How to read multiple data with changing NA patterns? - r

I try to read in some measurement data with the following code
UGT2008 <- rbind.fill(lapply(filelist[1:70], fread, header = F, dec = ".", sep = "\t", na.strings = c("NA","%-","%"), skip = 1L,stringsAsFactors=FALSE))
I use this code, becasue I have multiple data, I want to bind together to one big dataset.
The problem is, wrong values, which should be treated as NA, are marked by "%" at the beginning of the value. So, NA is not one single characters, but a sample of different numbers starting with "%".
The number of different wrong values is to large to name all of the them as "na.strings".
After reading the data, all columns are character, but should be numeric.
The data look like this.
Datum Zeit Temp1/grad Temp2/grad Pyrr+/W/qm Pyrr-/W/qm Global/W/qm H-Flux/W/qm Windr./grad Pegel/cmWS Phar/µmol Bspg./V Widerst./kOhm Blattb./j/n
18.12.00 09:55 2.64 -98.14 -42.34 47.23 68.14 7.44 341.08 0.15 151.76 11.08 %-2546.78 1.00
18.12.00 09:56 2.63 -98.13 -19.07 47.04 65.36 7.31 346.73 0.02 151.28 11.06 %-2546.78 1.00
18.12.00 09:57 2.62 -98.14 -43.73 44.92 64.32 7.36 353.86 -0.01 147.53 11.07 %-2546.78 1.00
18.12.00 09:58 2.75 -98.18 -43.83 44.21 63.42 7.40 360.33 0.12 143.96 11.10 %-2546.78 1.00
18.12.00 09:59 2.65 -98.12 -43.53 43.60 63.42 7.40 356.76 0.12 144.44 11.08 %-2546.78 1.00
18.12.00 10:00 2.74 -98.18 -43.70 43.67 63.42 7.40 359.96 0.13 144.73 11.10 %-2546.78 1.00
18.12.00 10:01 2.62 -98.14 -44.24 42.90 61.00 7.57 3.66 0.14 139.34 11.16 %-2546.78 1.00
18.12.00 10:02 2.62 -98.12 -44.34 40.52 58.08 7.06 356.71 0.00 136.45 11.08 %-2546.78 1.00
18.12.00 10:03 2.74 -98.18 -46.03 41.04 59.19 7.53 360.35 0.14 135.87 11.12 %-2546.78 1.00
18.12.00 10:04 2.63 -98.12 -44.64 42.35 60.86 7.31 347.55 0.13 140.11 11.12 %-2546.78 1.00
18.12.00 10:05 2.62 -98.13 -20.39 43.54 60.37 7.14 361.00 -0.02 144.35 11.09 %-2546.78 1.00
18.12.00 10:06 2.72 -98.18 -45.32 41.20 58.92 7.36 353.24 0.13 135.77 11.13 %-2546.78 1.00
18.12.00 10:07 2.73 -98.18 -45.56 40.91 57.88 7.36 356.10 0.10 134.04 11.13 %-2546.78 1.00
18.12.00 10:08 2.62 -98.12 -43.05 41.94 58.85 7.01 6.54 0.01 140.11 11.14 %-2546.78 1.00
18.12.00 10:09 2.63 -98.14 -43.90 43.06 60.72 7.23 338.23 -0.01 144.25 11.10 %-2546.78 1.00
18.12.00 10:10 2.62 -98.13 -43.86 43.48 61.27 7.23 356.67 -0.01 145.12 11.10 %-2546.78 1.00
18.12.00 10:11 2.63 -98.13 -44.13 42.74 59.26 7.19 360.77 -0.01 141.07 11.11 %-2546.78 1.00
18.12.00 10:12 2.62 -98.12 -45.18 41.39 58.43 7.36 360.31 0.13 136.06 11.15 %-2546.78 1.00
18.12.00 10:13 2.61 -98.18 -31.82 40.72 58.08 7.36 0.85 0.00 140.20 11.14 %-2546.78 1.00
18.12.00 10:14 2.63 -98.13 -44.88 41.42 59.12 7.53 6.60 0.09 139.53 11.20 %-2546.78 1.00
18.12.00 10:15 2.62 -98.11 -43.29 41.71 59.82 7.10 10.82 0.00 143.77 11.16 %-2546.78 1.00
18.12.00 10:16 2.62 -98.12 -43.05 43.99 64.32 7.31 7.32 0.12 151.09 11.20 %-2546.78 1.00
18.12.00 10:17 2.74 -98.18 -40.82 48.32 71.39 7.36 156.24 0.11 166.50 11.19 %-2546.78 1.00
18.12.00 10:18 2.61 -98.18 -38.28 52.98 74.17 7.06 188.01 0.01 178.16 11.16 %-2546.78 1.00
18.12.00 10:19 2.62 -98.13 -37.61 53.94 76.94 7.44 142.70 0.12 179.41 11.22 %-2546.78 1.00
18.12.00 10:20 2.63 -98.12 -37.40 53.49 76.04 7.40 305.02 0.11 179.51 11.21 %-2546.78 1.00
18.12.00 10:21 2.63 -98.14 -38.52 52.27 73.89 7.31 312.70 -0.01 179.61 11.20 %-2546.78 1.00
18.12.00 10:22 2.63 -98.13 -14.97 52.82 71.60 7.06 280.18 -0.01 176.72 11.20 %-2546.78 1.00
I tried
na.strings = c("NA",grepl("^","%"))
but that`s not working.
na.strings = c("NA",patter=("%*"))
is also not working.
