Convert quarter character into date object in R - r

I have a dataset and a column in there with information on the "period" of the observations which is a character for quarters of year. The column looks like this:
> dput(df$Period)
structure(c(27L, 40L, 1L, 3L, 15L, 42L, 29L, 35L, 21L, 48L, 9L,
41L, 28L, 2L, 14L, 45L, 32L, 18L, 6L, 22L, 49L, 36L, 10L, 27L,
1L, 40L, 2L, 41L, 14L, 28L, 15L, 3L, 42L, 29L, 6L, 32L, 45L,
18L, 48L, 21L, 35L, 9L, 10L, 49L, 22L, 36L, 2L, 41L, 28L, 14L,
45L, 6L, 18L, 32L, 10L, 49L, 22L, 36L, 18L, 6L, 45L, 32L, 49L,
36L, 22L, 10L, 14L, 2L, 41L, 28L, 45L, 18L, 32L, 6L, 49L, 10L,
22L, 36L, 32L, 18L, 45L, 6L, 36L, 10L, 22L, 49L, 14L, 41L, 28L,
2L, 27L, 40L, 1L, 35L, 9L, 48L, 21L, 27L, 40L, 1L, 35L, 21L,
48L, 9L, 1L, 40L, 27L, 41L, 28L, 2L, 14L, 42L, 15L, 3L, 29L,
32L, 45L, 6L, 18L, 48L, 9L, 21L, 35L, 10L, 49L, 36L, 22L, 1L,
40L, 27L, 14L, 28L, 41L, 2L, 29L, 15L, 42L, 3L, 18L, 6L, 32L,
45L, 49L, 36L, 22L, 10L, 27L, 1L, 40L, 2L, 41L, 28L, 14L, 15L,
42L, 29L, 3L, 6L, 45L, 18L, 32L, 7L, 19L, 46L, 33L, 9L, 35L,
21L, 48L, 10L, 22L, 49L, 36L, 1L, 40L, 27L, 2L, 14L, 28L, 41L,
3L, 42L, 15L, 29L, 18L, 32L, 45L, 6L, 46L, 33L, 19L, 7L, 35L,
9L, 21L, 48L, 49L, 22L, 36L, 10L, 1L, 27L, 40L, 29L, 15L, 3L,
42L, 45L, 6L, 18L, 32L, 9L, 21L, 35L, 48L, 36L, 49L, 10L, 22L,
2L, 28L, 14L, 41L, 32L, 18L, 45L, 6L, 36L, 49L, 22L, 10L, 1L,
27L, 40L, 43L, 30L, 16L, 4L, 44L, 31L, 17L, 5L, 32L, 18L, 45L,
6L, 49L, 36L, 22L, 10L, 27L, 40L, 1L, 9L, 35L, 21L, 48L, 27L,
1L, 40L, 2L, 41L, 28L, 14L, 42L, 29L, 15L, 3L, 18L, 6L, 32L,
45L, 46L, 7L, 19L, 33L, 48L, 21L, 9L, 35L, 36L, 10L, 22L, 49L,
14L, 28L, 41L, 2L, 32L, 6L, 18L, 45L, 22L, 10L, 49L, 36L, 40L,
1L, 27L, 14L, 41L, 28L, 2L, 42L, 29L, 15L, 3L, 6L, 18L, 45L,
32L, 33L, 19L, 7L, 46L, 9L, 48L, 35L, 21L, 36L, 49L, 10L, 22L,
41L, 28L, 2L, 14L, 18L, 6L, 45L, 32L, 36L, 22L, 49L, 10L, 41L,
2L, 28L, 14L, 45L, 18L, 6L, 32L, 22L, 36L, 49L, 10L, 40L, 27L,
1L, 28L, 41L, 2L, 14L, 3L, 15L, 29L, 42L, 32L, 18L, 6L, 45L,
35L, 21L, 48L, 9L, 36L, 22L, 10L, 49L, 32L, 45L, 6L, 18L, 10L,
22L, 49L, 36L, 41L, 28L, 14L, 2L, 45L, 18L, 6L, 32L, 36L, 49L,
10L, 22L, 28L, 2L, 41L, 14L, 45L, 6L, 32L, 18L, 22L, 36L, 10L,
49L, 27L, 1L, 40L, 14L, 2L, 28L, 41L, 42L, 3L, 29L, 15L, 17L,
44L, 31L, 5L, 6L, 32L, 18L, 45L, 9L, 48L, 35L, 21L, 36L, 22L,
10L, 49L, 2L, 14L, 41L, 28L, 32L, 18L, 45L, 6L, 49L, 22L, 10L,
36L, 41L, 28L, 14L, 2L, 6L, 45L, 32L, 18L, 22L, 10L, 49L, 36L,
40L, 1L, 27L, 35L, 21L, 9L, 48L, 1L, 40L, 27L, 14L, 2L, 28L,
41L, 29L, 3L, 15L, 42L, 6L, 45L, 32L, 18L, 46L, 7L, 33L, 19L,
21L, 9L, 35L, 48L, 36L, 10L, 22L, 49L, 28L, 41L, 2L, 14L, 18L,
6L, 45L, 32L, 36L, 22L, 49L, 10L, 1L, 40L, 27L, 28L, 14L, 41L,
2L, 16L, 30L, 43L, 4L, 45L, 6L, 32L, 18L, 20L, 8L, 47L, 34L,
9L, 35L, 48L, 21L, 22L, 36L, 49L, 10L, 41L, 2L, 28L, 14L, 18L,
32L, 45L, 6L, 49L, 22L, 10L, 36L, 27L, 1L, 40L, 48L, 35L, 9L,
21L, 14L, 2L, 41L, 28L, 6L, 45L, 18L, 32L, 36L, 49L, 10L, 22L,
40L, 1L, 27L, 41L, 2L, 28L, 14L, 42L, 3L, 15L, 29L, 17L, 31L,
44L, 5L, 32L, 18L, 45L, 6L, 46L, 33L, 19L, 7L, 9L, 35L, 21L,
48L, 36L, 49L, 10L, 22L, 6L, 18L, 32L, 45L, 10L, 49L, 22L, 36L,
1L, 27L, 40L, 2L, 41L, 28L, 14L, 42L, 29L, 15L, 3L, 18L, 32L,
45L, 6L, 46L, 7L, 33L, 19L, 48L, 21L, 9L, 35L, 49L, 10L, 22L,
36L, 27L, 1L, 40L, 2L, 28L, 14L, 41L, 15L, 3L, 42L, 29L, 45L,
32L, 6L, 18L, 9L, 35L, 48L, 21L, 10L, 36L, 49L, 22L, 40L, 1L,
27L, 41L, 28L, 14L, 2L, 42L, 15L, 29L, 3L, 32L, 6L, 45L, 18L,
46L, 19L, 33L, 7L, 35L, 9L, 21L, 48L, 10L, 22L, 36L, 49L, 27L,
1L, 40L, 41L, 14L, 2L, 28L, 29L, 3L, 15L, 42L, 44L, 31L, 17L,
5L, 6L, 18L, 32L, 45L, 7L, 46L, 33L, 19L, 21L, 35L, 9L, 48L,
22L, 49L, 36L, 10L, 1L, 40L, 27L, 35L, 48L, 9L, 21L, 27L, 1L,
40L, 2L, 28L, 41L, 14L, 42L, 29L, 3L, 15L, 18L, 6L, 32L, 45L,
