Why is merge not working with date values? - r

I am trying to merge two dataframes by date in R.
The first dataframe records daily temperatures. It has only 28 rows, and no dates are repeated.
head(df1)
Day MaxTemp MinTemp
2019-06-15 23.8 14.4
2019-06-16 24.9 11.7
2019-06-17 23.2 8.7
The second dataframe records hourly temperatures, and so has many more rows, with dates repeated.
head(df2)
Day Hour Temp
2019-06-15 14 22.8
2019-06-15 15 22.4
2019-06-15 16 21.9
I would like to merge the data to look something like this:
Day MaxTemp MinTemp Hour Temp
2019-06-15 14 22.8 23.8 14.4
2019-06-15 15 22.4 23.8 14.4
2019-06-15 16 21.9 23.8 14.4
But what I end up with is:
allData <-merge(df1, df2, by="Day", all.y=T)
head(allData)
Day Hour Temp MaxTemp MinTemp
2019-06-15 14 22.8 NA NA
2019-06-15 15 22.4 NA NA
2019-06-15 16 21.9 NA NA
Or if I try "all = T" in the arguments I get "Error in x[[n]][i] <- value[[n]] : replacement has length zero".
Does anyone have any idea how I can fix this?
Edit:
# head of df1
df1 <- structure(list(Day = structure(list(sec = c(0, 0, 0, 0, 0, 0),
min = c(0L, 0L, 0L, 0L, 0L, 0L), hour = c(0L, 0L, 0L, 0L,
0L, 0L), mday = 15:20, mon = c(5L, 5L, 5L, 5L, 5L, 5L), year = c(119L,
119L, 119L, 119L, 119L, 119L), wday = c(6L, 0L, 1L, 2L, 3L,
4L), yday = 165:170, isdst = c(1L, 1L, 1L, 1L, 1L, 1L), zone = c("CDT",
"CDT", "CDT", "CDT", "CDT", "CDT"), gmtoff = c(NA_integer_,
NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_
)), class = c("POSIXlt", "POSIXt")), Max = c(23.8, 24.9, 23.2, 22.4, 25.1, 24.4), Min = c(14.4, 11.7, 8.7, 8.7, 9.8, 10)), row.names = c(NA, 6L), class ="data.frame")
# head of df2
df2 <- structure(list(Date = structure(list(sec = c(0, 0, 0, 0, 0, 0),
min = c(0L,30L, 0L, 30L, 0L, 30L), hour = c(14L, 14L, 15L, 15L, 16L, 16L),
mday = c(15L, 15L, 15L, 15L, 15L, 15L), mon = c(5L, 5L, 5L, 5L, 5L, 5L),
year = c(119L, 119L, 119L, 119L, 119L, 119L), wday = c(6L, 6L, 6L, 6L, 6L,
6L), yday = c(165L,165L, 165L, 165L, 165L, 165L), isdst = c(1L, 1L, 1L, 1L,
1L, 1L), zone =c("CDT", "CDT", "CDT", "CDT", "CDT", "CDT"), gmtoff =
c(NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_,
NA_integer_)),class = c("POSIXlt","POSIXt")), Temp = c(22.8, 22.4, 22.4,
22.3,21.9, 21.3), Hour =c(14L, 14L, 15L, 15L, 16L, 16L), Day =
structure(c(18062,18062, 18062, 18062, 18062, 18062), class = "Date")),
row.names= c(NA, 6L), class = "data.frame")

Confirmed with your dput output:
class(df1$Day)
# [1] "POSIXlt" "POSIXt"
class(df2$Day)
# [1] "Date"
You need to convert one to the other's class, perhaps df1$Day is the same time-of-day for each value (in this set), then you can do
merge(df1, df2, by = "Day", all.y = TRUE)
# Day Max Min Date Temp Hour
# 1 2019-06-15 NA NA 2019-06-15 14:00:00 22.8 14
# 2 2019-06-15 NA NA 2019-06-15 14:30:00 22.4 14
# 3 2019-06-15 NA NA 2019-06-15 15:00:00 22.4 15
# 4 2019-06-15 NA NA 2019-06-15 15:30:00 22.3 15
# 5 2019-06-15 NA NA 2019-06-15 16:00:00 21.9 16
# 6 2019-06-15 NA NA 2019-06-15 16:30:00 21.3 16
df1$Day <- as.Date(df1$Day)
merge(df1, df2, by = "Day", all.y = TRUE)
# Day Max Min Date Temp Hour
# 1 2019-06-15 23.8 14.4 2019-06-15 14:00:00 22.8 14
# 2 2019-06-15 23.8 14.4 2019-06-15 14:30:00 22.4 14
# 3 2019-06-15 23.8 14.4 2019-06-15 15:00:00 22.4 15
# 4 2019-06-15 23.8 14.4 2019-06-15 15:30:00 22.3 15
# 5 2019-06-15 23.8 14.4 2019-06-15 16:00:00 21.9 16
# 6 2019-06-15 23.8 14.4 2019-06-15 16:30:00 21.3 16
I'll go out on a limb and say that the class of your Day columns is different.