Do you have any idea, how to set changing patterns of na.strings or to identify "%" as the start of an NA-Value?
Cheers,
Florian

Data:
df <- data.frame(
v1 = c("%123", "123", "5.5"),
v2 = c("45.00006", "%-12.8899", "%900.77"),
v3 = c("55", "66", "%432.002")
)
Solution:
Use as.numeric and lapply to accomplish both goals, that of turning the %-headed values into NA and that of converting the columns in the dataframe to numeric type:
df[] <- lapply(df, as.numeric)
v1 v2 v3
[1,] NA 45.00006 55
[2,] 123.0 NA 66
[3,] 5.5 NA NA

Related

is there an R function i could use to create a cluster column of an imported dataset in csv format using ggplot2

i want to plot a stacked column using ggplot2 with R1, R2, R3 as the y variables while the varieties names remain in the x variable.
i have tried it on excel it worked but i decided importing the dataset in csv format to R for a more captivating outlook as this is part of my final year project.
varieties R1 R2 R3 Relative.yield SD
1 bd 0.40 2.65 1.45 1.50 1.13
2 bdj1 4.60 NA 2.80 3.70 1.27
3 bdj2 2.40 1.90 0.50 1.60 0.98
4 bdj3 2.40 1.65 5.20 3.08 1.87
5 challenge 2.10 5.15 1.35 2.87 2.01
6 doris 4.20 2.50 2.55 3.08 0.97
7 fel 0.80 2.40 0.75 1.32 0.94
8 fel2 NA 0.70 1.90 1.30 0.85
9 felbv 0.10 2.95 2.05 1.70 1.46
10 felnn 1.50 4.05 1.25 2.27 1.55
11 lad1 0.55 2.20 0.20 0.98 1.07
12 lad2 0.50 NA 0.50 0.50 0.00
13 lad3 1.10 3.90 1.00 2.00 1.65
14 lad4 1.50 1.65 0.50 1.22 0.63
15 molete1 2.60 1.80 2.75 2.38 0.51
16 molete2 1.70 4.70 4.20 3.53 1.61
17 mother's delight 0.10 4.00 1.90 2.00 1.95
18 ojaoba1a 1.90 3.45 2.75 2.70 0.78
19 ojaoba1b 4.20 2.75 4.30 3.75 0.87
20 ojoo 2.80 NA 3.60 3.20 0.57
21 omini 0.20 0.30 0.25 0.25 0.05
22 papa1 2.20 6.40 3.55 4.05 2.14
23 pk5 1.00 2.75 1.10 1.62 0.98
24 pk6 2.30 1.30 3.10 2.23 0.90
25 sango1a 0.40 0.90 1.55 0.95 0.58
26 sango1b 2.60 5.10 3.15 3.62 1.31
27 sango2a 0.50 0.55 0.75 0.60 0.13
28 sango2b 2.95 NA 2.60 2.78 0.25
29 usman 0.60 3.50 1.20 1.77 1.53
30 yau 0.05 0.85 0.20 0.37 0.43
> barplot(yield$R1)
> barplot(yield$Relative.yield)
> barplot(yield$Relative.yield, names.arg = varieties)
Error in barplot.default(yield$Relative.yield, names.arg = varieties) :
object 'varieties' not found
> ggplot(data = yield, mapping = aes(x = varieties, y = yield[,2:4])) + geom_()
Error in geom_() : could not find function "geom_"
> ggplot(data = yield, mapping = aes(x = varieties, y = yield[,2:4])) + geom()
Error in geom() : could not find function "geom"
You should put it in long format first, with tidyr::gather provides this functionality:
library(tidyverse)
gather(df[1:4],R, value, R1:R3) %>%
ggplot(aes(varieties,value, fill = R)) + geom_col()
#> Warning: Removed 5 rows containing missing values (position_stack).