7L, 33L, 46L, 19L, 9L, 21L, 35L, 48L, 36L, 22L, 10L, 49L, 41L,
2L, 14L, 28L, 18L, 6L, 45L, 32L, 10L, 22L, 49L, 36L, 1L, 40L,
27L, 28L, 14L, 41L, 2L, 42L, 29L, 3L, 15L, 18L, 32L, 45L, 6L,
7L, 33L, 19L, 46L, 35L, 48L, 9L, 21L, 49L, 36L, 22L, 10L, 40L,
1L, 27L, 41L, 2L, 14L, 28L, 15L, 3L, 29L, 42L, 45L, 32L, 6L,
18L, 19L, 7L, 33L, 46L, 21L, 48L, 9L, 35L, 36L, 22L, 49L, 10L,
4L, 30L, 43L, 18L, 45L, 32L, 6L, 10L, 36L, 49L, 22L, 28L, 2L,
41L, 14L, 45L, 32L, 6L, 18L, 22L, 36L, 49L, 10L, 41L, 28L, 2L,
14L, 45L, 6L, 32L, 18L, 22L, 36L, 49L, 10L, 27L, 1L, 40L, 3L,
15L, 29L, 42L, 46L, 7L, 33L, 19L, 9L, 35L, 21L, 48L, 27L, 40L,
1L, 2L, 14L, 41L, 28L, 15L, 3L, 42L, 29L, 32L, 6L, 18L, 45L,
7L, 19L, 33L, 46L, 35L, 9L, 21L, 48L, 36L, 49L, 22L, 10L, 6L,
45L, 18L, 32L, 22L, 36L, 49L, 10L, 45L, 32L, 18L, 6L, 10L, 22L,
49L, 36L, 27L, 40L, 1L, 41L, 28L, 2L, 14L, 45L, 6L, 18L, 32L,
36L, 49L, 10L, 22L, 14L, 41L, 28L, 2L, 18L, 32L, 45L, 6L, 49L,
10L, 22L, 36L, 6L, 45L, 32L, 18L, 22L, 27L, 1L, 40L, 2L, 41L,
28L, 14L, 3L, 42L, 15L, 29L, 45L, 6L, 32L, 18L, 46L, 7L, 19L,
33L, 48L, 35L, 21L, 9L, 49L, 10L, 22L, 36L, 31L, 17L, 44L, 5L,
18L, 40L, 1L, 27L, 2L, 14L, 41L, 28L, 42L, 3L, 29L, 15L, 18L,
6L, 45L, 32L, 19L, 7L, 46L, 33L, 21L, 35L, 48L, 9L, 22L, 10L,
49L, 36L, 1L, 27L, 40L, 41L, 2L, 28L, 14L, 6L, 32L, 45L, 18L,
10L, 22L, 36L, 49L, 32L, 18L, 45L, 6L, 49L, 22L, 36L, 10L, 43L,
4L, 30L, 41L, 14L, 2L, 28L, 6L, 32L, 18L, 45L, 22L, 10L, 36L,
49L, 27L, 1L, 40L, 42L, 15L, 29L, 3L, 31L, 5L, 44L, 17L, 45L,
6L, 32L, 18L, 35L, 9L, 21L, 48L, 49L, 36L, 10L, 22L, 1L, 40L,
27L, 28L, 14L, 2L, 41L, 42L, 15L, 3L, 29L, 6L, 32L, 45L, 18L,
9L, 35L, 48L, 21L, 10L, 36L, 22L, 49L, 40L, 27L, 1L, 27L, 1L,
40L, 48L, 21L, 35L, 9L, 41L, 2L, 14L, 28L, 18L, 45L, 32L, 6L,
10L, 22L, 36L, 49L, 41L, 28L, 2L, 14L, 18L, 45L, 32L, 6L, 22L,
49L, 36L, 10L, 14L, 41L, 2L, 28L, 6L, 32L, 18L, 45L, 22L, 10L,
49L, 36L, 1L, 27L, 40L, 42L, 29L, 3L, 15L, 18L, 32L, 6L, 45L,
19L, 46L, 7L, 33L, 9L, 35L, 48L, 21L, 22L, 10L, 36L, 49L, 1L,
27L, 40L, 28L, 2L, 41L, 14L, 3L, 42L, 15L, 29L, 17L, 44L, 31L,
5L, 45L, 18L, 6L, 32L, 46L, 7L, 33L, 19L, 35L, 21L, 9L, 48L,
10L, 36L, 49L, 22L, 2L, 41L, 28L, 14L, 45L, 32L, 6L, 18L, 49L,
10L, 22L, 36L, 40L, 27L, 1L, 2L, 41L, 28L, 14L, 29L, 42L, 3L,
15L, 45L, 32L, 18L, 6L, 48L, 9L, 35L, 21L, 49L, 10L, 22L, 36L,
14L, 28L, 2L, 41L, 18L, 45L, 32L, 6L, 49L, 10L, 36L, 22L, 27L,
40L, 1L, 41L, 14L, 2L, 28L, 29L, 15L, 3L, 42L, 32L, 6L, 18L,
45L, 9L, 35L, 21L, 48L, 10L, 22L, 36L, 49L, 3L, 15L, 42L, 29L,
40L, 27L, 1L, 48L, 35L, 9L, 21L, 14L, 2L, 41L, 28L, 45L, 32L,
6L, 18L, 49L, 10L, 36L, 22L, 18L, 45L, 32L, 6L, 36L, 22L, 49L,
10L, 18L, 2L, 41L, 28L, 14L, 32L, 45L, 18L, 6L, 36L, 49L, 22L,
10L, 2L, 28L, 14L, 41L, 32L, 6L, 18L, 45L, 22L, 36L, 49L, 10L,
45L, 18L, 32L, 6L, 10L, 36L, 49L, 22L, 32L, 18L, 6L, 45L, 49L,
10L, 22L, 36L, 41L, 14L, 28L, 2L, 18L, 6L, 45L, 32L, 36L, 22L,
10L, 49L, 40L, 27L, 1L, 45L, 32L, 18L, 6L, 49L, 10L, 36L, 22L,
40L, 27L, 1L, 2L, 41L, 28L, 14L, 29L, 3L, 42L, 15L, 18L, 6L,
45L, 32L, 33L, 19L, 46L, 7L, 21L, 9L, 48L, 35L, 49L, 10L, 36L,
22L, 28L, 2L, 41L, 14L, 17L, 44L, 31L, 5L, 18L, 32L, 45L, 6L,
10L, 49L, 36L, 22L, 27L, 40L, 1L, 27L, 1L, 40L, 41L, 28L, 14L,
2L, 42L, 15L, 29L, 3L, 5L, 17L, 31L, 44L, 45L, 32L, 6L, 18L,
46L, 7L, 33L, 19L, 48L, 9L, 21L, 35L, 49L, 10L, 36L, 27L, 1L,
40L, 48L, 9L, 21L, 35L, 40L, 1L, 27L, 2L, 28L, 14L, 41L, 42L,
3L, 29L, 15L, 6L, 32L, 45L, 18L, 46L, 33L, 19L, 7L, 48L, 9L,
21L, 35L, 10L, 22L, 36L, 49L, 2L, 14L, 28L, 41L, 45L, 6L, 32L,
18L, 10L, 49L, 22L, 36L, 14L, 41L, 2L, 28L, 18L, 45L, 6L, 32L,
10L, 49L, 22L, 36L, 40L, 1L, 27L, 42L, 15L, 3L, 29L, 45L, 18L,
6L, 32L, 7L, 33L, 19L, 46L, 21L, 9L, 48L, 35L, 36L, 10L, 22L,
49L, 40L, 1L, 27L, 3L, 29L, 15L, 42L, 46L, 19L, 33L, 7L, 48L,