Going with "raw data" as copied from the question, Day will be strings for both frames:
df1 <- read.table(header = TRUE, text = "
Day MaxTemp MinTemp
2019-06-15 23.8 14.4
2019-06-16 24.9 11.7
2019-06-17 23.2 8.7")
df2 <- read.table(header = TRUE, text = "
Day Hour Temp
2019-06-15 14 22.8
2019-06-15 15 22.4
2019-06-15 16 21.9")
str(lapply(df1, class))
# List of 3
# $ Day : chr "character"
# $ MaxTemp: chr "numeric"
# $ MinTemp: chr "numeric"
merge(df1, df2, by = "Day")
# Day MaxTemp MinTemp Hour Temp
# 1 2019-06-15 23.8 14.4 14 22.8
# 2 2019-06-15 23.8 14.4 15 22.4
# 3 2019-06-15 23.8 14.4 16 21.9
If I convert one of them to a Date class:
df1$Day <- as.Date(df1$Day)
str(lapply(df1, class))
# List of 3
# $ Day : chr "Date"
# $ MaxTemp: chr "numeric"
# $ MinTemp: chr "numeric"
merge(df1, df2, by = "Day", all.y = TRUE)
# Day MaxTemp MinTemp Hour Temp
# 1 2019-06-15 NA NA 14 22.8
# 2 2019-06-15 NA NA 15 22.4
# 3 2019-06-15 NA NA 16 21.9
Fixes include:
Converting the other frame's Day to a date:
df2$Day <- as.Date(df2$Day)
merge(df1, df2, by = "Day", all.y = TRUE)
# Day MaxTemp MinTemp Hour Temp
# 1 2019-06-15 23.8 14.4 14 22.8
# 2 2019-06-15 23.8 14.4 15 22.4
# 3 2019-06-15 23.8 14.4 16 21.9
Converting both Day columns back to character (or factor):
df1$Day <- as.character(df1$Day)
df2$Day <- as.character(df2$Day)
merge(df1, df2, by = "Day", all.y = TRUE)
# Day MaxTemp MinTemp Hour Temp
# 1 2019-06-15 23.8 14.4 14 22.8
# 2 2019-06-15 23.8 14.4 15 22.4
# 3 2019-06-15 23.8 14.4 16 21.9
Though in this case it's likely (and perhaps even recommended) that you convert them back to Date at some point (since it is a numeric data type, after all).

Related

Merge two dataframes with different time ranges by repeating values within time range in R

I have two distinct dataframes, both with a time information column, with different time intervals. The first df1 has time intervals in seconds (~6s) and the other (df2) has time intervals of 10min.
I would like to merge both dataframes, keeping the information from both df, repeating df2 values within the time range in df1.
Like this:
df1
x y z time
-52 -39 -35 06:08:03
-47 -57 -36 06:08:08
-39 2 -40 06:08:13
-45 -23 -29 06:10:20
-51 -11 -31 06:10:29
-69 -28 -19 06:20:34
df2
time Temp.ar Ur ar Vel. Vento
06:00:00 14.79 78.5 1.147
06:10:00 14.74 78.9 1.045
06:20:00 14.9 78.9 1.009
06:30:00 15.14 78.6 1.076
06:40:00 15.32 77.8 1.332
06:50:00 15.6 76.5 1.216
output that I want
x y z time Temp.ar Ur ar Vel. Vento
-52 -39 -35 06:08:03 14.79 78.5 1.147
-47 -57 -36 06:08:08 14.79 78.5 1.147
-39 2 -40 06:08:13 14.79 78.5 1.147
-45 -23 -29 06:10:20 14.74 78.9 1.045
-51 -11 -31 06:10:29 14.74 78.9 1.045
-69 -28 -19 06:20:34 14.9 78.9 1.009
Time column is already in "POSIXct" format.
