixel
## this function performs simple OLS
funTrOLS <- function(x, ...) {if (sum(is.na(x)) >= 1) { NA } else {
mod <- lm(x ~ Year, na.action = na.omit)
slope <- mod$coefficients[2]
names(slope) <- "TrendOLS"
var <- sd(mod$residuals)
names(var) <- "VariabilityOLS"
snr <- slope/var
names(snr) <- "SNROLS"
residuals <- c(stats::quantile(
mod$residuals, probs = seq(0,1,0.25),
na.rm = TRUE, names = TRUE, type = 8),
base::mean(mod$residuals, na.rm = TRUE))
names(residuals) <- c("P0", "P25", "P50", "P75", "P100", "AvgResid")
return(c(slope, var, snr, residuals))}
}
I'm trying to wrap these in a tryCatch expression which can be passed to raster::calc
xReg <- tryCatch(
{
funTrAR1
},
error = function(e) {
## this should create a text file if a model throws an error
sink(paste0(inDir, "/Outputs/localOLSErrors.txt"), append = TRUE)
cat(paste0("Used OLS regression (grid-cell) for model: ", m, ". Scenario: ", t, ". Variable: ", v, ". Realisation/Ensemble: ", r, ". \n"))
sink()
## run the second regression function
funTrOLS
}
)
This function is then passed to raster::calc like so
cellResults <- calc(rasterStack, fun = xReg)
Which if everything works will produce a raster stack of the output variables that looks similar to this
However, for some of my datasets the loop that I'm running all of this in stops and I receive the following error:
Error in nlme::gls(x ~ Year, na = na.omit, method = "REML", verbose = TRUE, :
false convergence (8)
Which is directly from nlme::gls and what I was hoping to avoid. I've never used tryCatch before (this might be very obvious), but does anyone know how to get the tryCatch() to move to the second regression function if the first (AR1) regression fails?
Here is another way to code this, perhaps that helps:
xReg <- function(x, ...) {
r <- try(funTrAR1(x, ...), silent=TRUE)
# if (class(r) == 'try-error') {
if (!is.numeric(r)) { # perhaps a faster test than the one above
r <- c(funTrOLS(x, ...), 2)
} else {
r <- c(r, 1)
}
r
}
I add a layer that shows which model was used for each cell.
You can also do
xReg <- function(x, ...) {
r <- funTrOLS(x, ...)
try( r <- funTrAR1(x, ...), silent=TRUE)
r
}
Or use calc twice and use cover after that
xReg1 <- function(x, ...) {
r <- c(NA, NA, NA, NA)
try( r <- funTrAR1(x, ...), silent=TRUE)
r
}
xReg2 <- function(x, ...) {
funTrOLS(x, ...)
}
a <- calc(rasterStack, xReg1)
b <- calc(rasterStack, xReg2)
d <- cover(a, b)
And a will show you where xReg1 failed.
After doing a bit more reading, and also looking at #RobertH answer, I wrote a bit of (very) ugly code that checks if GLS will fail and if it does, performs OLS instead. I'm positive that there is a nicer way to do this, but it works and maintains raster layer names as they were defined in my functions, it also exports any errors to a txt file.
for (i in 1) {
j <- tempCentredRas
cat(paste("Checking to see if gls(AR1) will work for model", m, r,"cell based calculations\n", sep = " "))
### This check is particularly annoying as it has to do this for every grid-cell
### it therefore has to perform GLS/OLS on every grid cell twice
### First to check if it (GLS) will fail, and then again if it does fail (use OLS) or doesn't (use GLS)
possibleLocalError <- tryCatch(
raster::calc(j, fun = funTrAR1),
error = function(err)
err
)
if (inherits(possibleLocalError, "error")) {
cat(paste("GLS regression failed for model", m, r, "using OLS instead for cell based results.","\n", sep = " "))
cellResults <- raster::calc(j, fun = funTrOLS)
} else {
cellResults <- raster::calc(j, fun = funTrAR1)
}
}