nsga2 Constraints - mco package in R - r

My objective function considers ellipse arc lengths. Within the objective function, I use uniroot to find the semi-minor axis b for the semi-major a and arc angle provided by nsga.
I've written a constraint function to ensure that the limits provided to uniroot are of opposite sign.... but it's not working. The program crashes becasue f() values are not of opposite sign.
I've simplified the program to the example below... was hoping for help on getting this to work. Thank you.
library(RConics)
library(mco)
###############################################################
#FUNCTIONS
###############################################################
restricts<-function(invec,len){
lwr<-sign(get_b(1, as.numeric(invec[1]), len, as.numeric(invec[2])))
uppr<-sign(get_b(as.numeric(invec[1]), as.numeric(invec[1]), len, as.numeric(invec[2])))
restrictions <- logical(1)
restrictions[1] <- (lwr != uppr)
return (restrictions)
}
objective<-function(invec, len){
a<-as.numeric(invec[1])
theta=as.numeric(invec[2])
b_out<-uniroot(get_b,c(1,a),a=a,len=len,theta=theta)
b<-b_out$root
ps<- c(
a*cos(d2r(90+theta)),
b*sin(d2r(90+theta))
)
end<- atan(-b*cot(d2r(180+(90-theta)))/a) - pi/2+pi/2
rot <- 0.52-end
final<- RotMat(rot)%*%ps
return(abs(final[2]))
}
r2d<-function(theta) theta*180/pi
d2r<-function(theta) theta*pi/180
RotMat<-function(theta) rbind(c(cos(theta),-sin(theta)),c(sin(theta),cos(theta)))
get_b<-function(b,a,len,theta){
return(
len-arcLengthEllipse(
p1 = c(0,b),
p2 = c(a*cos(d2r(90+theta)), b*sin(d2r(90+theta))),
saxes = c(a,b),
n = 5)
)
}
###############################################################
#MAIN
###############################################################
mods<-nsga2(objective, idim=2, odim=1,
constraints = restricts,
cdim=1,
generations=10, popsize=100,
cprob=0.9, cdist=1,
mprob=0.2, mdist=20,
lower.bounds = c(130,1), #70.6, 86.6
upper.bounds = c(203,90),
len=204)

Related

I get an error when I use fmincon, and I do not know if I am using it correctly?

I am new at programming. I need to please ask 2 questions. My code is after the questions. Thank you very much!!!
1) I am trying to use fmincon in R but I keep getting the following mistake:
"Error in chol.default(ZHZ) :
the leading minor of order 2 is not positive definite"
Does someone have any idea what this is about? My code is below.
2) Am I programming correctly? The function should be finding values to minimize "sqrterrors". Is the code I wrote doing that?
x0 <- c(-0.0084,0.0049,-0.0019,0);
#Function
fn <- function(x){
#Get the parameters
a0<-x[1];
a1<-x[2];
a2<-x[3];
a3<-x[4];
daysmatrix=as.matrix(maturity)%*%as.matrix(ones(1,dim(datespayout)[2]))-as.matrix(ones(dim(maturity)[1],1))%*%as.matrix(datespayout)
timetopayout<-(as.matrix(datespayout)--34)/365;
discountrate<-a0+a1*as.matrix(timetopayout)+a2*as.matrix(timetopayout^2)+a3*as.matrix(timetopayout^3);
priceZCB<-exp(-as.matrix(discountrate)*as.matrix(timetopayout))
paymentbydaysmatrix=(daysmatrix==0)*100+0.5*as.matrix(coupon)%*%as.matrix(ones(1,dim(datespayout)[2]))*(daysmatrix>=0);
paymentbydaysmatrix<-sweep(as.matrix(paymentbydaysmatrix), MARGIN=2, as.matrix(priceZCB), `*`);
PVestimate=as.matrix(rowSums(paymentbydaysmatrix));
sqrterrors=(price_obs-PVestimate)^2;
sqrterrors=sum(sqrterrors);
}
# Upper and Lower Bounds
bmax0 = 0.01;
bmax1 = 0.01;
bmax2 = 0.001;
bmax3 = 0.001;
ub1 <- c(bmax0,bmax1,bmax2,bmax3);
lb1=-ub1;
A <- NULL;
b <- NULL;
Aeq <- NULL;
beq <- NULL;
hin <- NULL;
heq <- NULL;
x <- fmincon(x0, fn, gr = NULL, method = "SQP",A=NULL,b=NULL,Aeq=NULL,beq=NULL,lb=lb1,ub=ub1,hin=NULL,heq=NULL)```

Storing information during optim()

