Julia Flux: determine type of layer - julia

I am new to Julia and I am having trouble determining the type of the layer in the Flux's model. For the purpose of example, imagine that my model is just one neuron:
using Flux
m = Chain(Dense(1, 1, sigmoid))
I want to iterate my Chain and, depending on the type of the layer, make different actions (specifically, I want to add regularization for the Dense layers).
I come to Julia from Python, and my first guess was to compare the type of the layer to type of Dense. Contrary to my intuition, this gives me false:
for layer in m
println(typeof(layer) == typeof(Dense))
end
Why this does not work in Julia?
What is the proper way to make it work of Julia? Of course, I can check if the specific fields of the struct (in/out/sigmoid in case of Dense) exist for the given layer, but there would be no guarantee that it is not some other layer with analogous fields.

Use layers property of m instead and to check if a value is of a given type use isa instead. In summary this should work:
for layer in m.layers
if layer isa Dense
# do something with dense layer
else
# do something else
end
end
EDIT: indeed m supports iteration and indexing, which I did not know, so as #darsnack suggested this is enough:
for layer in m
if layer isa Dense
# do something with dense layer
else
# do something else
end
end
Now to clarify type checking:
if you have a value, and you want to check if its type is a subtype of a given type use isa as I have above
if you have two types you want to compare for subtyping use <:, so you could have written typeof(layer) <: Dense; for types == checks are not recommended, see this warning in the Julia manual
You can check out this section of the Julia manual to read more about it

Iterating with for layer in m should be fine. The reason you get false is because typeof(Dense) == UnionAll. You should change your code to:
for layer in m
println(typeof(layer) == Dense))
end
A more Julian approach is to dispatch on the layer type like so:
function processlayer(layer::Dense)
# do special thing for dense
end
function processlayer(layer)
# do other thing for anything else
end
for layer in m
processlayer(layer)
end

Related

What does this struct mean in Julia?

I am trying to lean deep learning using Julia. In one of the tutorials, which is about MLP, use the below structure for modeling multiple layers in ANN. What does this code mean?
struct Chain
layers
Chain(layers...) = new(layers)
end
This definition in isolation doesn't really "mean" anything; it is just a user defined struct with one field (called layers) and one inner constructor. Usually custom structs like this is used for collecting some data and/or used to define operations on, e.g. you could define a function f operating on this struct like this:
function f(c::Chain)
# do something with the layers in the chain
end
but in order to understand what it is used for in this specific case you probably need to consult the documentation and/or the rest of the code.
One peculiarity in this example:
The inner constructor takes multiple arguments (layers...) and creates a tuple out of them, which is assigned to the property layers.
julia> c = Chain(1, 2, "foo")
Chain((1, 2, "foo"))