You can use a rolling join
library(data.table)
setDT(df1)
setDT(df2)
df2[df1, on = .(time), roll = TRUE]
# time Temp.ar Ur.ar Vel.Vento x y z
# 1: 2019-12-11 06:08:03 14.79 78.5 1.147 -52 -39 -35
# 2: 2019-12-11 06:08:08 14.79 78.5 1.147 -47 -57 -36
# 3: 2019-12-11 06:08:13 14.79 78.5 1.147 -39 2 -40
# 4: 2019-12-11 06:10:20 14.74 78.9 1.045 -45 -23 -29
# 5: 2019-12-11 06:10:29 14.74 78.9 1.045 -51 -11 -31
# 6: 2019-12-11 06:20:34 14.90 78.9 1.009 -69 -28 -19
Data used
df1 <- fread('
x y z time
-52 -39 -35 06:08:03
-47 -57 -36 06:08:08
-39 2 -40 06:08:13
-45 -23 -29 06:10:20
-51 -11 -31 06:10:29
-69 -28 -19 06:20:34
')
df2 <- fread('
time Temp.ar Ur.ar Vel.Vento
06:00:00 14.79 78.5 1.147
06:10:00 14.74 78.9 1.045
06:20:00 14.9 78.9 1.009
06:30:00 15.14 78.6 1.076
06:40:00 15.32 77.8 1.332
06:50:00 15.6 76.5 1.216
')
Probably the most generalizable approach is to define a set of time windows and then use findInterval to locate the index of the time in each data frame. You can then use merge to bring the two together:
# This is what Gabriel means by a reprex - if you provide the data in
# loadable form it is much easier to help
df1 <- read.table(text=" x y z time
-52 -39 -35 06:08:03
-47 -57 -36 06:08:08
-39 2 -40 06:08:13
-45 -23 -29 06:10:20
-51 -11 -31 06:10:29
-69 -28 -19 06:20:34", header=TRUE, stringsAsFactors=FALSE)
df2 <- read.table(text="time Temp.ar Ur.ar Vel.Vento
06:00:00 14.79 78.5 1.147
06:10:00 14.74 78.9 1.045
06:20:00 14.9 78.9 1.009
06:30:00 15.14 78.6 1.076
06:40:00 15.32 77.8 1.332
06:50:00 15.6 76.5 1.216", header=TRUE, stringsAsFactors=FALSE)
df1$time <- strptime(df1$time, '%H:%M:%S')
df2$time <- strptime(df2$time, '%H:%M:%S')
# I'm just using the existing sequence in df2 as the time windows, but
# you could set up different ones
df1$interval <- findInterval(df1$time, df2$time)
df2$interval <- findInterval(df2$time, df2$time)
df3 <- merge(df1, df2, by='interval')
There are some extra columns in there (the times from both df1 and df2) but you can subset those out. They are a useful check it has worked though.
With base R, here are provided with two approaches that may help you to make it,
using findInterval():
df <- `row.names<-`(cbind(df1,df2[findInterval(df1$time, df2$time),-1]),rownames(df1))
using which.max():
df <- `row.names<-`(cbind(df1,
df2[sapply(df1$time,
function(x) which.max(df2$time >= x)-1),-1]),rownames(df1))
which gives
> df
x y z time Temp.ar Ur.ar Vel.Vento
1 -52 -39 -35 2019-12-11 06:08:03 14.79 78.5 1.147
2 -47 -57 -36 2019-12-11 06:08:08 14.79 78.5 1.147
3 -39 2 -40 2019-12-11 06:08:13 14.79 78.5 1.147
4 -45 -23 -29 2019-12-11 06:10:20 14.74 78.9 1.045
5 -51 -11 -31 2019-12-11 06:10:29 14.74 78.9 1.045
6 -69 -28 -19 2019-12-11 06:20:34 14.90 78.9 1.009
DATA
df1 <- structure(list(x = c(-52L, -47L, -39L, -45L, -51L, -69L), y = c(-39L,
-57L, 2L, -23L, -11L, -28L), z = c(-35L, -36L, -40L, -29L, -31L,
-19L), time = structure(list(sec = c(3, 8, 13, 20, 29, 34), min = c(8L,
8L, 8L, 10L, 10L, 20L), hour = c(6L, 6L, 6L, 6L, 6L, 6L), mday = c(11L,
11L, 11L, 11L, 11L, 11L), mon = c(11L, 11L, 11L, 11L, 11L, 11L
), year = c(119L, 119L, 119L, 119L, 119L, 119L), wday = c(3L,
3L, 3L, 3L, 3L, 3L), yday = c(344L, 344L, 344L, 344L, 344L, 344L
), isdst = c(0L, 0L, 0L, 0L, 0L, 0L), zone = c("CET", "CET",
"CET", "CET", "CET", "CET"), gmtoff = c(NA_integer_, NA_integer_,
NA_integer_, NA_integer_, NA_integer_, NA_integer_)), class = c("POSIXlt",
"POSIXt"))), row.names = c(NA, -6L), class = "data.frame")
df2 <- structure(list(time = structure(list(sec = c(0, 0, 0, 0, 0, 0
), min = c(0L, 10L, 20L, 30L, 40L, 50L), hour = c(6L, 6L, 6L,
6L, 6L, 6L), mday = c(11L, 11L, 11L, 11L, 11L, 11L), mon = c(11L,
11L, 11L, 11L, 11L, 11L), year = c(119L, 119L, 119L, 119L, 119L,
119L), wday = c(3L, 3L, 3L, 3L, 3L, 3L), yday = c(344L, 344L,
344L, 344L, 344L, 344L), isdst = c(0L, 0L, 0L, 0L, 0L, 0L), zone = c("CET",
"CET", "CET", "CET", "CET", "CET"), gmtoff = c(NA_integer_, NA_integer_,
NA_integer_, NA_integer_, NA_integer_, NA_integer_)), class = c("POSIXlt",
"POSIXt")), Temp.ar = c(14.79, 14.74, 14.9, 15.14, 15.32, 15.6
), Ur.ar = c(78.5, 78.9, 78.9, 78.6, 77.8, 76.5), Vel.Vento = c(1.147,
1.045, 1.009, 1.076, 1.332, 1.216)), row.names = c(NA, -6L), class = "data.frame")

Fill gaps using a group mean in R

I have a data set which has gaps in one of the columns (temp). I am trying to fill the gaps using the "temp" data from a "sensor" or mean of "sensors" within the same "treatment", and of course same date stamp. I am trying to do this using tidyverse/lubridate.