I have a general function I have provided an example below if simple linear regression:
x = 1:30
y = 0.7 * x + 32
Data = rnorm(30, mean = y, sd = 2.5);
lin = function(pars = c(grad,cons)) {
expec = pars[1] * x + pars[2];
SSE = sum((Data - expec)^2)
return(SSE)
}
start_vals = c(0.2,10)
lin(start_vals)
estimates = optim(par = start_vals, fn = lin);
## plot the data
Fit = estimates$par[1] * x + estimates$par[2]
plot(x,Data)
lines(x, Fit, col = "red")
So that's straight forward. What I want is to store the expectation for the last set of parameters, so that once I have finished optimizing I can view them. I have tried using a global container and trying to populating it if the function is executed but it doesn't work, e.g
Expectation = c();
lin = function(pars = c(grad,cons)) {
expec = pars[1] * x + pars[2];
Expectation = expec;
SSE = sum((Data - expec)^2)
return(SSE)
}
start_vals = c(0.2,10)
estimates = optim(par = start_vals, fn = lin);
Expectation ## print the expectation that would relate to estimates$par
I know that this is trivial to do outside of the function, but my actual problem (which is analogous to this) is much more complex. Basically I need to return internal information that can't be retrospectively calculated. Any help is much appreciated.
you should use <<- instead of = in your lin function, Expectation <<- expec,The operators <<- and ->> are normally only used in functions, and cause a search to be made through parent environments for an existing definition of the variable being assigned.

NSGA2 Genetic Algorithm in R

I am working on the NSGA2 package on R (library mco).
My NSGA2 code takes forever to run, so I am wondering:
1) Is there a way to limit the precision of the solution values (say, maybe up to 3 decimal places) instead of infinite?
2) How do I set an equality constraint (the ones online all seemed to be about >= or <= than =)? Not sure if I'm doing it right.
My entire relevant code for reference, for easy tracing: https://docs.google.com/document/d/1xj7OPng11EzLTTtWLdRWMm8zJ9f7q1wsx2nIHdh3RM4/edit?usp=sharing
Relevant sample part of code reproduced here:
VTR = get.hist.quote(instrument = 'VTR',
start="2010-01-01", end = "2015-12-31",
quote = c("AdjClose"),provider = "yahoo",
compress = "d")
ObjFun1 <- function (xh){
f1 <- sum(HSVaR_P(merge(VTR, CMI, SPLS, KSS, DVN, MAT, LOE, KEL, COH, AXP), xh, 0.05, 2))
tempt = merge(VTR, CMI, SPLS, KSS, DVN, MAT, LOE, KEL, COH, AXP)
tempt2 = tempt[(nrow(tempt)-(2*N)):nrow(tempt),]
for (i in 1:nrow(tempt2))
{
for (j in 1:ncol(tempt2))
{
if (is.na(tempt2[i,j]))
{
tempt2[i,j] = 0
}
}
}
f2 <- ((-1)*abs(sum((xh*t(tempt2)))))
c(f1=f1,f2=f2)
}
Constr <- function(xh){
totwt <- (1-sum(-xh))
totwt2 <- (sum(xh)-1)
c(totwt,totwt2)
}
Solution1 <- nsga2(ObjFun1, n.projects, 2,
lower.bounds=rep(0,n.projects), upper.bounds=rep(1,n.projects),
popsize=n.solutions, constraints = Constr, cdim=1,
generations=generations)
The function HSVaR_P returns matrix(x,2*500,1).
Even when I set generations = 1, the code does not seem to run. Clearly there should be some error in the code, somewhere, but I am not entirely sure about the mechanics of the NSGA2 algorithm.
Thanks.