Parameters of function in Julia

Does anyone know the reasons why Julia chose a design of functions where the parameters given as inputs cannot be modified?  This requires, if we want to use it anyway, to go through a very artificial process, by representing these data in the form of a ridiculous single element table.
Ada, which had the same kind of limitation, abandoned it in its 2012 redesign to the great satisfaction of its users. A small keyword (like out in Ada) could very well indicate that the possibility of keeping the modifications of a parameter at the output is required.
From my experience in Julia it is useful to understand the difference between a value and a binding.
Values
Each value in Julia has a concrete type and location in memory. Value can be mutable or immutable. In particular when you define your own composite type you can decide if objects of this type should be mutable (mutable struct) or immutable (struct).
Of course Julia has in-built types and some of them are mutable (e.g. arrays) and other are immutable (e.g. numbers, strings). Of course there are design trade-offs between them. From my perspective two major benefits of immutable values are:
if a compiler works with immutable values it can perform many optimizations to speed up code;
a user is can be sure that passing an immutable to a function will not change it and such encapsulation can simplify code analysis.
However, in particular, if you want to wrap an immutable value in a mutable wrapper a standard way to do it is to use Ref like this:
julia> x = Ref(1)
Base.RefValue{Int64}(1)
julia> x[]
1
julia> x[] = 10
10
julia> x
Base.RefValue{Int64}(10)
julia> x[]
10
You can pass such values to a function and modify them inside. Of course Ref introduces a different type so method implementation has to be a bit different.
Variables
A variable is a name bound to a value. In general, except for some special cases like:
rebinding a variable from module A in module B;
redefining some constants, e.g. trying to reassign a function name with a non-function value;
rebinding a variable that has a specified type of allowed values with a value that cannot be converted to this type;
you can rebind a variable to point to any value you wish. Rebinding is performed most of the time using = or some special constructs (like in for, let or catch statements).
Now - getting to the point - function is passed a value not a binding. You can modify a binding of a function parameter (in other words: you can rebind a value that a parameter is pointing to), but this parameter is a fresh variable whose scope lies inside a function.
If, for instance, we wanted a call like:
x = 10
f(x)
change a binding of variable x it is impossible because f does not even know of existence of x. It only gets passed its value. In particular - as I have noted above - adding such a functionality would break the rule that module A cannot rebind variables form module B, as f might be defined in a module different than where x is defined.
What to do
Actually it is easy enough to work without this feature from my experience:
What I typically do is simply return a value from a function that I assign to a variable. In Julia it is very easy because of tuple unpacking syntax like e.g. x,y,z = f(x,y,z), where f can be defined e.g. as f(x,y,z) = 2x,3y,4z;
You can use macros which get expanded before code execution and thus can have an effect modifying a binding of a variable, e.g. macro plusone(x) return esc(:($x = $x+1)) end and now writing y=100; #plusone(y) will change the binding of y;
Finally you can use Ref as discussed above (or any other mutable wrapper - as you have noted in your question).
"Does anyone know the reasons why Julia chose a design of functions where the parameters given as inputs cannot be modified?" asked by Schemer
Your question is wrong because you assume the wrong things.
Parameters are variables
When you pass things to a function, often those things are values and not variables.
for example:
function double(x::Int64)
2 * x
end
Now what happens when you call it using
double(4)
What is the point of the function modifying it's parameter x , it's pointless. Furthermore the function has no idea how it is called.
Furthermore, Julia is built for speed.
A function that modifies its parameter will be hard to optimise because it causes side effects. A side effect is when a procedure/function changes objects/things outside of it's scope.
If a function does not modifies a variable that is part of its calling parameter then you can be safe knowing.
the variable will not have its value changed
the result of the function can be optimised to a constant
not calling the function will not break the program's behaviour
Those above three factors are what makes FUNCTIONAL language fast and NON FUNCTIONAL language slow.
Furthermore when you move into Parallel programming or Multi Threaded programming, you absolutely DO NOT WANT a variable having it's value changed without you (The programmer) knowing about it.
"How would you implement with your proposed macro, the function F(x) which returns a boolean value and modifies c by c:= c + 1. F can be used in the following piece of Ada code : c:= 0; While F(c) Loop ... End Loop;" asked by Schemer
I would write
function F(x)
boolean_result = perform_some_logic()
return (boolean_result,x+1)
end
flag = true
c = 0
(flag,c) = F(c)
while flag
do_stuff()
(flag,c) = F(c)
end
"Unfortunately no, because, and I should have said that, c has to take again the value 0 when F return the value False (c increases as long the Loop lives and return to 0 when it dies). " said Schemer
Then I would write
function F(x)
boolean_result = perform_some_logic()
if boolean_result == true
return (true,x+1)
else
return (false,0)
end
end
flag = true
c = 0
(flag,c) = F(c)
while flag
do_stuff()
(flag,c) = F(c)
end