21L, 9L, 35L, 41L, 14L, 28L, 2L, 32L, 18L, 6L, 45L, 49L, 36L,
22L, 10L, 28L, 2L, 41L, 14L, 6L, 32L, 45L, 18L, 36L, 10L, 22L,
49L, 41L, 2L, 28L, 14L, 32L, 18L, 45L, 6L, 36L, 22L, 49L, 10L,
14L, 28L, 2L, 41L, 32L, 45L, 18L, 6L, 10L, 36L, 22L, 49L, 27L,
40L, 1L, 28L, 41L, 14L, 2L, 42L, 29L, 15L, 3L, 6L, 45L, 18L,
32L, 9L, 35L, 48L, 21L, 22L, 10L, 36L, 49L, 18L, 6L, 45L, 32L,
22L, 10L, 49L, 36L, 27L, 1L, 40L, 28L, 14L, 41L, 2L, 29L, 42L,
15L, 3L, 6L, 45L, 32L, 18L, 33L, 46L, 19L, 7L, 21L, 48L, 9L,
35L, 36L, 49L, 10L, 22L, 27L, 40L, 1L, 42L, 15L, 3L, 29L, 46L,
19L, 7L, 33L, 9L, 35L, 48L, 21L, 28L, 41L, 2L, 14L, 45L, 6L,
32L, 18L, 10L, 36L, 22L, 49L, 1L, 27L, 40L, 14L, 2L, 28L, 41L,
15L, 3L, 29L, 42L, 18L, 32L, 45L, 6L, 7L, 33L, 46L, 19L, 48L,
35L, 9L, 21L, 49L, 10L, 22L, 36L, 40L, 1L, 27L, 48L, 35L, 21L,
9L, 14L, 28L, 41L, 2L, 6L, 45L, 18L, 32L, 49L, 36L, 10L, 22L,
40L, 27L, 1L, 48L, 21L, 9L, 35L, 27L, 40L, 1L, 28L, 14L, 2L,
41L, 42L, 29L, 15L, 3L, 32L, 45L, 18L, 6L, 21L, 9L, 48L, 35L,
36L, 49L, 10L, 22L, 6L, 32L, 18L, 45L, 49L, 22L, 36L, 10L, 27L,
1L, 40L, 48L, 35L, 21L, 9L, 28L, 14L, 41L, 2L, 32L, 18L, 45L,
6L, 22L, 36L, 10L, 49L, 1L, 40L, 27L, 35L, 48L, 9L, 21L, 1L,
27L, 40L, 14L, 28L, 2L, 41L, 15L, 42L, 3L, 29L, 6L, 45L, 32L,
18L, 19L, 33L, 46L, 7L, 48L, 9L, 21L, 35L, 10L, 22L, 36L, 49L,
40L, 1L, 27L, 3L, 29L, 15L, 42L, 6L, 18L, 45L, 32L, 7L, 19L,
33L, 46L, 35L, 21L, 48L, 9L, 10L, 22L, 49L, 36L, 40L, 1L, 27L,
21L, 35L, 9L, 48L, 1L, 40L, 27L, 14L, 2L, 41L, 28L, 15L, 29L,
3L, 42L, 44L, 31L, 5L, 17L, 45L, 18L, 6L, 32L, 46L, 33L, 7L,
19L, 9L, 21L, 48L, 35L, 36L, 22L, 49L, 10L, 40L, 1L, 27L, 41L,
2L, 28L, 14L, 3L, 29L, 42L, 15L, 6L, 32L, 18L, 45L, 7L, 19L,
33L, 46L, 21L, 9L, 48L, 35L, 22L, 10L, 36L, 49L, 40L, 1L, 27L,
42L, 29L, 15L, 3L, 46L, 33L, 19L, 7L, 35L, 9L, 21L, 48L, 27L,
40L, 1L, 41L, 14L, 28L, 2L, 42L, 15L, 3L, 29L, 32L, 6L, 45L,
18L, 7L, 46L, 33L, 19L, 21L, 9L, 48L, 35L, 49L, 10L, 36L, 22L,
27L, 40L, 1L, 9L, 35L, 21L, 48L, 2L, 41L, 14L, 28L, 6L, 45L,
18L, 32L, 36L, 10L, 49L, 22L, 40L, 27L, 1L, 14L, 41L, 28L, 2L,
29L, 15L, 3L, 42L, 18L, 32L, 6L, 45L, 7L, 33L, 19L, 46L, 21L,
35L, 9L, 48L, 49L, 10L, 36L, 22L, 14L, 2L, 41L, 28L, 45L, 6L,
32L, 18L, 49L, 36L, 22L, 10L, 1L, 27L, 40L, 48L, 35L, 9L, 21L,
18L, 32L, 6L, 45L, 10L, 22L, 36L, 49L, 28L, 2L, 14L, 41L, 6L,
45L, 18L, 32L, 10L, 22L, 49L, 36L, 27L, 40L, 1L, 9L, 35L, 21L,
48L, 1L, 27L, 40L, 41L, 14L, 28L, 2L, 29L, 15L, 42L, 3L, 18L,
32L, 45L, 6L, 19L, 7L, 33L, 46L, 9L, 35L, 21L, 48L, 49L, 22L,
10L, 36L, 27L, 1L, 40L, 14L, 28L, 2L, 41L, 29L, 3L, 42L, 15L,
32L, 6L, 45L, 18L, 33L, 46L, 19L, 7L, 9L, 21L, 35L, 48L, 10L,
22L, 49L, 36L, 40L, 27L, 1L, 2L, 28L, 41L, 14L, 15L, 29L, 42L,
3L, 6L, 32L, 45L, 18L, 21L, 35L, 9L, 48L, 22L, 49L, 36L, 10L,
30L, 43L, 16L, 4L, 30L, 43L, 4L, 16L, 1L, 40L, 27L, 48L, 9L,
35L, 21L, 45L, 32L, 6L, 18L, 10L, 22L, 36L, 49L, 1L, 27L, 40L,
41L, 14L, 2L, 28L, 42L, 15L, 29L, 3L, 45L, 6L, 32L, 18L, 21L,
9L, 48L, 35L, 36L, 10L, 49L, 22L, 27L, 1L, 40L, 28L, 2L, 14L,
41L, 15L, 29L, 3L, 42L, 31L, 44L, 17L, 5L, 6L, 45L, 32L, 18L,
48L, 35L, 9L, 21L, 22L, 10L, 49L, 36L, 40L, 1L, 27L, 9L, 48L,
35L, 21L, 41L, 28L, 2L, 14L, 18L, 6L, 45L, 32L, 49L, 10L, 36L,
22L, 27L, 40L, 1L, 28L, 41L, 14L, 2L, 29L, 3L, 42L, 15L, 45L,
6L, 18L, 32L, 19L, 46L, 7L, 33L, 9L, 21L, 48L, 35L, 36L, 10L,
22L, 49L, 28L, 41L, 14L, 2L, 18L, 32L, 45L, 6L, 22L, 36L, 10L,
49L, 32L, 45L, 18L, 6L, 49L, 10L, 22L, 36L, 27L, 1L, 40L, 35L,
48L, 21L, 9L, 41L, 14L, 2L, 28L, 18L, 45L, 6L, 32L, 49L, 36L,
22L, 10L, 1L, 27L, 40L, 29L, 3L, 15L, 42L, 18L, 32L, 6L, 45L,
46L, 33L, 7L, 19L, 9L, 48L, 35L, 21L, 22L, 10L, 36L, 49L, 27L,
1L, 40L, 2L, 41L, 14L, 28L, 42L, 15L, 3L, 29L, 45L, 18L, 32L,
6L, 19L, 7L, 46L, 33L, 21L, 48L, 9L, 35L, 22L, 10L, 36L, 49L,