R fit user defined distribution

I am trying to fit my own distribution to my data, find the optimum parameters of the distribution to match the data and ultimately find the FWHM of the peak in the distribution. From what I've read, the package fitdistrplus is the way to do this. I know the data takes the shape of a lorentzian peak on a quadratic background.
plot of the data:
plot of raw data
The raw data used:
data = c(0,2,5,4,5,4,3,3,2,2,0,4,4,2,5,5,3,3,4,4,4,3,3,5,5,6,6,8,4,0,6,5,7,5,6,3,2,1,7,0,7,9,5,7,5,3,5,5,4,1,4,8,10,2,5,8,7,14,7,5,8,4,2,2,6,5,4,6,5,7,5,4,8,5,4,8,11,9,4,8,11,7,8,6,9,5,8,9,10,8,4,5,8,10,9,12,10,10,5,5,9,9,11,19,17,9,17,10,17,18,11,14,15,12,11,14,12,10,10,8,7,13,14,17,18,16,13,16,14,17,20,15,12,15,16,18,24,23,20,17,21,20,20,23,20,15,20,28,27,26,20,17,19,27,21,28,32,29,20,19,24,19,19,22,27,28,23,37,41,42,34,37,29,28,28,27,38,32,37,33,23,29,55,51,41,50,44,46,53,63,49,50,47,54,54,43,45,58,54,55,67,52,57,67,69,62,62,65,56,72,75,88,87,77,70,71,84,85,81,84,75,78,80,82,107,102,98,82,93,98,90,94,118,107,113,103,99,103,96,108,114,136,126,126,124,130,126,113,120,107,107,106,107,136,143,135,151,132,117,118,108,120,145,140,122,135,153,157,133,130,128,109,106,122,133,132,150,156,158,150,137,147,150,146,144,144,149,171,185,200,194,204,211,229,225,235,228,246,249,238,214,228,250,275,311,323,327,341,368,381,395,449,474,505,529,585,638,720,794,896,919,1008,1053,1156,1134,1174,1191,1202,1178,1236,1200,1130,1094,1081,1009,949,890,810,760,690,631,592,561,515,501,489,467,439,388,377,348,345,310,298,279,253,257,259,247,237,223,227,217,210,213,197,197,192,195,198,201,202,211,193,203,198,202,174,164,162,173,170,184,170,168,175,170,170,168,162,149,139,145,151,144,152,155,170,156,149,147,158,171,163,146,151,150,147,137,123,127,136,149,147,124,137,133,129,130,128,139,137,147,141,123,112,136,147,126,117,116,100,110,120,105,91,100,100,105,92,88,78,95,75,75,82,82,80,83,83,66,73,80,76,69,81,93,79,71,80,90,72,72,63,57,53,62,65,49,51,57,73,54,56,78,65,52,58,49,47,56,46,43,50,43,40,39,36,45,28,35,36,43,48,37,36,35,39,31,24,29,37,26,22,36,33,24,31,31,20,30,28,23,21,27,26,29,21,20,22,18,19,19,20,21,20,25,18,12,18,20,20,13,14,21,20,16,18,12,17,20,24,21,20,18,11,17,12,5,11,13,16,13,13,12,12,9,15,13,15,11,12,11,8,13,16,16,16,14,8,8,10,11,11,17,15,15,9,9,13,12,3,11,14,11,14,13,8,7,7,15,12,8,12,14,9,5,2,10,8)
I have calculated the equations which define the distribution and cumulative distribution:
dFF <- function(x,a,b,c,A,gamma,pos) a + b*x + (c*x^2) + ((A/pi)*(gamma/(((x-pos)^2) + (gamma^2))))
pFF <- function(x,a,b,c,A,gamma,pos) a*x + (b/2)*(x^2) + (c/3)*(x^3) + A/2 + (A/pi)*(atan((x - pos)/gamma))
I believe these to be correct. From what I understand, a distribution fit should be possible using just these definitions using the fitdist (or mledist) method:
fitdist(data,'FF', start = list(0,0.3,-0.0004,70000,13,331))
mledist(data,'FF', start = list(0,0.3,-0.0004,70000,13,331))
This returns the statement 'function cannot be evaluated at initial parameters> Error in fitdist(data, "FF", start = list(0, 0.3, -4e-04, 70000, 13, 331)):the function mle failed to estimate the parameters, with the error code 100' in the first case and in the second I just get a list of 'NA' values for the estimates.
I then calculated a function to give the quantile distribution values to use the other fitting methods (qmefit):