date treatment sensor temp
1/01/2019 1 A 30
2/01/2019 1 A 29.1
3/01/2019 1 A 21.2
4/01/2019 1 A NA
1/01/2019 1 B 20.5
2/01/2019 1 B 19.8
3/01/2019 1 B 35.1
4/01/2019 1 B 23.5
1/01/2019 2 C 31.2
2/01/2019 2 C 32.1
3/01/2019 2 C 28.1
4/01/2019 2 C 31.2
1/01/2019 2 D NA
2/01/2019 2 D 26.5
3/01/2019 2 D 27.9
4/01/2019 2 D 28
This is what I am expecting:
date treatment sensor temp
1/01/2019 1 A 30
2/01/2019 1 A 29.1
3/01/2019 1 A 21.2
4/01/2019 1 A 23.5
1/01/2019 1 B 20.5
2/01/2019 1 B 19.8
3/01/2019 1 B 35.1
4/01/2019 1 B 23.5
1/01/2019 2 C 31.2
2/01/2019 2 C 32.1
3/01/2019 2 C 28.1
4/01/2019 2 C 31.2
1/01/2019 2 D 31.2
2/01/2019 2 D 26.5
3/01/2019 2 D 27.9
4/01/2019 2 D 28
Many thanks for your help.
Another option with na.aggregate from zoo
library(dplyr)
library(zoo)
df %>%
group_by(date, treatment) %>%
mutate(temp = na.aggregate(temp))
# A tibble: 16 x 4
# Groups: date, treatment [8]
# date treatment sensor temp
# <fct> <int> <fct> <dbl>
# 1 1/01/2019 1 A 30
# 2 2/01/2019 1 A 29.1
# 3 3/01/2019 1 A 21.2
# 4 4/01/2019 1 A 23.5
# 5 1/01/2019 1 B 20.5
# 6 2/01/2019 1 B 19.8
# 7 3/01/2019 1 B 35.1
# 8 4/01/2019 1 B 23.5
# 9 1/01/2019 2 C 31.2
#10 2/01/2019 2 C 32.1
#11 3/01/2019 2 C 28.1
#12 4/01/2019 2 C 31.2
#13 1/01/2019 2 D 31.2
#14 2/01/2019 2 D 26.5
#15 3/01/2019 2 D 27.9
#16 4/01/2019 2 D 28
data
df <- structure(list(date = structure(c(1L, 2L, 3L, 4L, 1L, 2L, 3L,
4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L), .Label = c("1/01/2019",
"2/01/2019", "3/01/2019", "4/01/2019"), class = "factor"), treatment = c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L),
sensor = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L), .Label = c("A", "B", "C", "D"
), class = "factor"), temp = c(30, 29.1, 21.2, NA, 20.5,
19.8, 35.1, 23.5, 31.2, 32.1, 28.1, 31.2, NA, 26.5, 27.9,
28)), class = "data.frame", row.names = c(NA, -16L))
How about this:
df <- df %>%
group_by(date, treatment) %>%
mutate(
fill = mean(temp, na.rm=TRUE), # value to fill in blanks
temp2 = case_when(!is.na(temp) ~ temp,
TRUE ~ fill)
)
Here is one option using map2_dbl from purrr. We group_by treatment and replace NA temp with the first non-NA temp with the same date in the group.