data
df <- read.table(h=T,strin=F,text=
" varieties R1 R2 R3 Relative.yield SD
1 bd 0.40 2.65 1.45 1.50 1.13
2 bdj1 4.60 NA 2.80 3.70 1.27
3 bdj2 2.40 1.90 0.50 1.60 0.98
4 bdj3 2.40 1.65 5.20 3.08 1.87
5 challenge 2.10 5.15 1.35 2.87 2.01
6 doris 4.20 2.50 2.55 3.08 0.97
7 fel 0.80 2.40 0.75 1.32 0.94
8 fel2 NA 0.70 1.90 1.30 0.85
9 felbv 0.10 2.95 2.05 1.70 1.46
10 felnn 1.50 4.05 1.25 2.27 1.55
11 lad1 0.55 2.20 0.20 0.98 1.07
12 lad2 0.50 NA 0.50 0.50 0.00
13 lad3 1.10 3.90 1.00 2.00 1.65
14 lad4 1.50 1.65 0.50 1.22 0.63
15 molete1 2.60 1.80 2.75 2.38 0.51
16 molete2 1.70 4.70 4.20 3.53 1.61
17 'mother\\'s delight' 0.10 4.00 1.90 2.00 1.95
18 ojaoba1a 1.90 3.45 2.75 2.70 0.78
19 ojaoba1b 4.20 2.75 4.30 3.75 0.87
20 ojoo 2.80 NA 3.60 3.20 0.57
21 omini 0.20 0.30 0.25 0.25 0.05
22 papa1 2.20 6.40 3.55 4.05 2.14
23 pk5 1.00 2.75 1.10 1.62 0.98
24 pk6 2.30 1.30 3.10 2.23 0.90
25 sango1a 0.40 0.90 1.55 0.95 0.58
26 sango1b 2.60 5.10 3.15 3.62 1.31
27 sango2a 0.50 0.55 0.75 0.60 0.13
28 sango2b 2.95 NA 2.60 2.78 0.25
29 usman 0.60 3.50 1.20 1.77 1.53
30 yau 0.05 0.85 0.20 0.37 0.43"
)

How to do Shapiro test for multicolumns in data.frame? And avoid 2 errors: values are identical and missing value where TRUE/FALSE needed

I have a dataframe like this:
head(Betula, 10)
year start Start_DayOfYear end End_DayOfYear duration DateMax Max_DayOfYear BetulaPollenMax SPI Jan.NAO Jan.AO
1 1997 <NA> NA <NA> NA NA <NA> NA NA NA -0.49 -0.46
2 1998 <NA> 143 <NA> 184 41 <NA> 146 42 361 0.39 -2.08
3 1999 <NA> 148 <NA> 188 40 <NA> 158 32 149 0.77 0.11
4 2000 <NA> 135 <NA> 197 62 <NA> 156 173 917 0.60 1.27
5 2001 <NA> 143 <NA> 175 32 <NA> 154 113 457 0.25 -0.96
Jan.SO Feb.NAO Feb.AO Feb.SO Mar.NAO Mar.AO Mar.SO Apr.NAO Apr.AO Apr.SO DecJanFebMarApr.NAO DecJanFebMar.NAO
1 0.5 1.70 1.89 1.7 1.46 1.09 -0.4 -1.02 0.32 -0.6 0.14 0.43
2 -2.7 -0.11 -0.18 -2.0 0.87 -0.25 -2.4 -0.68 -0.04 -1.4 0.27 0.51
3 1.8 0.29 0.48 1.0 0.23 -1.49 1.3 -0.95 0.28 1.4 0.39 0.73
4 0.7 1.70 1.08 1.7 0.77 -0.45 1.3 -0.03 -0.28 1.2 0.49 0.62
5 1.0 0.45 -0.62 1.7 -1.26 -1.69 0.9 0.00 0.91 0.2 -0.28 -0.35
DecJanFeb.NAO DecJan.NAO JanFebMarApr.NAO JanFebMar.NAO JanFeb.NAO FebMarApr.NAO FebMar.NAO MarApr.NAO
1 0.08 -0.73 0.41 0.89 0.61 0.71 1.58 0.22
2 0.38 0.63 0.12 0.38 0.14 0.03 0.38 0.10
3 0.89 1.19 0.09 0.43 0.53 -0.14 0.26 -0.36
4 0.57 0.01 0.76 1.02 1.15 0.81 1.24 0.37
5 -0.04 -0.29 -0.14 -0.19 0.35 -0.27 -0.41 -0.63
DecJanFebMarApr.AO DecJanFebMar.AO DecJanFeb.AO DecJan.AO JanFebMarApr.AO JanFebMar.AO JanFeb.AO FebMarApr.AO
1 0.55 0.61 0.45 -0.27 0.71 0.84 0.72 1.10
2 -0.24 -0.29 -0.30 -0.37 -0.64 -0.84 -1.13 -0.16
3 0.08 0.04 0.54 0.58 -0.16 -0.30 0.30 -0.24
4 -0.15 -0.11 0.00 -0.54 0.41 0.63 1.18 0.12
5 -0.74 -1.15 -0.97 -1.14 -0.59 -1.09 -0.79 -0.47
FebMar.AO MarApr.AO DecJanFebMarApr.SO DecJanFebMar.SO DecJanFeb.SO DecJan.SO JanFebMarApr.SO JanFebMar.SO
1 1.49 0.71 0.04 0.20 0.40 -0.25 0.30 0.60
2 -0.22 -0.15 -1.42 -1.43 -1.10 -0.65 -2.13 -2.37
3 -0.51 -0.61 1.38 1.38 1.40 1.60 1.38 1.37