qFF <- function(p,a,b,c,A,gamma,pos)
{
qList = c()
axis = seq(1,600,1)
aF = dFF(axis,a,b,c,A,gamma,pos)
arr = histogramCpp(aF) # change data to a histogram format
for(element in 1:length(p)){
q = quantile(arr,p[element], names=FALSE)
qList = c(qList,q)
}
return(qList)
}
Part of this code requires calling the c++ function (by using the library Rcpp):
#include <Rcpp.h>
#include <vector>
#include <math.h>
using namespace Rcpp;
// [[Rcpp::export]]
std::vector<int> histogramCpp(NumericVector x) {
std::vector<int> arr;
double number, fractpart, intpart;
for(int i = 0; i <= 600; i++){
number = (x[i]);
fractpart = modf(number , &intpart);
if(fractpart < 0.5){
number = (int) intpart;
}
if(fractpart >= 0.5){
number = (int) (intpart+1);
}
for(int j = 1; j <= number; j++){
arr.push_back(i);
}
}
return arr;
}
This c++ method just turns the data into a histogram format. If the first element of the vector describing the data is 4 then '1' is added 4 times to the returned vector etc. . This also seems to work as sensible values are returned. plot of the quantile function:
Plot of quantiles returned for probabilities from 0 to 1 in steps of 0.001
The 'qmefit' method can then be attempted through the fitdist function:
fitdist(data,'FF', start = list(0,0.3,-0.0004,70000,13,331), method = 'qme', probs = c(0,0.3,0.4,0.5,0.7,0.9))
I chose the 'probs' values randomly as I don't fully understand their meaning. This either straight-up crashes the R session or after a brief stuttering returns a list of 'NA' values as estimates and the line <std::bad_alloc : std::bad_alloc>
I am not sure if I am making a basic mistake here and any help or recommendations are appreciated.
In the end I managed to find a work-around for this using the rPython package and lmfit from python. It solved my issue and might be useful for others with the same issue. The R-code was as follows:
library(rPython)
python.load("pyFit.py")
python.assign("row",pos)
python.assign("vals",vals)
python.exec("FWHM,ERROR,FIT = fitDist(row,vals)")
FWHM = python.get("FWHM")
ERROR = python.get("ERROR")
cFIT = python.get("FIT")
and the called python code was:
from lmfit import Model, minimize, Parameters, fit_report
from sklearn import mixture
import numpy as np
import matplotlib.pyplot as plt
import math
def cauchyDist(x,a,b,c,d,e,f,g,A,gamma,pos):
return a + b*x + c*pow(x,2) + d*pow(x,3) + e*pow(x,4) + f*pow(x,5) + g*pow(x,6) + (A/np.pi)*(gamma/((pow((x-pos),2)) + (pow(gamma,2))))
def fitDist(row, vals):
gmod = Model(cauchyDist)
x = np.arange(0,600)
result = gmod.fit(vals, x=x, a = 0, b = 0.3, c = -0.0004, d = 0, e = 0, f= 0, g = 0, A = 70000, gamma = 13, pos = row)
newFile = open('fitData.txt', 'w')
newFile.write(result.fit_report())
newFile.close()
with open('fitData.txt', 'r') as inF:
for line in inF:
if 'gamma:' in line:
j = line.split()
inF.close()
FWHM = float(j[1])
error = float(j[3])
fit = result.best_fit
fit = fit.tolist()
return FWHM, error, fit
I increased the order of polynomial to obtain a better fit for the data and returned the FWHM, its error and the values for the fit. There are likely much better ways of achieving this but the final fit is as I needed.
Final fit. Red data points are raw data, the black line is the fitted distribution.