library(dplyr)
library(purrr)
df %>%
group_by(treatment) %>%
mutate(temp = map2_dbl(temp, date, ~if (is.na(.x))
temp[which.max(date == .y & !is.na(temp))] else .x))
# date treatment sensor temp
# <fct> <int> <fct> <dbl>
# 1 1/01/2019 1 A 30
# 2 2/01/2019 1 A 29.1
# 3 3/01/2019 1 A 21.2
# 4 4/01/2019 1 A 23.5
# 5 1/01/2019 1 B 20.5
# 6 2/01/2019 1 B 19.8
# 7 3/01/2019 1 B 35.1
# 8 4/01/2019 1 B 23.5
# 9 1/01/2019 2 C 31.2
#10 2/01/2019 2 C 32.1
#11 3/01/2019 2 C 28.1
#12 4/01/2019 2 C 31.2
#13 1/01/2019 2 D 31.2
#14 2/01/2019 2 D 26.5
#15 3/01/2019 2 D 27.9
#16 4/01/2019 2 D 28
data
df <- structure(list(date = structure(c(1L, 2L, 3L, 4L, 1L, 2L, 3L,
4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L), .Label = c("1/01/2019",
"2/01/2019", "3/01/2019", "4/01/2019"), class = "factor"), treatment =
c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L),
sensor = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L), .Label = c("A", "B", "C", "D"
), class = "factor"), temp = c(30, 29.1, 21.2, NA, 20.5,
19.8, 35.1, 23.5, 31.2, 32.1, 28.1, 31.2, NA, 26.5, 27.9,
28)), class = "data.frame", row.names = c(NA, -16L))

R programming - data frame manoevur

Suppose I have the following dataframe:
dc tmin tmax cint wcmin wcmax wsmin wsmax gsmin gsmax wd rmin rmax cir lr
1: 24 -1 4 5 -5 -2 20 25 35 40 90 11.8 26.6 14.8 3
2: 41 -3 5 8 -8 -3 15 20 35 40 90 10.0 23.5 13.5 3
3: 48 0 5 5 -4 0 30 35 45 50 45 7.3 19.0 11.7 6
4: 50 0 5 5 -4 0 30 35 45 50 45 7.3 19.0 11.7 6
5: 52 3 5 2 -3 1 20 25 35 40 45 6.7 17.4 10.7 6
6: 57 -2 5 7 -6 -1 25 30 35 40 315 4.4 13.8 9.4 7
lc wc li yd yr nF factdcx
1: 1 3 TRUE 1 2010 2 24
2: 1 3 TRUE 1 2010 8 41
3: 2 3 TRUE 1 2010 0 48
4: 2 3 TRUE 1 2010 0 50
5: 2 3 TRUE 1 2010 0 52
6: 3 3 FALSE 1 2010 0 57
I'd like to turn it into a new dataframe like the following:
dc tmin tmax cint wcmin wcmax wsmin wsmax gsmin gsmax wd rmin rmax cir lr
1: 24 -1 4 5 -5 -2 20 25 35 40 90 11.8 26.6 14.8 3
2: 41 -3 5 8 -8 -3 15 20 35 40 90 10.0 23.5 13.5 3
3: 48 0 5 5 -4 0 30 35 45 50 45 7.3 19.0 11.7 6
4: 52 3 5 2 -3 1 20 25 35 40 45 6.7 17.4 10.7 6
5: 57 -2 5 7 -6 -1 25 30 35 40 315 4.4 13.8 9.4 7
lc wc li yd yr nF factdcx
1: 1 3 TRUE 1 2010 2 24
2: 1 3 TRUE 1 2010 8 41
3: 2 3 TRUE 1 2010 0 (sum of nF for 48 and 50, factdcx) 48
4: 2 3 TRUE 1 2010 0 52
5: 3 3 FALSE 1 2010 0 57
How can I do it? (Surely, the dataframe, abc, is much larger, but I want the sum of all categories of 48 and 50 and group it into a new category, say '48').
Many thanks!
> dput(head(abc1))
structure(list(dc = c(24L, 41L, 48L, 50L, 52L, 57L), tmin = c(-1L,
-3L, 0L, 0L, 3L, -2L), tmax = c(4L, 5L, 5L, 5L, 5L, 5L), cint = c(5L,
8L, 5L, 5L, 2L, 7L), wcmin = c(-5L, -8L, -4L, -4L, -3L, -6L),
wcmax = c(-2L, -3L, 0L, 0L, 1L, -1L), wsmin = c(20L, 15L,
30L, 30L, 20L, 25L), wsmax = c(25L, 20L, 35L, 35L, 25L, 30L
), gsmin = c(35L, 35L, 45L, 45L, 35L, 35L), gsmax = c(40L,
40L, 50L, 50L, 40L, 40L), wd = c(90L, 90L, 45L, 45L, 45L,
315L), rmin = c(11.8, 10, 7.3, 7.3, 6.7, 4.4), rmax = c(26.6,
23.5, 19, 19, 17.4, 13.8), cir = c(14.8, 13.5, 11.7, 11.7,
10.7, 9.4), lr = c(3L, 3L, 6L, 6L, 6L, 7L), lc = c(1L, 1L,
2L, 2L, 2L, 3L), wc = c(3L, 3L, 3L, 3L, 3L, 3L), li = c(TRUE,
TRUE, TRUE, TRUE, TRUE, FALSE), yd = c(1L, 1L, 1L, 1L, 1L,
1L), yr = c(2010L, 2010L, 2010L, 2010L, 2010L, 2010L), nF = c(2L,
8L, 0L, 0L, 0L, 0L), factdcx = structure(1:6, .Label = c("24",
"41", "48", "50", "52", "57", "70"), class = "factor")), .Names = c("dc",
"tmin", "tmax", "cint", "wcmin", "wcmax", "wsmin", "wsmax", "gsmin",
"gsmax", "wd", "rmin", "rmax", "cir", "lr", "lc", "wc", "li",
"yd", "yr", "nF", "factdcx"), class = c("data.table", "data.frame"
), row.names = c(NA, -6L), .internal.selfref = <pointer: 0x054b24a0>)
Still got a problem, sir/madam:
> head(abc1 (updated))
dc tmin tmax cint wcmin wcmax wsmin wsmax gsmin gsmax wd rmin rmax cir lr
1: 24 -1 4 5 -5 -2 20 25 35 40 90 11.8 26.6 14.8 3
2: 41 -3 5 8 -8 -3 15 20 35 40 90 10.0 23.5 13.5 3
3: 48 0 5 5 -4 0 30 35 45 50 45 7.3 19.0 11.7 6
4: 52 3 5 2 -3 1 20 25 35 40 45 6.7 17.4 10.7 6
5: 57 -2 5 7 -6 -1 25 30 35 40 315 4.4 13.8 9.4 7
6: 70 -2 3 5 -4 -1 20 25 30 35 360 3.6 10.2 6.6 7
lc wc li yd yr nF factdcx
1: 1 3 TRUE 1 2010 2 24
2: 1 3 TRUE 1 2010 8 41
3: 2 3 TRUE 1 2010 57 48
4: 2 3 TRUE 1 2010 0 52
5: 3 3 FALSE 1 2010 0 57
6: 3 2 TRUE 1 2010 1 70
The sum of nF was incorrect, it should be zero.