4 0.32 -0.37 1.14 1.13 1.07 0.75 1.23 1.23
5 -1.16 -0.39 0.60 0.70 0.63 0.10 0.95 1.20
JanFeb.SO FebMarApr.SO FebMar.SO MarApr.SO TmaxAprI TminAprI TmeanAprI RainfallAprI HumidityAprI SunshineAprI
1 1.10 0.23 0.65 -0.50 3.27 -3.86 -0.44 0.82 76.3 3.45
2 -2.35 -1.93 -2.20 -1.90 4.52 -3.28 -0.15 0.12 73.5 7.12
3 1.40 1.23 1.15 1.35 4.11 -3.86 -0.34 1.32 78.4 4.85
4 1.20 1.40 1.50 1.25 6.11 -1.31 1.93 0.80 71.9 4.20
5 1.35 0.93 1.30 0.55 1.46 -2.37 -1.04 2.83 84.4 1.21
CloudAprI WindAprI SeeLevelPressureAprI TmaxAprII TminAprII TmeanAprII RainfallAprII HumidityAprII
1 6.30 5.26 1008.63 12.12 2.11 6.17 0.23 76.5
2 3.93 3.86 1022.39 5.57 -0.44 1.82 0.83 77.9
3 5.02 3.23 1007.09 0.20 -6.36 -3.23 2.63 82.5
4 6.15 5.13 1012.21 2.74 -4.88 -2.35 0.34 76.0
5 7.50 3.90 1009.50 6.75 -3.22 1.16 0.32 71.5
SunshineAprII CloudAprII WindAprII SeeLevelPressureAprII TmaxAprIII TminAprIII TmeanAprIII RainfallAprIII
1 3.12 6.53 5.19 1024.31 7.35 0.33 3.37 0.33
2 2.41 6.85 3.70 1012.01 6.34 0.76 2.69 2.01
3 4.99 5.87 6.23 1019.66 8.65 0.73 4.23 0.70
4 6.63 5.17 5.84 1022.62 5.84 -1.81 2.02 0.00
5 6.11 4.82 3.92 1018.81 8.47 1.02 4.17 1.09
HumidityAprIII SunshineAprIII CloudAprIII WindAprIII SeeLevelPressureAprIII TmaxDecI TminDecI TmeanDecI
1 75.0 3.73 6.40 4.08 1009.91 -0.90 -5.88 -3.67
2 83.5 1.52 7.31 4.66 1008.33 5.33 0.01 2.46
3 73.4 6.62 5.12 3.16 1017.01 -0.24 -6.93 -3.64
4 69.0 8.80 4.80 4.99 1021.18 4.67 1.86 2.79
5 72.7 5.33 5.41 4.27 1005.48 3.69 -1.43 1.65
RainfallDecI HumidityDecI SunshineDecI CloudDecI WindDecI SeeLevelPressureDecI TmaxDecII TminDecII TmeanDecII
1 0.12 77.3 0.22 5.08 3.49 1003.15 7.99 0.77 4.10
2 1.10 73.5 0.04 6.29 5.21 999.94 0.24 -4.74 -2.67
3 2.41 82.3 0.00 6.70 4.92 998.64 1.22 -5.90 -2.05
4 3.13 88.1 0.00 7.97 4.00 997.82 2.76 -3.89 -0.54
5 1.60 79.1 0.07 5.44 5.76 996.35 10.82 4.36 6.90
RainfallDecII HumidityDecII SunshineDecII CloudDecII WindDecII SeeLevelPressureDecII TmaxDecIII TminDecIII
1 1.90 71.3 0 4.96 5.55 1007.16 4.78 -2.12
2 4.34 82.2 0 7.03 6.06 998.02 2.07 -4.60
3 1.94 78.6 0 6.53 5.82 1008.33 2.09 -2.48
4 1.45 77.2 0 6.57 5.26 1005.11 -1.49 -8.37
5 1.15 66.6 0 5.74 5.47 1030.02 1.40 -7.34
TmeanDecIII RainfallDecIII HumidityDecIII SunshineDecIII CloudDecIII WindDecIII SeeLevelPressureDecIII TmaxFebI
1 1.15 3.96 82.36 0 6.01 4.02 991.60 -0.23
2 -0.51 4.10 81.18 0 6.67 3.91 986.52 0.79
3 -0.61 1.97 81.27 0 6.21 5.53 982.13 2.19
4 -5.28 1.26 79.64 0 6.11 4.22 1019.63 3.27
5 -3.45 1.19 82.18 0 6.20 4.77 1015.53 2.42
TminFebI TmeanFebI RainfallFebI HumidityFebI SunshineFebI CloudFebI WindFebI SeeLevelPressureFebI TmaxFebII
1 -6.67 -3.57 0.84 84.3 1.11 6.81 5.35 990.51 2.97
2 -7.79 -4.49 2.31 72.2 1.88 4.73 4.53 990.39 3.31
3 -4.14 -1.77 0.42 73.3 1.29 6.02 5.57 1007.67 1.55
4 -2.48 0.04 2.28 77.0 0.46 6.84 4.29 982.97 -1.24
5 -3.52 -0.74 1.98 81.5 0.76 5.78 4.93 1008.29 6.71
TminFebII TmeanFebII RainfallFebII HumidityFebII SunshineFebII CloudFebII WindFebII SeeLevelPressureFebII