2L, 41L, 14L, 28L, 18L, 45L, 32L, 6L, 36L, 49L, 22L, 10L, 27L,
40L, 1L, 40L, 27L, 1L, 14L, 28L, 41L, 2L, 3L, 15L, 42L, 29L,
32L, 6L, 18L, 45L, 46L, 33L, 19L, 7L, 21L, 35L, 9L, 48L, 10L,
36L, 49L, 22L, 41L, 28L, 2L, 14L, 45L, 18L, 6L, 32L, 10L, 36L,
49L, 22L, 41L, 14L, 28L, 2L, 6L, 18L, 32L, 45L, 10L, 22L, 36L,
49L, 1L, 40L, 27L, 14L, 28L, 41L, 2L, 15L, 42L, 3L, 29L, 45L,
32L, 6L, 18L, 7L, 19L, 46L, 33L, 48L, 9L, 21L, 35L, 49L, 22L,
36L, 10L, 45L, 18L, 32L, 6L, 10L, 36L, 22L, 49L, 14L, 28L, 41L,
2L, 18L, 32L, 6L, 45L, 22L, 36L, 10L, 49L, 18L, 32L, 6L, 45L,
10L, 36L, 49L, 22L, 18L, 32L, 6L, 45L, 49L, 36L, 22L, 10L, 27L,
40L, 1L, 9L, 21L, 48L, 35L, 18L, 32L, 45L, 6L, 22L, 10L, 49L,
36L, 28L, 2L, 14L, 41L, 6L, 32L, 45L, 18L, 10L, 49L, 22L, 36L,
2L, 14L, 41L, 28L, 18L, 32L, 6L, 45L, 36L, 10L, 49L, 22L, 2L,
28L, 14L, 41L, 32L, 6L, 18L, 45L, 10L, 49L, 22L, 36L, 40L, 27L,
1L, 14L, 41L, 2L, 28L, 29L, 3L, 15L, 42L, 6L, 45L, 32L, 18L,
46L, 7L, 33L, 19L, 35L, 21L, 9L, 48L, 36L, 10L, 22L, 49L, 40L,
1L, 27L, 41L, 14L, 28L, 2L, 3L, 29L, 42L, 15L, 18L, 32L, 6L,
45L, 7L, 33L, 19L, 46L, 9L, 21L, 48L, 35L, 22L, 10L, 49L, 36L,
2L, 14L, 41L, 28L, 45L, 6L, 18L, 32L, 22L, 49L, 36L, 10L, 45L,
18L, 32L, 6L, 49L, 10L, 36L, 22L, 1L, 27L, 40L, 14L, 41L, 28L,
2L, 15L, 3L, 29L, 42L, 32L, 18L, 45L, 6L, 7L, 46L, 33L, 19L,
48L, 9L, 21L, 35L, 49L, 36L, 10L, 22L, 40L, 1L, 27L, 9L, 35L,
48L, 21L, 45L, 32L, 18L, 6L, 22L, 10L, 36L, 49L, 18L, 2L, 14L,
28L, 41L, 6L, 18L, 32L, 45L, 22L, 49L, 36L, 10L, 27L, 1L, 40L,
41L, 28L, 2L, 14L, 3L, 15L, 42L, 29L, 6L, 32L, 18L, 45L, 7L,
46L, 33L, 19L, 9L, 48L, 35L, 21L, 49L, 36L, 22L, 10L, 40L, 1L,
27L, 14L, 2L, 41L, 28L, 3L, 29L, 15L, 42L, 18L, 6L, 32L, 45L,
33L, 19L, 46L, 7L, 48L, 21L, 9L, 35L, 22L, 36L, 10L, 49L, 45L,
18L, 6L, 32L, 36L, 49L, 22L, 10L, 41L, 14L, 28L, 2L, 6L, 45L,
18L, 32L, 49L, 10L, 22L, 36L, 2L, 14L, 41L, 28L, 45L, 6L, 32L,
18L, 36L, 49L, 10L, 22L, 2L, 14L, 28L, 41L, 45L, 32L, 18L, 6L,
10L, 36L, 49L, 22L, 1L, 27L, 40L, 41L, 2L, 28L, 14L, 42L, 29L,
15L, 3L, 32L, 18L, 45L, 6L, 21L, 35L, 9L, 48L, 36L, 10L, 49L,
22L, 28L, 2L, 41L, 14L, 18L, 32L, 6L, 45L, 49L, 10L, 36L, 22L,
6L, 45L, 18L, 32L, 22L, 49L, 36L, 10L, 45L, 6L, 18L, 32L, 22L,
49L, 36L, 10L, 31L, 5L, 17L, 44L, 1L, 27L, 40L, 28L, 2L, 41L,
14L, 42L, 29L, 15L, 3L, 45L, 18L, 32L, 6L, 46L, 7L, 19L, 33L,
48L, 21L, 35L, 9L, 36L, 10L, 49L, 22L, 14L, 28L, 41L, 2L, 32L,
6L, 18L, 45L, 36L, 10L, 49L, 22L, 1L, 27L, 40L, 42L, 3L, 15L,
29L, 19L, 7L, 46L, 33L, 48L, 21L, 9L, 35L, 6L, 18L, 32L, 45L,
22L, 49L, 36L, 10L, 1L, 27L, 40L, 28L, 14L, 41L, 2L, 42L, 15L,
29L, 3L, 45L, 18L, 32L, 6L, 21L, 9L, 48L, 35L, 10L, 22L, 36L,
49L, 1L, 40L, 27L, 29L, 15L, 42L, 3L, 19L, 7L, 33L, 46L, 48L,
35L, 9L, 21L, 27L, 1L, 40L, 14L, 2L, 41L, 28L, 15L, 29L, 3L,
42L, 18L, 6L, 32L, 45L, 46L, 7L, 19L, 33L, 9L, 35L, 21L, 48L,
22L, 10L, 36L, 49L, 27L, 1L, 40L, 27L, 40L, 1L, 14L, 28L, 41L,
2L, 3L, 29L, 42L, 15L, 32L, 6L, 18L, 45L, 33L, 46L, 19L, 7L,
9L, 21L, 48L, 35L, 22L, 10L, 49L, 36L, 40L, 1L, 27L, 41L, 2L,
14L, 28L, 3L, 15L, 29L, 42L, 18L, 45L, 32L, 6L, 33L, 46L, 7L,
19L, 9L, 35L, 48L, 21L, 22L, 49L, 10L, 36L, 2L, 28L, 14L, 41L,
45L, 32L, 6L, 18L, 10L, 22L, 49L, 36L, 40L, 27L, 1L, 28L, 14L,
2L, 41L, 15L, 3L, 42L, 29L, 45L, 6L, 32L, 18L, 19L, 33L, 7L,
46L, 35L, 48L, 9L, 21L, 10L, 22L, 36L, 49L, 27L, 40L, 1L, 28L,
2L, 41L, 14L, 3L, 29L, 15L, 42L, 31L, 5L, 44L, 17L, 45L, 32L,
18L, 6L, 46L, 33L, 19L, 7L, 21L, 9L, 35L, 48L, 22L, 10L, 36L,
49L, 40L, 27L, 1L, 42L, 15L, 29L, 3L, 18L, 40L, 1L, 27L, 2L,
28L, 14L, 41L, 15L, 3L, 29L, 42L, 32L, 18L, 6L, 45L, 7L, 46L,
19L, 33L, 48L, 9L, 35L, 21L, 22L, 10L, 36L, 49L, 1L, 40L, 27L,
44L, 17L, 5L, 31L, 21L, 9L, 48L, 35L, 41L, 14L, 28L, 2L, 32L,
6L, 18L, 45L, 49L, 22L, 10L, 36L, 40L, 1L, 27L, 2L, 28L, 41L,