Try
library(data.table)
unique(setDT(df1)[, factdcx:= as.character(factdcx)][factdcx %chin%
c('48','50'), c('dc', 'factdcx', 'nF') := list('48', '48', sum(nF))])
# dc tmin tmax cint wcmin wcmax wsmin wsmax gsmin gsmax wd rmin rmax cir lr
#1: 24 -1 4 5 -5 -2 20 25 35 40 90 11.8 26.6 14.8 3
#2: 41 -3 5 8 -8 -3 15 20 35 40 90 10.0 23.5 13.5 3
#3: 48 0 5 5 -4 0 30 35 45 50 45 7.3 19.0 11.7 6
#4: 52 3 5 2 -3 1 20 25 35 40 45 6.7 17.4 10.7 6
#5: 57 -2 5 7 -6 -1 25 30 35 40 315 4.4 13.8 9.4 7
# lc wc li yd yr nF factdcx
#1: 1 3 TRUE 1 2010 2 24
#2: 1 3 TRUE 1 2010 8 41
#3: 2 3 TRUE 1 2010 0 48
#4: 2 3 TRUE 1 2010 0 52
#5: 3 3 FALSE 1 2010 0 57
For abc1,
res1 <- unique(setDT(abc1)[, factdcx:= as.character(factdcx)][factdcx %chin%
c('48','50'), c('dc', 'factdcx', 'nF') := list(48, '48', sum(nF))])
res1
# dc tmin tmax cint wcmin wcmax wsmin wsmax gsmin gsmax wd rmin rmax cir lr
#1: 24 -1 4 5 -5 -2 20 25 35 40 90 11.8 26.6 14.8 3
#2: 41 -3 5 8 -8 -3 15 20 35 40 90 10.0 23.5 13.5 3
#3: 48 0 5 5 -4 0 30 35 45 50 45 7.3 19.0 11.7 6
#4: 52 3 5 2 -3 1 20 25 35 40 45 6.7 17.4 10.7 6
#5: 57 -2 5 7 -6 -1 25 30 35 40 315 4.4 13.8 9.4 7
# lc wc li yd yr nF factdcx
#1: 1 3 TRUE 1 2010 2 24
#2: 1 3 TRUE 1 2010 8 41
#3: 2 3 TRUE 1 2010 0 48
#4: 2 3 TRUE 1 2010 0 52
#5: 3 3 FALSE 1 2010 0 57
data
df1 <- structure(list(dc = structure(1:6, .Label = c("24", "41",
"48",
"50", "52", "57"), class = "factor"), tmin = c(-1L, -3L, 0L,
0L, 3L, -2L), tmax = c(4L, 5L, 5L, 5L, 5L, 5L), cint = c(5L,
8L, 5L, 5L, 2L, 7L), wcmin = c(-5L, -8L, -4L, -4L, -3L, -6L),
wcmax = c(-2L, -3L, 0L, 0L, 1L, -1L), wsmin = c(20L, 15L,
30L, 30L, 20L, 25L), wsmax = c(25L, 20L, 35L, 35L, 25L, 30L
), gsmin = c(35L, 35L, 45L, 45L, 35L, 35L), gsmax = c(40L,
40L, 50L, 50L, 40L, 40L), wd = c(90L, 90L, 45L, 45L, 45L,
315L), rmin = c(11.8, 10, 7.3, 7.3, 6.7, 4.4), rmax = c(26.6,
23.5, 19, 19, 17.4, 13.8), cir = c(14.8, 13.5, 11.7, 11.7,
10.7, 9.4), lr = c(3L, 3L, 6L, 6L, 6L, 7L), lc = c(1L, 1L,
2L, 2L, 2L, 3L), wc = c(3L, 3L, 3L, 3L, 3L, 3L), li = c(TRUE,
TRUE, TRUE, TRUE, TRUE, FALSE), yd = c(1L, 1L, 1L, 1L, 1L,
1L), yr = c(2010L, 2010L, 2010L, 2010L, 2010L, 2010L), nF = c(2L,
8L, 0L, 0L, 0L, 0L), factdcx = structure(1:6, .Label = c("24",
"41", "48", "50", "52", "57"), class = "factor")), .Names = c("dc",
"tmin", "tmax", "cint", "wcmin", "wcmax", "wsmin", "wsmax", "gsmin",
"gsmax", "wd", "rmin", "rmax", "cir", "lr", "lc", "wc", "li",
"yd", "yr", "nF", "factdcx"), row.names = c("1:", "2:", "3:",
"4:", "5:", "6:"), class = "data.frame")

Merging output in R

max=aggregate(cbind(a$VALUE,Date=a$DATE) ~ format(a$DATE, "%m") + cut(a$CLASS, breaks=c(0,2,4,6,8,10,12,14)) , data = a, max)[-1]
max$DATE=as.Date(max$DATE, origin = "1970-01-01")
Sample Data :
DATE GRADE VALUE
2008-09-01 1 20
2008-09-02 2 30
2008-09-03 3 50
.