1 -2.31 -0.10 1.44 82.2 1.07 6.45 4.42 980.59
2 -4.85 -0.99 3.84 75.0 2.54 5.91 5.05 999.98
3 -5.76 -2.44 2.89 75.3 0.40 6.95 5.82 990.44
4 -8.47 -4.65 3.33 83.1 0.63 6.55 4.95 1000.10
5 -0.25 3.01 1.38 66.1 1.16 6.18 6.28 1001.46
TmaxFebIII TminFebIII TmeanFebIII RainfallFebIII HumidityFebIII SunshineFebIII CloudFebIII WindFebIII
1 0.05 -6.01 -3.35 4.60 83.50 1.29 6.58 4.71
2 -0.45 -7.43 -4.51 2.93 78.38 1.00 6.91 5.99
3 2.13 -4.51 -1.21 2.90 79.38 2.51 5.76 5.46
4 0.59 -3.79 -1.92 5.94 88.33 1.40 6.86 6.70
5 -2.68 -7.23 -5.05 1.39 83.88 1.13 7.41 5.69
SeeLevelPressureFebIII TmaxJanI TminJanI TmeanJanI RainfallJanI HumidityJanI SunshineJanI CloudJanI WindJanI
1 980.25 0.38 -5.57 -3.36 0.01 82.9 0.27 3.45 2.97
2 997.71 4.29 -0.03 2.08 3.70 82.9 0.00 7.39 5.01
3 988.45 1.02 -4.47 -1.87 2.22 82.3 0.00 6.94 4.29
4 987.21 0.04 -6.28 -3.03 4.99 85.8 0.00 5.84 4.75
5 1023.84 -0.33 -5.11 -3.17 0.66 81.2 0.00 7.08 3.88
SeeLevelPressureJanI TmaxJanII TminJanII TmeanJanII RainfallJanII HumidityJanII SunshineJanII CloudJanII
1 1023.71 0.09 -6.48 -2.50 4.29 86.5 0.01 7.23
2 984.57 -0.34 -6.49 -3.61 2.74 80.2 0.23 6.99
3 1004.06 0.32 -5.59 -3.03 5.28 83.3 0.00 6.68
4 983.42 8.38 1.46 4.97 0.64 69.3 0.10 6.13
5 1010.31 7.35 3.00 5.09 1.27 66.3 0.03 6.19
WindJanII SeeLevelPressureJanII TmaxJanIII TminJanIII TmeanJanIII RainfallJanIII HumidityJanIII SunshineJanIII
1 5.42 998.88 5.66 -2.39 1.97 1.03 74.27 0.65
2 6.38 1011.44 3.84 -3.32 -0.37 0.70 73.55 0.55
3 6.24 980.15 4.33 -5.19 -0.59 2.23 76.64 0.69
4 6.44 1019.41 4.09 -2.67 0.05 2.18 71.73 0.42
5 6.74 1006.10 4.43 -0.86 1.58 1.91 80.09 0.20
CloudJanIII WindJanIII SeeLevelPressureJanIII TmaxMarI TminMarI TmeanMarI RainfallMarI HumidityMarI
1 6.47 7.59 1004.59 2.83 -3.60 -0.72 2.14 79.9
2 5.25 4.72 1019.95 -5.31 -12.52 -9.52 2.28 72.6
3 5.34 4.65 1001.66 -0.70 -6.67 -4.47 1.39 81.0
4 5.85 4.83 1007.23 0.10 -7.91 -3.98 2.36 80.2
5 6.53 3.63 992.53 -0.38 -4.59 -2.27 3.00 86.4
SunshineMarI CloudMarI WindMarI SeeLevelPressureMarI TmaxMarII TminMarII TmeanMarII RainfallMarII HumidityMarII
1 0.85 6.77 6.64 986.96 -1.48 -8.43 -5.58 1.09 81.0
2 2.92 5.91 4.68 1013.17 6.53 -1.81 2.56 0.43 65.5
3 2.40 5.71 4.02 1014.62 0.53 -5.17 -2.90 5.20 82.8
4 0.91 7.02 5.87 1006.64 5.32 -0.94 1.23 1.11 74.4
5 0.19 7.82 4.49 999.35 1.60 -4.29 -1.89 0.95 79.3
SunshineMarII CloudMarII WindMarII SeeLevelPressureMarII TmaxMarIII TminMarIII TmeanMarIII RainfallMarIII
1 2.12 5.51 3.93 1021.57 3.88 -1.95 0.55 1.42
2 2.25 6.29 6.11 1008.31 3.95 -2.46 -0.15 1.30
3 1.00 6.61 5.77 1006.63 -0.68 -6.60 -4.07 0.70
4 2.16 6.61 6.45 1003.23 5.49 -0.68 1.65 1.58
5 4.07 5.21 3.14 1017.24 -0.66 -7.21 -4.00 1.37
HumidityMarIII SunshineMarIII CloudMarIII WindMarIII SeeLevelPressureMarIII
1 80.45 2.80 6.13 4.03 995.31
2 72.09 3.98 5.99 5.14 1000.32
3 78.73 2.34 6.46 3.81 1005.67
4 74.64 2.85 6.54 6.34 1013.45
5 79.45 4.71 5.65 4.95 1010.47
[ reached 'max' / getOption("max.print") -- omitted 5 rows ]
And I would like to do the normality test for all column in once. I tried