How to check if a variable is scalar in julia

I would like to check if a variable is scalar in julia, such as Integer, String, Number, but not AstractArray, Tuple, type, struct, etc. Is there a simple method to do this (i.e. isscalar(x))
The notion of what is, or is not a scalar is under-defined without more context.
Mathematically, a scalar is defined; (Wikipedia)
A scalar is an element of a field which is used to define a vector space.
That is to say, you need to define a vector space, based on a field, before you can determine if something is, or is not a scalar (relative to that vector space.).
For the right vector space, tuples could be a scalar.
Of-course we are not looking for a mathematically rigorous definition.
Just a pragmatic one.
Base it off what Broadcasting considers to be scalar
I suggest that the only meaningful way in which a scalar can be defined in julia, is of the behavior of broadcast.
As of Julia 1:
using Base.Broadcast
isscalar(x::T) where T = isscalar(T)
isscalar(::Type{T}) where T = BroadcastStyle(T) isa Broadcast.DefaultArrayStyle{0}
See the docs for Broadcast.
In julia 0.7, Scalar is the default. So it is basically anything that doesn't have specific broadcasting behavior, i.e. it knocks out things like array and tuples etc.:
using Base.Broadcast
isscalar(x::T) where T = isscalar(T)
isscalar(::Type{T}) where T = BroadcastStyle(T) isa Broadcast.Scalar
In julia 0.6 this is a bit more messy, but similar:
isscalar(x::T) where T = isscalar(T)
isscalar(::Type{T}) where T = Base.Broadcast._containertype(T)===Any
The advantage of using the methods for Broadcast to determine if something is scalar, over using your own methods, is that anyone making a new type that is going to act in a scalar way must make sure it works with those methods correctly
(or actually nonscalar since scalar is the default.)
Structs are not not scalar
That is to say: sometimes structs are scalar and sometimes they are not and it depends on the struct.
Note however that these methods do not consider struct to be non-scalar.
I think you are mistaken in your desire to.
Julia structs are not (necessarily or usually) a collection type.
Consider that: BigInteger, BigFloat, Complex128 etc etc
are all defined using structs
I was tempted to say that having a start method makes a type nonscalar, but that would be incorrect as start(::Number) is defined.
(This has been debated a few times)
For completeness, I am copying Tasos Papastylianou's answer from the comments to here. If all you want to do is distinguish scalars from arrays you can use:
isa(x, Number)
This will output true if x is a Number (like a float or an int), and output false if x is an Array (vector, matrix, etc.)
I found myself needing to capture the notion of if something was scalar or not recently in MultiResolutionIterators.jl.
I found the boardcasting based rules from the other answer,
did not meet my needs.
In particular I wanted to consider strings as nonscalar.
I defined a trait,
bases on method_exists(start, (T,)),
with some exceptions as mentioned e.g. for Number.
abstract type Scalarness end
struct Scalar <: Scalarness end
struct NotScalar <: Scalarness end
isscalar(::Type{Any}) = NotScalar() # if we don't know the type we can't really know if scalar or not
isscalar(::Type{<:AbstractString}) = NotScalar() # We consider strings to be nonscalar
isscalar(::Type{<:Number}) = Scalar() # We consider Numbers to be scalar
isscalar(::Type{Char}) = Scalar() # We consider Sharacter to be scalar
isscalar(::Type{T}) where T = method_exists(start, (T,)) ? NotScalar() : Scalar()
Something similar is also done by AbstractTrees.jl
isscalar(x) == applicable(start, x) && !isa(x, Integer) && !isa(x, Char) && !isa(x, Task)

How can I dispatch on traits relating two types, where the second type that co-satisfies the trait is uniquely determined by the first?