.
2008-09-30 2 75
.
.
2008-10-01 1 95
.
.
2008-11-01 4 90
.
.
2008-12-01 1 70
2008-12-02 2 40
2008-12-28 4 30
2008-12-29 1 40
2008-12-31 3 50
My Expected output according to above table for only first month is :
DATE GRADE VALUE
2008-09-30 (0,2] 75
2008-09-02 (2,4] 50
Output in my real data :
format(DATE, "%m")
1 09
2 10
3 11
4 12
5 09
6 10
7 11
cut(a$GRADE, breaks = c(0, 2, 4, 6, 8, 10, 12, 14)) value
1 (0,2] 0.30844444
2 (0,2] 1.00000000
3 (0,2] 1.00000000
4 (0,2] 0.73333333
5 (2,4] 0.16983488
6 (2,4] 0.09368000
7 (2,4] 0.10589335
Date
1 2008-09-30
2 2008-10-31
3 2008-11-28
4 2008-12-31
5 2008-09-30
6 2008-10-31
7 2008-11-28
The output is not according to the sample data , as the data is too big . A simple logic is that there are grades from 1 to 10 , so I want to find the highest value for a month in the corresponding grade groups . Eg : I need a highest value for each group (0,2],(0,4] etc
I used an aggregate condition with function max and two grouping it by two columns Date and Grade . Now when I run the code and display the value of max , I get 3 tables as output one after the other. Now I want to plot this output but i am not able to do that because of this .So how can i merge all these output ?
Try:
library(dplyr)
a %>%
group_by(MONTH=format(DATE, "%m"), GRADE=cut(GRADE, breaks=seq(0,14,by=2))) %>%
summarise_each(funs(max))
# MONTH GRADE DATE VALUE
#1 09 (0,2] 2008-09-30 75
#2 09 (2,4] 2008-09-03 50
#3 10 (0,2] 2008-10-01 95
#4 11 (2,4] 2008-11-01 90
#5 12 (0,2] 2008-12-29 70
#6 12 (2,4] 2008-12-31 50
Or using data.table
library(data.table)
setDT(a)[, list(DATE=max(DATE), VALUE=max(VALUE)),
by= list(MONTH=format(DATE, "%m"),
GRADE=cut(GRADE, breaks=seq(0,14, by=2)))]
# MONTH GRADE DATE VALUE
#1: 09 (0,2] 2008-09-30 75
#2: 09 (2,4] 2008-09-03 50
#3: 10 (0,2] 2008-10-01 95
#4: 11 (2,4] 2008-11-01 90
#5: 12 (0,2] 2008-12-29 70
#6: 12 (2,4] 2008-12-31 50
Or using aggregate
res <- transform(with(a,
aggregate(cbind(VALUE, DATE),
list(MONTH=format(DATE, "%m") ,GRADE=cut(GRADE, breaks=seq(0,14, by=2))), max)),
DATE=as.Date(DATE, origin="1970-01-01"))
res[order(res$MONTH),]
# MONTH GRADE VALUE DATE
#1 09 (0,2] 75 2008-09-30
#4 09 (2,4] 50 2008-09-03
#2 10 (0,2] 95 2008-10-01
#5 11 (2,4] 90 2008-11-01
#3 12 (0,2] 70 2008-12-29
#6 12 (2,4] 50 2008-12-31
data
a <- structure(list(DATE = structure(c(14123, 14124, 14125, 14152,
14153, 14184, 14214, 14215, 14241, 14242, 14244), class = "Date"),
GRADE = c(1L, 2L, 3L, 2L, 1L, 4L, 1L, 2L, 4L, 1L, 3L), VALUE = c(20L,
30L, 50L, 75L, 95L, 90L, 70L, 40L, 30L, 40L, 50L)), .Names = c("DATE",
"GRADE", "VALUE"), row.names = c(NA, -11L), class = "data.frame")
Update
If you want to include YEAR also in the grouping
library(dplyr)
a %>%
group_by(MONTH=format(DATE, "%m"), YEAR=format(DATE, "%Y"), GRADE=cut(GRADE, breaks=seq(0,14, by=2)))%>%
summarise_each(funs(max))
# MONTH YEAR GRADE DATE VALUE
#1 09 2008 (0,2] 2008-09-30 75
#2 09 2008 (2,4] 2008-09-03 50
#3 09 2009 (0,2] 2009-09-30 75
#4 09 2009 (2,4] 2009-09-03 50
#5 10 2008 (0,2] 2008-10-01 95
#6 10 2009 (0,2] 2009-10-01 95
#7 11 2008 (2,4] 2008-11-01 90
#8 11 2009 (2,4] 2009-11-01 90
#9 12 2008 (0,2] 2008-12-29 70
#10 12 2008 (2,4] 2008-12-31 50