apply(x, shapiro.test)
Betula_shapiro <- apply(Betula, shapiro.test)
Error in FUN(X[[i]], ...) : is.numeric(x) is not TRUE
and it didn´t work. I also tried this:
Betula <- apply(Betula[which(sapply(Betula, is.numeric))], 2, shapiro.test)
Error in FUN(newX[, i], ...) : all 'x' values are identical
f<-function(x){if(diff(range(x))==0)list()else shapiro.test(x)}
Betula <- apply(Betula[which(sapply(Betula, is.numeric))], 2, f)
Error in if (diff(range(x)) == 0) list() else shapiro.test(x) :
missing value where TRUE/FALSE needed
So I did:
Betula_numerics_only <- Betula[which(sapply(Betula, is.numeric))]
selecting columns with at least 3 not missing values and applying shapiro.test on them
Betula_numerics_only_filled_columns <- Betula_numerics_only[which(apply(Betula_numerics_only, 2, function(f) sum(!is.na(f))>=3 ))]
Betula_shapiro<-apply(Betula_numerics_only_filled_columns, 2, shapiro.test)
Error in FUN(newX[, i], ...) : all 'x' values are identical
Could you please help me with this problem?
Since i was talking about readability in my comment i felt i should provide something more readable too as an answer.
Lets make some dummy-data:
data_test <- data.frame(matrix(rnorm(100, 10, 1), ncol = 5, byrow = T), stringsAsFactors = F)
Lets apply shapiro.test to each column
apply(data_test, 2, shapiro.test)
In case there are non numeric columns:
Lets add a dummy-char column for testing-purposes
data_test$non_numeric <- sample(c("hello", "hi", "good morning"), NROW(data_test), replace = T)
and try to apply the test again
apply(data_test, 2, shapiro.test)
which results in:
> apply(data_test, 2, shapiro.test)
Error: is.numeric(x) is not TRUE
To solve this we select only numeric colums by using sapply:
data_test[which(sapply(data_test, is.numeric))]
and combine it with the apply:
apply(data_test[which(sapply(data_test, is.numeric))], 2, shapiro.test)
Removing colums, that are all NA:
data_test_numerics_only <- data_test[which(sapply(data_test, is.numeric))]
Selecting colums with at least 3 not missing values and applying shapiro.test on them:
data_test_numerics_only_filled_colums = data_test_numerics_only[which(apply(data_test_numerics_only, 2, function(f) sum(!is.na(f)) >= 3))]
apply(data_test_numerics_only_filled_colums, 2, shapiro.test)
We will get this running, lets try once more :)
remove non numeric columns
Betula_numerics <- Betula[which(sapply(Betula, is.numeric))]
Remove columns with less than 3 values
Betula_numerics_filled <- Betula_numerics[which(apply(Betula_numerics, 2, function(f) sum(!is.na(f)) >= 3))]
Remove columns with zero variance
Betula_numerics_filled_not_constant <- Betula_numerics_filled [apply(Betula_numerics_filled , 2, function(f) var(f, na.rm = T) != 0)]
Shapiro.test and hope for the best :)
apply(Betula_numerics_filled_not_constant, 2, shapiro.test)

R Rstudio Error in `colnames<-`(`*tmp*`, value = names(getMu(Data))) : attempt to set 'colnames' on an object with less than two dimensions

I am a student and new in R.