Say I have a Julia trait that relates to two types: one type is a sort of "base" type that may satisfy a sort of partial trait, the other is an associated type that is uniquely determined by the base type. (That is, the relation from BaseType -> AssociatedType is a function.) Together, these types satisfy a composite trait that is the one of interest to me.
For example:
using Traits
#traitdef IsProduct{X} begin
isnew(X) -> Bool
coolness(X) -> Float64
end
#traitdef IsProductWithMeasurement{X,M} begin
#constraints begin
istrait(IsProduct{X})
end
measurements(X) -> M
#Maybe some other stuff that dispatches on (X,M), e.g.
#fits_in(X,M) -> Bool
#how_many_fit_in(X,M) -> Int64
#But I don't want to implement these now
end
Now here are a couple of example types. Please ignore the particulars of the examples; they are just meant as MWEs and there is nothing relevant in the details:
type Rope
color::ASCIIString
age_in_years::Float64
strength::Float64
length::Float64
end
type Paper
color::ASCIIString
age_in_years::Int64
content::ASCIIString
width::Float64
height::Float64
end
function isnew(x::Rope)
(x.age_in_years < 10.0)::Bool
end
function coolness(x::Rope)
if x.color=="Orange"
return 2.0::Float64
elseif x.color!="Taupe"
return 1.0::Float64
else
return 0.0::Float64
end
end
function isnew(x::Paper)
(x.age_in_years < 1.0)::Bool
end
function coolness(x::Paper)
(x.content=="StackOverflow Answers" ? 1000.0 : 0.0)::Float64
end
Since I've defined these functions, I can do
#assert istrait(IsProduct{Rope})
#assert istrait(IsProduct{Paper})
And now if I define
function measurements(x::Rope)
(x.length)::Float64
end
function measurements(x::Paper)
(x.height,x.width)::Tuple{Float64,Float64}
end
Then I can do
#assert istrait(IsProductWithMeasurement{Rope,Float64})
#assert istrait(IsProductWithMeasurement{Paper,Tuple{Float64,Float64}})
So far so good; these run without error. Now, what I want to do is write a function like the following:
#traitfn function get_measurements{X,M;IsProductWithMeasurement{X,M}}(similar_items::Array{X,1})
all_measurements = Array{M,1}(length(similar_items))
for i in eachindex(similar_items)
all_measurements[i] = measurements(similar_items[i])::M
end
all_measurements::Array{M,1}
end
Generically, this function is meant to be an example of "I want to use the fact that I, as the programmer, know that BaseType is always associated to AssociatedType to help the compiler with type inference. I know that whenever I do a certain task [in this case, get_measurements, but generically this could work in a bunch of cases] then I want the compiler to infer the output type of that function in a consistently patterned way."
That is, e.g.
do_something_that_makes_arrays_of_assoc_type(x::BaseType)
will always spit out Array{AssociatedType}, and
do_something_that_makes_tuples(x::BaseType)
will always spit out Tuple{Int64,BaseType,AssociatedType}.
AND, one such relationship holds for all pairs of <BaseType,AssociatedType>; e.g. if BatmanType is the base type to which RobinType is associated, and SupermanType is the base type to which LexLutherType is always associated, then
do_something_that_makes_tuple(x::BatManType)
will always output Tuple{Int64,BatmanType,RobinType}, and
do_something_that_makes_tuple(x::SuperManType)
will always output Tuple{Int64,SupermanType,LexLutherType}.
So, I understand this relationship, and I want the compiler to understand it for the sake of speed.
Now, back to the function example. If this makes sense, you will have realized that while the function definition I gave as an example is 'correct' in the sense that it satisfies this relationship and does compile, it is un-callable because the compiler doesn't understand the relationship between X and M, even though I do. In particular, since M doesn't appear in the method signature, there is no way for Julia to dispatch on the function.
So far, the only thing I have thought to do to solve this problem is to create a sort of workaround where I "compute" the associated type on the fly, and I can still use method dispatch to do this computation. Consider:
function get_measurement_type_of_product(x::Rope)
Float64
end
function get_measurement_type_of_product(x::Paper)
Tuple{Float64,Float64}
end
#traitfn function get_measurements{X;IsProduct{X}}(similar_items::Array{X,1})
M = get_measurement_type_of_product(similar_items[1]::X)
all_measurements = Array{M,1}(length(similar_items))
for i in eachindex(similar_items)
all_measurements[i] = measurements(similar_items[i])::M
end
all_measurements::Array{M,1}
end
Then indeed this compiles and is callable:
julia> get_measurements(Array{Rope,1}([Rope("blue",1.0,1.0,1.0),Rope("red",2.0,2.0,2.0)]))
2-element Array{Float64,1}:
1.0
2.0
But this is not ideal, because (a) I have to redefine this map each time, even though I feel as though I already told the compiler about the relationship between X and M by making them satisfy the trait, and (b) as far as I can guess--maybe this is wrong; I don't have direct evidence for this--the compiler won't necessarily be able to optimize as well as I want, since the relationship between X and M is "hidden" inside the return value of the function call.
One last thought: if I had the ability, what I would ideally do is something like this:
#traitdef IsProduct{X} begin
isnew(X) -> Bool
coolness(X) -> Float64
∃ ! M s.t. measurements(X) -> M
end
and then have some way of referring to the type that uniquely witnesses the existence relationship, so e.g.
#traitfn function get_measurements{X;IsProduct{X},IsWitnessType{IsProduct{X},M}}(similar_items::Array{X,1})
all_measurements = Array{M,1}(length(similar_items))
for i in eachindex(similar_items)
all_measurements[i] = measurements(similar_items[i])::M
end
all_measurements::Array{M,1}
end
because this would be somehow dispatchable.
So: what is my specific question? I am asking, given that you presumably by this point understand that my goals are
Have my code exhibit this sort of structure generically, so that
I can effectively repeat this design pattern across a lot of cases
and then program in the abstract at the high-level of X and M,
and
do (1) in such a way that the compiler can still optimize to the best of its ability / is as aware of the relationship among
types as I, the coder, am
then, how should I do this? I think the answer is
Use Traits.jl
Do something pretty similar to what you've done so far
Also do ____some clever thing____ that the answerer will indicate,
but I'm open to the idea that in fact the correct answer is
Abandon this approach, you're thinking about the problem the wrong way
Instead, think about it this way: ____MWE____
I'd also be perfectly satisfied by answers of the form
What you are asking for is a "sophisticated" feature of Julia that is still under development, and is expected to be included in v0.x.y, so just wait...
and I'm less enthusiastic about (but still curious to hear) an answer such as
Abandon Julia; instead use the language ________ that is designed for this type of thing
I also think this might be related to the question of typing Julia's function outputs, which as I take it is also under consideration, though I haven't been able to puzzle out the exact representation of this problem in terms of that one.