#11 12 2009 (0,2] 2009-12-29 70
#12 12 2009 (2,4] 2009-12-31 50
data
a <- structure(list(DATE = structure(c(14123, 14124, 14125, 14152,
14153, 14184, 14214, 14215, 14241, 14242, 14244, 14488, 14489,
14490, 14517, 14518, 14549, 14579, 14580, 14606, 14607, 14609
), class = "Date"), GRADE = c(1L, 2L, 3L, 2L, 1L, 4L, 1L, 2L,
4L, 1L, 3L, 1L, 2L, 3L, 2L, 1L, 4L, 1L, 2L, 4L, 1L, 3L), VALUE = c(20L,
30L, 50L, 75L, 95L, 90L, 70L, 40L, 30L, 40L, 50L, 20L, 30L, 50L,
75L, 95L, 90L, 70L, 40L, 30L, 40L, 50L)), .Names = c("DATE",
"GRADE", "VALUE"), row.names = c("1", "2", "3", "4", "5", "6",
"7", "8", "9", "10", "11", "12", "21", "31", "41", "51", "61",
"71", "81", "91", "101", "111"), class = "data.frame")
Following code using base R may be helpful (using 'a' dataframe from akrun's answer):
xx = strsplit(as.character(a$DATE), '-')
a$month = sapply(strsplit(as.character(a$DATE), '-'),'[',2)
gradeCats = cut(a$GRADE, breaks = c(0, 2, 4, 6, 8, 10, 12, 14))
aggregate(VALUE~month+gradeCats, data= a, max)
month gradeCats VALUE
1 09 (0,2] 75
2 10 (0,2] 95
3 12 (0,2] 70
4 09 (2,4] 50
5 11 (2,4] 90
6 12 (2,4] 50

How to make a cross table with NA instead of X?

I have the following dataset (see for loading dataset below)
ID Date qty
1 ID25 2007-12-01 45
2 ID25 2008-01-01 26
3 ID25 2008-02-01 46
4 ID25 2008-03-01 0
5 ID25 2008-04-01 78
6 ID25 2008-05-01 65
7 ID25 2008-06-01 32
8 ID99 2008-02-01 99
9 ID99 2008-03-01 0
10 ID99 2008-04-01 99
And I would like to create a pivot table of that. I do that with the following command and that seems to be working fine:
pivottable <- xtabs(qty ~ ID + Date, table)
The output is the following:
ID 2007-12-01 2008-01-01 2008-02-01 2008-03-01 2008-04-01 2008-05-01 2008-06-01
ID25 45 26 46 0 78 65 32
ID99 0 0 99 0 99 0 0
However, for ID99 there are only values for 3 periods the rest is marked as '0'. I would like to display NA in the fields that have no values in the first table. I would like to get a table that looks as following:
ID 2007-12-01 2008-01-01 2008-02-01 2008-03-01 2008-04-01 2008-05-01 2008-06-01
ID25 45 26 46 0 78 65 32
ID99 NA NA 99 0 99 NA NA
Any suggestion on how to accomplish this?
Loading dataset:
table <- structure(list(ID = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L), .Label = c("ID25", "ID99"), class = "factor"), Date = structure(c(7L,
1L, 2L, 3L, 4L, 5L, 6L, 2L, 3L, 4L), .Label = c("01/01/2008",
"01/02/2008", "01/03/2008", "01/04/2008", "01/05/2008", "01/06/2008",
"01/12/2007"), class = "factor"), qty = c(45L, 26L, 46L, 0L,
78L, 65L, 32L, 99L, 0L, 99L)), .Names = c("ID", "Date", "qty"
), class = "data.frame", row.names = c(NA, -10L))
table$Date <- as.POSIXct(table$Date, format='%d/%m/%Y')
You could use xtabs twice to obtain the output you are looking for:
Create the table:
pivottable <- xtabs(qty ~ ID + Date, table)
Replace all zeros of non-existing combinations with NA:
pivottable[!xtabs( ~ ID + Date, table)] <- NA
The output:
Date
ID 2007-12-01 2008-01-01 2008-02-01 2008-03-01 2008-04-01 2008-05-01 2008-06-01
ID25 45 26 46 0 78 65 32
ID99 99 0 99
Note that NAs are not displayed. This is due to the print function for this class. But you could use unclass(pivottable) to achieve regular behavior of print.

Resources