I found many post about it, but didn't understand what to do with my data.
I try to make a Box-Constrained Portfolio Frontier but get this error (it's incredible, but earlier I used to do this task on other assets, there was no such error)
Code and error
> tail(ALIGNED)
GMT
ASBN FBPRP FBTT FCPB FCRGF FLWS FPAFF FQVLF MSFT PGQWF OPMZ VALE PIH USEL TURN
2018-02-16 20.55 22 32.9 7.95 16.62 11.00 0.70 16.50 92.00 0.08 2e-04 14.12 7.10 0.1901 1.78
2018-02-19 20.55 22 32.9 7.95 16.62 11.00 0.70 16.50 92.00 0.08 2e-04 14.12 7.10 0.1901 1.78
2018-02-20 20.14 22 32.9 7.95 16.62 11.35 0.67 16.31 92.72 0.08 1e-04 13.98 6.95 0.3020 1.87
2018-02-21 20.14 22 32.9 8.50 16.62 11.50 0.67 16.45 91.49 0.08 1e-04 13.66 6.90 0.3020 1.88
2018-02-22 20.14 22 32.9 8.50 16.62 11.95 0.67 16.36 91.73 0.08 1e-04 13.98 6.70 0.3020 1.90
2018-02-23 20.11 22 32.9 9.00 16.62 12.50 0.64 16.66 94.06 0.08 1e-04 14.20 6.65 0.3020 1.92
> class(ALIGNED)
[1] "timeSeries"
attr(,"package")
[1] "timeSeries"
boxSpec <- portfolioSpec()
setNFrontierPoints(boxSpec) <- 15
boxConstraints <- c("minW[1:15]=0.3", "maxW[1:15]=0.12")
boxFrontier <- portfolioFrontier(data = ALIGNED, spec = boxSpec, constraints = boxConstraints)
#Error in `colnames<-`(`*tmp*`, value = names(getMu(Data))) :
# attempt to set 'colnames' on an object with less than two dimensions
manual
error log
Selfcleared, the problem was in the frontierpoints, just enter some random quantity of setNFrontierPoints, and you will clearyfy this

How to skip NA when applying geometric-mean function

I have the following data frame:
1 8.03 0.37 0.55 1.03 1.58 2.03 15.08 2.69 1.63 3.84 1.26 1.9692516
2 4.76 0.70 NA 0.12 1.62 3.30 3.24 2.92 0.35 0.49 0.42 NA
3 6.18 3.47 3.00 0.02 0.19 16.70 2.32 69.78 3.72 5.51 1.62 2.4812459
4 1.06 45.22 0.81 1.07 8.30 196.23 0.62 118.51 13.79 22.80 9.77 8.4296220
5 0.15 0.10 0.07 1.52 1.02 0.50 0.91 1.75 0.02 0.20 0.48 0.3094169
7 0.27 0.68 0.09 0.15 0.26 1.54 0.01 0.21 0.04 0.28 0.31 0.1819510
I want to calculate the geometric mean for each row. My codes is
dat <- read.csv("MXreport.csv")
if(any(dat$X18S > 25)){ print("Fail!") } else { print("Pass!")}
datpass <- subset(dat, dat$X18S <= 25)
gene <- datpass[, 42:52]
gm_mean <- function(x){ prod(x)^(1/length(x))}
gene$score <- apply(gene, 1, gm_mean)
head(gene)
I got this output after typing this code:
1 8.03 0.37 0.55 1.03 1.58 2.03 15.08 2.69 1.63 3.84 1.26 1.9692516
2 4.76 0.70 NA 0.12 1.62 3.30 3.24 2.92 0.35 0.49 0.42 NA
3 6.18 3.47 3.00 0.02 0.19 16.70 2.32 69.78 3.72 5.51 1.62 2.4812459
4 1.06 45.22 0.81 1.07 8.30 196.23 0.62 118.51 13.79 22.80 9.77 8.4296220
5 0.15 0.10 0.07 1.52 1.02 0.50 0.91 1.75 0.02 0.20 0.48 0.3094169
7 0.27 0.68 0.09 0.15 0.26 1.54 0.01 0.21 0.04 0.28 0.31 0.1819510
The problem is I got NA after applying the geometric mean function to the row that has NA. How do I skip NA and calculate the geometric mean for the row that has NA
When I used gene<- na.exclude(datpass[, 42:52]). It skipped the row that has NA and not calculate the geometric mean at all. That is now what I want. I want to also calculate the geometric mean for the row that has NA also. How do I do this?