(in R) Why is result of ksvm using user-defined linear kernel different from that of ksvm using "vanilladot"?

I wanted to use user-defined kernel function for Ksvm in R.
so, I tried to make a vanilladot kernel and compare with "vanilladot" which is built in "kernlab" as practice.
I write my kernel as follow.
#
###vanilla kernel with class "kernel"
#
kfunction.k <- function(){
k <- function (x,y){crossprod(x,y)}
class(k) <- "kernel"
k}
l<-0.1 ; C<-1/(2*l)
###use kfunction.k
tmp<-ksvm(x,factor(y),scaled=FALSE, type = "C-svc", kernel=kfunction.k(), C = C)
alpha(tmp)[[1]]
ind<-alphaindex(tmp)[[1]]
x.s<-x[ind,] ; y.s<-y[ind]
w.class.k<-t(alpha(tmp)[[1]]*y.s)%*%x.s
w.class.k
I thouhgt result of this operation is eqaul to that of following.
However It dosn't.
#
###use "vanilladot"
#
l<-0.1 ; C<-1/(2*l)
tmp1<-ksvm(x,factor(y),scaled=FALSE, type = "C-svc", kernel="vanilladot", C = C)
alpha(tmp1)[[1]]
ind1<-alphaindex(tmp1)[[1]]
x.s<-x[ind1,] ; y.s<-y[ind1]
w.tmp1<-t(alpha(tmp1)[[1]]*y.s)%*%x.s
w.tmp1
I think maybe this problem is related to kernel class.
When class is set to "kernel", this problem is occured.
However When class is set to "vanillakernel", the result of ksvm using user-defined kernel is equal to that of ksvm using "vanilladot" which is built in Kernlab.
#
###vanilla kernel with class "vanillakernel"
#
kfunction.v.k <- function(){
k <- function (x,y){crossprod(x,y)}
class(k) <- "vanillakernel"
k}
# The only difference between kfunction.k and kfunction.v.k is "class(k)".
l<-0.1 ; C<-1/(2*l)
###use kfunction.v.k
tmp<-ksvm(x,factor(y),scaled=FALSE, type = "C-svc", kernel=kfunction.v.k(), C = C)
alpha(tmp)[[1]]
ind<-alphaindex(tmp)[[1]]
x.s<-x[ind,] ; y.s<-y[ind]
w.class.v.k<-t(alpha(tmp)[[1]]*y.s)%*%x.s
w.class.v.k
I don't understand why the result is different from "vanilladot", when setting the class to "kernel".
Is there an error in my operation?
First, it seems like a really good question!
Now to the point. In the sources of ksvm we can find when is a line drawn between using user-defined kernel, and the built-ins:
if (type(ret) == "spoc-svc") {
if (!is.null(class.weights))
weightedC <- class.weights[weightlabels] * rep(C,
nclass(ret))
else weightedC <- rep(C, nclass(ret))
yd <- sort(y, method = "quick", index.return = TRUE)
xd <- matrix(x[yd$ix, ], nrow = dim(x)[1])
count <- 0
if (ktype == 4)
K <- kernelMatrix(kernel, x)
resv <- .Call("tron_optim", as.double(t(xd)), as.integer(nrow(xd)),
as.integer(ncol(xd)), as.double(rep(yd$x - 1,
2)), as.double(K), as.integer(if (sparse) xd#ia else 0),
as.integer(if (sparse) xd#ja else 0), as.integer(sparse),
as.integer(nclass(ret)), as.integer(count), as.integer(ktype),
as.integer(7), as.double(C), as.double(epsilon),
as.double(sigma), as.integer(degree), as.double(offset),
as.double(C), as.double(2), as.integer(0), as.double(0),
as.integer(0), as.double(weightedC), as.double(cache),
as.double(tol), as.integer(10), as.integer(shrinking),
PACKAGE = "kernlab")
reind <- sort(yd$ix, method = "quick", index.return = TRUE)$ix
alpha(ret) <- t(matrix(resv[-(nclass(ret) * nrow(xd) +
1)], nclass(ret)))[reind, , drop = FALSE]
coef(ret) <- lapply(1:nclass(ret), function(x) alpha(ret)[,
x][alpha(ret)[, x] != 0])
names(coef(ret)) <- lev(ret)
alphaindex(ret) <- lapply(sort(unique(y)), function(x)
which(alpha(ret)[,
x] != 0))
xmatrix(ret) <- x
obj(ret) <- resv[(nclass(ret) * nrow(xd) + 1)]
names(alphaindex(ret)) <- lev(ret)
svindex <- which(rowSums(alpha(ret) != 0) != 0)
b(ret) <- 0
param(ret)$C <- C
}
The important parts are two things, first, if we provide ksvm with our own kernel, then ktype=4 (while for vanillakernel, ktype=0) so it makes two changes:
in case of user-defined kernel, the kernel matrix is computed instead of actually using the kernel
tron_optim routine is ran with the information regarding the kernel
Now, in the svm.cpp we can find the tron routines, and in the tron_run (called from tron_optim), that LINEAR kernel has a separate optimization routine
if (param->kernel_type == LINEAR)
{
/* lots of code here */
while (Cpj < Cp)
{
totaliter += s.Solve(l, prob->x, minus_ones, y, alpha, w,
Cpj, Cnj, param->eps, sii, param->shrinking,
param->qpsize);
/* lots of code here */
}
totaliter += s.Solve(l, prob->x, minus_ones, y, alpha, w, Cp, Cn,
param->eps, sii, param->shrinking, param->qpsize);
delete[] w;
}
else
{
Solver_B s;
s.Solve(l, BSVC_Q(*prob,*param,y), minus_ones, y, alpha, Cp, Cn,
param->eps, sii, param->shrinking, param->qpsize);
}
As you can see, the linear case is treated in the more complex, more detailed way. There is an inner optimization loop calling the solver many times. It would require really deep analysis of actual optimization being performed here, but at this step one can answer your question in a following way:
There is no error in your operation
kernlab's svm has a separate routine for training SVM with linear kernel, which is based on the type of kernel passed to the code, changing "kernel" to "vanillakernel" made the ksvm think it is actually working with vanillakernel, and so performed this separate optimization routine
It does not seem as a bug in fact, as the linear SVM is in fact very different from the kernelized version in terms of efficient optimization techniques. Amount of heuristic as well as numerical issues that has to be taken care of is really big. As a result, some approximations are required and can lead to the different results. While for the rich feature space (like those induced by RBF kernel) it should not really matter, for simple kernels line linear ones - this simplifications can lead to significant output changes.

Resources