14L, 3L, 15L, 29L, 42L, 32L, 18L, 6L, 45L, 46L, 19L, 7L, 33L,
21L, 48L, 9L, 35L, 36L, 22L, 49L, 10L, 1L, 27L, 40L, 41L, 2L,
28L, 14L, 29L, 42L, 3L, 15L, 32L, 45L, 6L, 18L, 33L, 46L, 19L,
7L, 35L, 9L, 48L, 21L, 36L, 10L, 49L, 22L, 14L, 2L, 41L, 28L,
45L, 6L, 18L, 32L, 49L, 10L, 22L, 36L, 1L, 27L, 40L, 48L, 35L,
9L, 21L, 6L, 45L, 32L, 18L, 36L, 10L, 49L, 22L, 40L, 27L, 1L,
41L, 2L, 14L, 28L, 29L, 42L, 3L, 15L, 32L, 6L, 45L, 18L, 19L,
46L, 33L, 7L, 48L, 9L, 21L, 35L, 22L, 10L, 36L, 49L, 40L, 27L,
1L, 41L, 14L, 2L, 28L, 29L, 42L, 15L, 3L, 5L, 31L, 44L, 17L,
45L, 32L, 18L, 6L, 33L, 46L, 19L, 7L, 48L, 21L, 35L, 9L, 49L,
10L, 36L, 22L, 27L, 1L, 40L, 28L, 41L, 2L, 14L, 29L, 15L, 3L,
42L, 6L, 45L, 32L, 18L, 46L, 33L, 19L, 7L, 21L, 35L, 48L, 9L,
22L, 36L, 10L, 49L, 18L, 32L, 6L, 45L, 49L, 10L, 22L, 36L, 27L,
40L, 1L, 41L, 28L, 14L, 2L, 42L, 3L, 15L, 29L, 6L, 18L, 32L,
45L, 9L, 48L, 21L, 35L, 10L, 36L, 22L, 49L, 1L, 40L, 27L, 41L,
28L, 14L, 2L, 29L, 15L, 3L, 42L, 18L, 32L, 45L, 6L, 9L, 21L,
48L, 35L, 10L, 22L, 49L, 36L, 1L, 27L, 40L, 2L, 14L, 41L, 28L,
42L, 29L, 15L, 3L, 18L, 32L, 6L, 45L, 46L, 7L, 33L, 19L, 35L,
21L, 9L, 48L, 10L, 49L, 22L, 36L, 6L, 32L, 18L, 45L, 10L, 22L,
36L, 49L, 40L, 1L, 27L, 41L, 14L, 28L, 2L, 29L, 3L, 15L, 42L,
18L, 32L, 6L, 45L, 46L, 7L, 19L, 33L, 48L, 9L, 21L, 35L, 36L,
49L, 22L, 10L, 6L, 32L, 18L, 45L, 49L, 22L, 10L, 36L, 27L, 1L,
40L, 2L, 14L, 41L, 28L, 15L, 29L, 3L, 42L, 18L, 45L, 6L, 32L,
9L, 21L, 35L, 48L, 10L, 36L, 49L, 22L, 40L, 1L, 27L, 14L, 41L,
28L, 2L, 3L, 15L, 42L, 29L, 18L, 32L, 6L, 45L, 48L, 35L, 9L,
21L, 10L, 49L, 36L, 22L, 45L, 32L, 6L, 18L, 36L, 22L, 49L, 10L,
18L, 6L, 45L, 32L, 10L, 36L, 49L, 22L, 1L, 40L, 27L, 2L, 14L,
28L, 41L, 42L, 3L, 15L, 29L, 32L, 6L, 45L, 18L, 33L, 46L, 7L,
19L, 48L, 9L, 21L, 35L, 22L, 49L, 36L, 10L, 32L, 45L, 6L, 18L,
22L, 36L, 10L, 49L, 41L, 28L, 14L, 2L, 6L, 18L, 32L, 45L, 49L,
22L, 10L, 36L, 1L, 27L, 40L, 2L, 14L, 41L, 28L, 15L, 29L, 42L,
3L, 6L, 45L, 32L, 18L, 19L, 7L, 46L, 33L, 21L, 9L, 35L, 48L,
36L, 49L, 10L, 22L, 1L, 27L, 40L, 30L, 43L, 4L, 40L, 1L, 27L,
41L, 2L, 28L, 14L, 3L, 42L, 29L, 15L, 44L, 31L, 17L, 5L, 6L,
32L, 18L, 45L, 33L, 46L, 19L, 7L, 21L, 9L, 35L, 48L, 10L, 22L,
49L, 36L, 27L, 1L, 40L, 14L, 2L, 28L, 41L, 29L, 42L, 3L, 15L,
45L, 18L, 6L, 32L, 33L, 19L, 46L, 7L, 21L, 35L, 9L, 48L, 10L,
36L, 49L, 22L, 40L, 1L, 27L, 18L, 45L, 32L, 6L, 22L, 36L, 10L,
49L, 40L, 1L, 27L, 2L, 14L, 28L, 41L, 3L, 15L, 29L, 42L, 6L,
32L, 45L, 18L, 46L, 33L, 7L, 19L, 48L, 35L, 21L, 9L, 22L, 36L,
10L, 49L, 28L, 14L, 2L, 41L, 32L, 18L, 6L, 45L, 49L, 10L, 22L,
36L, 2L, 28L, 41L, 14L, 32L, 6L, 45L, 18L, 10L, 49L, 36L, 22L,
45L, 32L, 18L, 6L, 10L, 22L, 49L, 36L, 6L, 32L, 18L, 45L, 36L,
10L, 22L, 49L, 18L, 6L, 45L, 32L, 10L, 36L, 22L, 49L, 40L, 1L,
27L, 28L, 2L, 14L, 41L, 3L, 29L, 15L, 42L, 45L, 32L, 6L, 18L,
35L, 21L, 48L, 9L, 22L, 49L, 10L, 36L, 14L, 41L, 2L, 28L, 18L,
45L, 6L, 32L, 10L, 49L, 36L, 22L, 18L, 32L, 45L, 6L, 22L, 36L,
49L, 10L, 14L, 41L, 28L, 2L, 32L, 6L, 45L, 18L, 49L, 36L, 10L,
22L, 41L, 2L, 14L, 28L, 6L, 45L, 18L, 32L, 10L, 22L, 49L, 36L,
6L, 32L, 45L, 18L, 49L, 22L, 36L, 10L, 41L, 28L, 14L, 2L, 6L,
45L, 18L, 32L, 22L, 10L, 49L, 36L, 1L, 27L, 40L, 28L, 2L, 14L,
41L, 42L, 29L, 15L, 3L, 45L, 6L, 18L, 32L, 9L, 21L, 35L, 48L,
10L, 36L, 49L, 22L, 27L, 1L, 40L, 14L, 28L, 41L, 2L, 15L, 29L,
42L, 3L, 18L, 45L, 32L, 6L, 46L, 19L, 7L, 33L, 9L, 35L, 21L,
48L, 49L, 36L, 22L, 10L, 1L, 40L, 27L, 28L, 14L, 2L, 41L, 15L,
42L, 29L, 3L, 32L, 6L, 18L, 45L, 7L, 33L, 19L, 46L, 48L, 35L,
21L, 9L, 10L, 36L, 49L, 22L, 27L, 1L, 40L, 48L, 9L, 35L, 21L,
14L, 41L, 2L, 28L, 45L, 18L, 6L, 32L, 49L, 10L, 36L, 22L, 1L,
40L, 27L, 2L, 28L, 14L, 41L, 15L, 3L, 42L, 29L, 18L, 6L, 45L,