Define a new method with only a few changes

I want to write a version that accepts a supplementary argument. The difference with the initial version only resides in a few lines of codes, potentially within loops. A typical example is to user a vector of weight w.
One solution is to completely rewrite a new function
function f(Vector::a)
...
for x in a
...
s += x[i]
...
end
...
end
function f(a::Vector, w::Vector)
...
for x in a
...
s += x[i] * w[i]
...
end
...
end
This solution duplicates code and therefore makes the program harder to maintain.
I could split ... into different helper functions, which are called by both functions, but the resulting code would be hard to follow
Another solution is to write only one function and use a ? : structure for each line that should be changed
function f(a, w::Union(Nothing, Vector) = nothing)
....
for x in a
...
s += (w == nothing)? x[i] : x[i] * w[i]
...
end
....
end
This code requires to check a condition at every step in a loop, which does not sound efficient, compared to the first version.
I'm sure there is a better solution, maybe using macros. What would be a good way to deal with this?
There are lots of ways to do this sort of thing, ranging from optional arguments to custom types to metaprogramming with #eval'ed code generation (this would splice in the changes for each new method as you loop over a list of possibilities).
I think in this case I'd use a combination of the approaches suggested by #ColinTBowers and #GnimucKey.
It's fairly simple to define a custom array type that is all ones:
immutable Ones{N} <: AbstractArray{Int,N}
dims::NTuple{N, Int}
end
Base.size(O::Ones) = O.dims
Base.getindex(O::Ones, I::Int...) = (checkbounds(O, I...); 1)
I've chosen to use an Int as the element type since it tends to promote well. Now all you need is to be a bit more flexible in your argument list and you're good to go:
function f(a::Vector, w::AbstractVector=Ones(size(a))
…
This should have a lower overhead than either of the other proposed solutions; getindex should inline nicely as a bounds check and the number 1, there's no type instability, and you don't need to rewrite your algorithm. If you're sure that all your accesses are in-bounds, you could even remove the bounds checking as an additional optimization. Or on a recent 0.4, you could define and use Base.unsafe_getindex(O::Ones, I::Int...) = 1 (that won't quite work on 0.3 since it's not guaranteed to be defined for all AbstractArrays).
In this case, using Optional Arguments may play the trick.
Just make the w argument default to ones().
I've come up against this problem a few times. If you want to avoid the conditional if statement inside the loop, one possibility is to use multiple dispatch over some dummy types. For example:
abstract MyFuncTypes
type FuncWithNoWeight <: MyFuncTypes; end
evaluate(x::Vector, i::Int, ::FuncWithNoWeight) = x[i]
type FuncWithWeight{T} <: MyFuncTypes
w::Vector{T}
end
evaluate(x::Vector, i::Int, wT::FuncWithWeight) = x[i] * wT.w[i]
function f(a, w::MyFuncTypes=FuncWithNoWeight())
....
for x in a
...
s += evaluate(x, i, w)
...
end
....
end
I extend the evaluate method over FuncWithNoWeight and FuncWithWeight in order to get the appropriate behaviour. I also nest these types within an abstract type MyFuncTypes, which is the second input to f (with default value of FuncWithNoWeight). From here, multiple dispatch and Julia's type system takes care of the rest.
One neat thing about this approach is that if you decide later on you want to add a third type of behaviour inside the loop (not necessarily even weighting, pretty much any type of transformation will be possible), it is as simple as defining a new type, nesting it under MyFuncTypes, and extending the evaluate method to the new type.
UPDATE: As Matt B. has pointed out, the first version of my answer accidentally introduced type instability into the function with my solution. As a general rule I typically find that if Matt posts something it is worth paying close attention (hint, hint, check out his answer). I'm still learning a lot about Julia (and am answering questions on StackOverflow to facilitate that learning). I've updated my answer to remove the type instability pointed out by Matt.

Resources