Extract the column number which has the last data point from a table

I have the following inverted data frame
z
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
14 -8.70 0.28 18.66 4.81 -34.33 40.39 3.09 7.89 49.41
13 -6.10 9.51 -1.09 -0.01 7.89 -7.37 -0.61 -9.79 31.75 40.67 5.41 -10.53
12 -5.21 7.49 -7.92 3.54 11.19 -6.66 23.64 13.21 9.64 14.44 59.95 -20.96
11 -12.68 11.04 -11.10 -6.18 -5.61 8.93 94.99 30.15 14.37 31.08 -9.02 -14.77
10 5.07 -2.04 22.77 12.05 0.38 -3.28 -2.73 11.26 5.30 4.61 13.80 3.68
9 -0.82 0.86 3.18 1.06 6.47 1.57 2.25 -9.34 5.27 7.25 2.85 0.42
8 10.48 1.17 10.97 -0.13 0.32 -5.89 -2.26 -7.28 -1.39 3.35 14.81 3.40
7 -5.22 3.09 -7.75 -3.41 -0.09 12.37 -17.38 1.41 8.57 10.48 -1.20 7.45
6 13.85 7.22 3.14 -2.92 -7.12 0.45 3.51 -2.30 7.07 -2.83 -2.27 -1.52
5 -0.57 0.58 -2.59 3.29 -6.07 0.37 1.32 -0.58 4.07 -4.85 -0.48 1.66
4 0.46 -0.41 3.01 0.60 2.20 -2.39 0.22 3.99 5.50 16.07 -4.51 0.50
3 1.28 5.10 -3.61 5.02 3.04 -4.05 -2.64 1.88 -2.44 3.27 -2.71 2.02
2 -1.28 0.99 2.38 0.16 1.03 10.93 5.07 0.26 0.84 -0.05 -0.88 -3.71
1 2.33 -1.71 -0.41 -0.58 -2.19 1.26 1.88 -4.03 0.54 0.34 0.22 -0.50
I would like to find out which column has the last data point in this example -0.50 and extract the column name in this case Dec as a number (12), without using the -0.50 data point, tried wrong with the below expressions
which( colnames(z)==-0.50)
integer(0)
which( colnames(z)==z[length(z)])
integer(0)
Second example
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
18 -12.97 9.96 8.14
17 1.50 3.27 7.38 -1.63 8.53 2.97 1.51 10.99 4.51 -5.70 1.15 9.50
16 -1.38 3.61 -3.98 10.51 -8.39 5.29 -2.01 -3.47 -0.17 -6.20 13.93 9.04
15 -3.96 1.72 -3.28 2.06 -0.26 -1.27 -4.58 3.23 -7.76 2.09 7.33 16.81
14 4.38 0.56 7.09 -5.31 -2.61 -2.66 0.66 0.56 4.64 13.75 -7.10 -5.15
13 -10.13 -6.04 12.62 -3.76 -3.96 7.95 4.71 6.04 7.63 -7.96 -0.69 14.16
12 5.95 11.95 -10.80 2.45 10.19 -5.20 -0.68 0.62 0.26 4.72 -2.48 10.27
11 2.72 11.56 -0.80 -8.62 0.28 -2.96 1.33 3.09 5.14 4.03 6.37 -0.19
10 -5.38 6.58 4.64 -4.21 6.62 3.13 -1.85 7.63 -6.17 -2.95 7.32 -4.37
9 4.20 -2.58 4.01 5.66 -2.94 -1.17 -0.47 4.54 -1.10 1.48 3.24 2.14
8 3.86 -5.93 -3.95 6.46 5.05 1.91 -1.18 -0.88 6.99 2.52 2.42 0.24
7 3.85 7.95 -0.66 -0.99 1.99 5.06 -4.63 -3.00 -0.41 3.73 4.97 2.10
6 0.99 -0.21 -1.64 -3.01 -2.03 -1.26 -1.52 0.32 2.85 -1.59 5.12 -2.45
5 -2.64 2.33 4.91 1.75 -1.01 1.47 -2.78 4.78 0.94 2.51 -2.01 3.75
4 0.08 1.51 0.25 3.00 -2.16 -2.51 4.59 1.43 0.16 -2.59 0.97 1.65
3 0.63 -0.83 -0.68 0.12 -0.22 -3.17 4.41 -1.29 -2.18 -2.54 1.00 1.36
2 2.51 0.17 2.66 3.41 -2.40 -1.77 -0.63 -3.80 3.47 3.20 2.20 0.37
1 -2.37
Last point is Jan -2.37
Thanks
My answer is based on #BrodieG's one.
You could try nchar to test for "empty cells":
tail(which(nchar(as.matrix(z)) == 0, arr.ind=TRUE), 1)
col <- max(which(!is.na(t(as.matrix(z))))) %% ncol(z)
if(!col) col <- ncol(z)
names(z)[[col]]
# [1] "Dec"
This assumes "empty" values are NA, and that z is a data frame. I tested this by removing some values from the end, and it worked as well.

Resources