32L, 33L, 19L, 7L, 46L, 9L, 48L, 21L, 35L, 10L, 49L, 22L, 36L,
2L, 41L, 14L, 28L, 45L, 32L, 18L, 6L, 49L, 10L, 22L, 36L, 1L,
40L, 27L, 41L, 14L, 28L, 2L, 15L, 29L, 42L, 3L, 17L, 31L, 44L,
5L, 18L, 32L, 45L, 6L, 33L, 7L, 46L, 19L, 9L, 35L, 48L, 21L,
36L, 10L, 22L, 49L, 2L, 14L, 41L, 28L, 45L, 6L, 32L, 18L, 36L,
22L, 10L, 49L, 41L, 14L, 28L, 2L, 18L, 45L, 32L, 6L, 49L, 22L,
36L, 10L, 40L, 27L, 1L, 41L, 2L, 14L, 28L, 42L, 29L, 3L, 15L,
32L, 45L, 18L, 6L, 46L, 19L, 33L, 7L, 9L, 48L, 21L, 35L, 10L,
49L, 36L, 22L, 1L, 40L, 27L, 41L, 28L, 14L, 2L, 3L, 29L, 15L,
42L, 6L, 18L, 32L, 45L, 46L, 7L, 33L, 19L, 9L, 48L, 21L, 35L,
36L, 10L, 49L, 22L, 14L, 28L, 2L, 41L, 45L, 18L, 32L, 6L, 10L,
22L, 36L, 49L, 1L, 27L, 40L, 14L, 2L, 41L, 28L, 29L, 15L, 3L,
42L, 18L, 45L, 32L, 6L, 22L, 10L, 49L, 36L, 27L, 40L, 1L, 14L,
28L, 41L, 2L, 29L, 15L, 42L, 3L, 32L, 45L, 6L, 18L, 7L, 46L,
19L, 33L, 21L, 9L, 48L, 35L, 49L, 36L, 22L, 10L, 27L, 1L, 40L,
28L, 41L, 14L, 2L, 15L, 3L, 29L, 42L, 18L, 32L, 6L, 45L, 46L,
19L, 33L, 7L, 21L, 48L, 35L, 9L, 49L, 36L, 22L, 10L, 28L, 2L,
14L, 41L, 32L, 18L, 45L, 6L, 22L, 10L, 49L, 36L, 40L, 1L, 27L,
28L, 14L, 41L, 2L, 15L, 42L, 3L, 29L, 6L, 45L, 18L, 32L, 48L,
21L, 9L, 35L, 22L, 36L, 49L, 10L, 14L, 41L, 28L, 2L, 45L, 6L,
18L, 32L, 36L, 22L, 10L, 49L, 40L, 27L, 1L, 5L, 44L, 17L, 31L,
35L, 9L, 21L, 48L, 27L, 1L, 40L, 14L, 2L, 28L, 41L, 15L, 29L,
3L, 42L, 45L, 6L, 32L, 18L, 36L, 10L, 22L, 49L, 28L, 2L, 14L,
41L, 15L, 29L, 42L, 3L, 18L, 45L, 32L, 6L, 46L, 7L, 33L, 19L,
9L, 48L, 21L, 35L, 49L, 36L, 10L, 22L, 1L, 40L, 27L, 14L, 28L,
2L, 41L, 42L, 3L, 15L, 29L, 18L, 32L, 45L, 6L, 9L, 21L, 48L,
35L, 36L, 49L, 22L, 10L, 1L, 40L, 27L, 41L, 2L, 28L, 14L, 3L,
42L, 15L, 29L, 45L, 6L, 18L, 32L, 48L, 9L, 21L, 35L, 36L, 22L,
10L, 49L, 40L, 1L, 27L, 14L, 41L, 2L, 28L, 15L, 42L, 3L, 29L,
6L, 32L, 45L, 18L, 33L, 19L, 7L, 46L, 35L, 48L, 9L, 21L, 36L,
22L, 49L, 10L, 6L, 18L, 45L, 32L, 22L, 10L, 49L, 36L, 6L, 18L,
32L, 45L, 36L, 10L, 22L, 49L, 2L, 14L, 28L, 41L, 45L, 18L, 32L,
6L, 22L, 49L, 10L, 36L, 2L, 28L, 14L, 41L, 32L, 6L, 18L, 45L,
10L, 36L, 49L, 22L, 14L, 28L, 2L, 41L, 18L, 32L, 6L, 45L, 22L,
49L, 36L, 10L, 28L, 41L, 14L, 2L, 18L, 6L, 45L, 32L, 10L, 22L,
49L, 36L, 41L, 14L, 2L, 28L, 18L, 32L, 45L, 6L, 36L, 49L, 10L,
22L, 1L, 27L, 40L, 41L, 28L, 14L, 2L, 3L, 29L, 42L, 15L, 32L,
6L, 45L, 18L, 46L, 7L, 33L, 19L, 21L, 48L, 35L, 9L, 10L, 22L,
49L, 36L, 1L, 27L, 40L, 28L, 41L, 14L, 2L, 15L, 29L, 3L, 42L,
6L, 18L, 45L, 32L, 33L, 7L, 19L, 46L, 9L, 35L, 21L, 48L, 10L,
22L, 36L, 49L, 41L, 2L, 14L, 28L, 32L, 6L, 45L, 18L, 22L, 49L,
10L, 36L, 2L, 14L, 28L, 41L, 32L, 18L, 6L, 45L, 22L, 49L, 36L,
10L, 18L, 6L, 45L, 32L, 22L, 10L, 36L, 49L, 40L, 1L, 27L, 48L,
21L, 9L, 35L, 27L, 40L, 1L, 28L, 14L, 2L, 41L, 42L, 15L, 29L,
3L, 32L, 45L, 18L, 6L, 21L, 35L, 9L, 48L, 36L, 10L, 22L, 49L,
40L, 1L, 27L, 41L, 28L, 14L, 2L, 42L, 29L, 3L, 15L, 45L, 6L,
32L, 18L, 46L, 7L, 19L, 33L, 48L, 35L, 21L, 9L, 49L, 22L, 10L,
36L, 41L, 2L, 14L, 28L, 6L, 18L, 45L, 32L, 10L, 49L, 22L, 36L,
2L, 28L, 41L, 14L, 32L, 6L, 45L, 18L, 10L, 22L, 49L, 36L, 40L,
1L, 27L, 2L, 41L, 14L, 28L, 3L, 29L, 42L, 15L, 45L, 32L, 18L,
6L, 9L, 35L, 21L, 48L, 22L, 10L, 36L, 49L, 1L, 40L, 27L, 28L,
41L, 14L, 2L, 3L, 29L, 15L, 42L, 45L, 32L, 6L, 18L, 35L, 21L,
9L, 48L, 10L, 49L, 22L, 36L, 27L, 1L, 40L, 35L, 9L, 48L, 21L,
27L, 1L, 40L, 9L, 48L, 21L, 35L, 40L, 1L, 27L, 2L, 14L, 28L,
41L, 3L, 42L, 29L, 15L, 18L, 32L, 6L, 45L, 21L, 35L, 9L, 48L,
36L, 22L, 10L, 49L, 14L, 28L, 41L, 2L, 5L, 31L, 17L, 44L, 32L,
45L, 6L, 18L, 22L, 49L, 36L, 10L, 1L, 27L, 40L, 2L, 14L, 28L,
41L, 42L, 29L, 3L, 15L, 45L, 32L, 18L, 6L, 33L, 19L, 46L, 7L,
21L, 35L, 9L, 48L, 10L, 22L, 36L, 49L, 40L, 1L, 27L, 28L, 41L,
2L, 14L, 29L, 3L, 42L, 15L, 32L, 18L, 6L, 45L, 22L, 10L, 49L,
36L, 41L, 28L, 14L, 2L, 45L, 6L, 32L, 18L, 36L, 49L, 10L, 22L,
18L, 45L, 6L, 32L, 36L, 22L, 49L, 10L, 45L, 32L, 6L, 18L, 36L,
10L, 49L, 22L, 1L, 40L, 27L, 14L, 28L, 41L, 2L, 15L, 42L, 3L,
29L, 18L, 32L, 6L, 45L, 7L, 46L, 33L, 19L, 9L, 21L, 48L, 35L,
49L, 22L, 36L, 10L, 41L, 14L, 28L, 2L, 32L, 45L, 6L, 18L, 49L,
36L, 22L, 10L, 6L, 32L, 45L, 18L, 10L, 22L, 49L, 36L, 18L, 27L,
1L, 40L, 41L, 28L, 2L, 14L, 42L, 29L, 3L, 15L, 45L, 6L, 18L,
32L, 33L, 46L, 7L, 19L, 48L, 9L, 21L, 35L, 10L, 22L, 36L, 49L,
40L, 27L, 1L, 15L, 3L, 42L, 29L, 6L, 32L, 18L, 45L, 10L, 36L,
22L, 49L, 1L, 27L, 40L, 28L, 41L, 2L, 14L, 3L, 15L, 29L, 42L,
6L, 18L, 32L, 45L, 35L, 9L, 48L, 21L, 10L, 22L, 36L, 49L, 32L,
45L, 6L, 18L, 36L, 10L, 22L, 49L, 27L, 40L, 1L, 9L, 21L, 35L,
48L, 27L, 1L, 40L, 29L, 42L, 3L, 15L, 18L, 27L, 1L, 40L, 14L,
2L, 28L, 41L, 42L, 15L, 3L, 29L, 6L, 18L, 32L, 45L, 48L, 35L,
9L, 21L, 49L, 22L, 36L, 10L, 43L, 4L, 30L, 40L, 27L, 1L, 2L,
28L, 41L, 14L, 29L, 42L, 3L, 15L, 45L, 32L, 18L, 6L, 33L, 7L,
46L, 19L, 35L, 48L, 9L, 21L, 36L, 22L, 49L, 10L, 14L, 28L, 41L,
2L, 18L, 45L, 32L, 6L, 49L, 22L, 10L, 36L, 40L, 27L, 1L, 41L,
2L, 14L, 28L, 29L, 15L, 42L, 3L, 6L, 45L, 32L, 18L, 48L, 9L,
21L, 35L, 36L, 49L, 22L, 10L, 27L, 40L, 1L, 14L, 28L, 41L, 2L,
29L, 15L, 3L, 42L, 32L, 6L, 45L, 18L, 21L, 9L, 48L, 35L, 10L,
36L, 49L, 22L, 1L, 27L, 40L, 28L, 14L, 2L, 41L, 42L, 3L, 29L,
15L, 45L, 18L, 32L, 6L, 33L, 7L, 46L, 19L, 35L, 9L, 48L, 21L,
36L, 10L, 22L, 49L, 40L, 1L, 27L, 14L, 41L, 28L, 2L, 15L, 29L,
3L, 42L, 32L, 45L, 18L, 6L, 9L, 48L, 35L, 21L, 10L, 36L, 49L,
22L, 40L, 1L, 27L, 28L, 2L, 14L, 41L, 42L, 15L, 3L, 29L, 45L,
6L, 18L, 32L, 33L, 19L, 46L, 7L, 35L, 21L, 9L, 48L, 49L, 22L,
36L, 10L, 40L, 27L, 1L, 28L, 41L, 2L, 14L, 29L, 42L, 3L, 15L,
6L, 45L, 32L, 18L, 33L, 19L, 7L, 46L, 48L, 9L, 21L, 35L, 36L,
49L, 10L, 22L, 14L, 41L, 28L, 2L, 45L, 18L, 32L, 6L, 10L, 22L,
36L, 49L, 32L, 45L, 6L, 18L, 10L, 49L, 36L, 22L, 28L, 2L, 14L,
41L, 6L, 32L, 45L, 18L, 10L, 36L, 22L, 49L, 27L, 1L, 40L, 41L,
2L, 28L, 14L, 15L, 42L, 3L, 29L, 32L, 6L, 45L, 18L, 19L, 7L,
33L, 46L, 35L, 21L, 9L, 48L, 36L, 49L, 22L, 10L, 28L, 14L, 2L,
41L, 32L, 6L, 18L, 45L, 36L, 49L, 10L, 22L), .Label = c("Apr 06 - Jun 06",
"Apr 07 - Jun 07", "Apr 08 - Jun 08", "Apr 09 - Jun 09", "Apr 10 - Jun 10",
"Apr 11 - Jun 11", "Apr 12 - Jun 12", "Apr 13 - Jun 13", "Apr 14 - Jun 14",
"Apr 15 - Jun 15", "Apr 16 - Jun 16", "Apr 17 - Jun 17", "Apr 18 - Jun 18",
"Jan 07 - Mar 07", "Jan 08 - Mar 08", "Jan 09 - Mar 09", "Jan 10 - Mar 10",
"Jan 11 - Mar 11", "Jan 12 - Mar 12", "Jan 13 - Mar 13", "Jan 14 - Mar 14",
"Jan 15 - Mar 15", "Jan 16 - Mar 16", "Jan 17 - Mar 17", "Jan 18 - Mar 18",
"Jan 19 - Mar 19", "Jul 06 - Sep 06", "Jul 07 - Sep 07", "Jul 08 - Sep 08",
"Jul 09 - Sep 09", "Jul 10 - Sep 10", "Jul 11 - Sep 11", "Jul 12 - Sep 12",
"Jul 13 - Sep 13", "Jul 14 - Sep 14", "Jul 15 - Sep 15", "Jul 16 - Sep 16",
"Jul 17 - Sep 17", "Jul 18 - Sep 18", "Oct 06 - Dec 06", "Oct 07 - Dec 07",
"Oct 08 - Dec 08", "Oct 09 - Dec 09", "Oct 10 - Dec 10", "Oct 11 - Dec 11",
"Oct 12 - Dec 12", "Oct 13 - Dec 13", "Oct 14 - Dec 14", "Oct 15 - Dec 15",
"Oct 16 - Dec 16", "Oct 17 - Dec 17", "Oct 18 - Dec 18"), class = "factor")
Is there a way of turning this into a data object using lubridate? I tried different things like this:
a <- as.numeric(df$Period)
library(lubridate)
a <- quarter(a, with_year = TRUE)
And many similar iterations of this, but I cannot really get it tight.
Thanks!

Assuming the input is as shown below we can split it into from and to.
Then convert to yearmon class which represents year/month as year + fraction where fraction = 0 for Jan, 1/12 for Feb, ..., 11/12 for Dec (so for example adding 1/12 to such an object increments it by one month) and displays as shown.
We also convert to yearqtr class which represents quarters as year + fraction where the fraction is 0, 1/4, 1/2 and 3/4 for successive quarters so, for example, adding 1/4 to such an object increments it by one quarter.
These objects display as shown below.
Note that the question states that Period is character but the dput output shows it has factor class, not character.
library(dplyr)
library(tidyr)
library(zoo)
df <- data.frame(Period = c("Jul 06 - Sep 06", "Oct 06 - Dec 06",
"Apr 06 - Jun 06", "Apr 08 - Jun 08"))
df %>%
separate(Period, c("from", "to"), sep = " - ") %>%
mutate(from = as.yearmon(from, "%b %y"),
to = as.yearmon(to, "%b %y"),
year_qtr = as.yearqtr(to),
year = as.integer(to),
qtr = cycle(year_qtr),
from_date = as.Date(from),
to_date = as.Date(to, frac = 1))
giving:
from to year_qtr year qtr from_date to_date
1 Jul 2006 Sep 2006 2006 Q3 2006 3 2006-07-01 2006-09-30
2 Oct 2006 Dec 2006 2006 Q4 2006 4 2006-10-01 2006-12-31
3 Apr 2006 Jun 2006 2006 Q2 2006 2 2006-04-01 2006-06-30
4 Apr 2008 Jun 2008 2008 Q2 2008 2 2008-04-01 2008-06-30

Related

Conditional replace values in a column

I am trying to replace some key numbers with their respective people names.
Despite my two attempts, I cannot change the numbers (characters) into names, any suggestions?
Here is what I tried so far:
setDT(df)[person == "447745939698" , person := "John"]
and
df <- df %>% mutate(person=ifelse(person=="447745939698","John",person))
Dataset:
structure(list(person = c("Pavel", "Anna", "Julian", "Bernardo",
"Bryony", "KJ", "Filippo", "Duncan", "‪447761633878‬", "Josh",
"Alex", "Berna", "Melina", "Martha", "‪447999592975‬", "‪48512044757‬",
"Don", "‪447404192025‬", "Sofia", "Jonas", "Chantal", "‪447441458269‬",
"‪447745939698‬", "Sungjoo", "‪447850449670‬", "Blanche",
"Vedo", "‪966554857666‬", "‪447787327724‬", "‪447407102816‬",
"‪447972826119‬", "‪447516428644‬", "‪447973747720‬",
"‪447383865362‬", "‪447478422564‬", "‪447543834973‬",
"Cris", "‪31642688469‬", "‪447921148041‬", "‪447865832098‬",
"Steve", "‪447492829467‬", "Andrea", "‪447878829919‬",
"‪447880747575‬", "‪34635960936‬", "‪447464871555‬",
"‪31640838890‬", "‪46707218515‬", "‪4528822826‬",
"‪393480848355‬", "‪447568552037‬", "‪4580211317‬",
"‪551198299‑2336‬", "‪447935988040‬", "‪447340827646‬"
)), class = c("data.table", "data.frame"), row.names = c(NA,
-56L), index = structure(integer(0), "`__person`" = c(11L,
43L, 2L, 12L, 4L, 26L, 5L, 21L, 37L, 17L, 8L, 7L, 20L, 10L, 3L,
6L, 14L, 13L, 1L, 19L, 41L, 24L, 27L, 48L, 38L, 46L, 51L, 56L,
40L, 34L, 30L, 18L, 47L, 35L, 22L, 42L, 32L, 36L, 52L, 23L, 9L,
29L, 44L, 45L, 25L, 39L, 55L, 31L, 33L, 15L, 50L, 53L, 49L, 16L,
54L, 28L)))

How to convert list of dates to POSIXlt objects?

I want to run the bfastts function (https://www.rdocumentation.org/packages/bfast/versions/1.5.7/topics/bfastts) on a series of dates formatted as dd-mm-yyyy and a series of values to convert them into a time series. For this function the dates need to be of "POSIXlt" type. However, when running the code
dv<-as.POSIXct.POSIXlt(dates, tz="")
I am getting the error
Error in as.POSIXct.POSIXlt(dates, tz = "") : invalid 'x' argument
When running
dv<-strftime(as.POSIXct.POSIXlt(dates, tz="")
The returned list seems to be empty. When inputting my date list without conversion into the bfastts I'm getting the error
Error in as.POSIXlt.default(dates) :
do not know how to convert 'dates' to class “POSIXlt”
I am not used to coding in R as I usually work in python. I've tried googling all three errors but I can't find a solution. Could any one provide me some pointers?
Edit:
dput(dates) gives me:
list(V1 = structure(c(19L, 57L, 31L, 59L, 33L, 34L, 4L, 7L, 40L,
12L, 50L, 56L, 3L, 37L, 6L, 39L, 46L, 17L, 43L, 55L, 30L, 2L,
36L, 38L, 11L, 21L, 49L, 24L, 27L, 10L, 45L, 14L, 1L, 18L, 47L,
54L, 29L, 32L, 8L, 42L, 9L, 16L, 44L, 48L, 23L, 51L, 52L, 26L,
35L, 5L, 15L, 20L, 22L, 25L, 53L, 28L, 58L, 41L, 13L), .Label = c("1-8-
2016", "11-5-2015", "11-7-2014", "12-10-2013", "12-2-2018", "12-8-2014",
"13-11-2013", "13-3-2017", "14-4-2017", "14-6-2016", "14-7-2015",
"15-12-2013", "15-2-2019", "16-7-2016", "17-4-2018", "17-6-2017",
"18-12-2014", "18-9-2016", "19-4-2013", "19-5-2018", "2-10-2015",
"20-6-2018", "20-8-2017", "21-12-2015", "22-7-2018", "23-10-2017",
"23-2-2016", "23-8-2018", "24-1-2017", "24-3-2015", "24-7-2013",
"25-2-2017", "25-8-2013", "26-9-2013", "27-1-2018", "27-5-2015",
"27-7-2014", "28-6-2015", "28-8-2014", "29-11-2013", "29-12-2018",
"29-3-2017", "3-1-2015", "3-7-2017", "30-6-2016", "31-10-2014",
"4-10-2016", "4-8-2017", "5-12-2015", "5-3-2014", "5-9-2017",
"7-10-2017", "7-8-2018", "8-1-2017", "8-3-2015", "8-5-2014",
"8-7-2013", "8-9-2018", "9-8-2013"), class = "factor"))
The problem is that dates is a list, but you actually want to access the first entry (V1) of it. Further you have to specify that the dates you are providing are in the format dd-mm-yyyy. This you can do with format = "%d-%m-%Y". Thus the following works:
as.POSIXlt(dates$V1, format = "%d-%m-%Y", tz="")
# [1] "2013-04-19 CEST" "2013-07-08 CEST" "2013-07-24 CEST" "2013-08-09 CEST"
# ...
Data
dates <- list(V1 = structure(c(19L, 57L, 31L, 59L, 33L, 34L, 4L, 7L, 40L,
12L, 50L, 56L, 3L, 37L, 6L, 39L, 46L, 17L, 43L, 55L, 30L, 2L,
36L, 38L, 11L, 21L, 49L, 24L, 27L, 10L, 45L, 14L, 1L, 18L, 47L,
54L, 29L, 32L, 8L, 42L, 9L, 16L, 44L, 48L, 23L, 51L, 52L, 26L,
35L, 5L, 15L, 20L, 22L, 25L, 53L, 28L, 58L, 41L, 13L),
.Label = c("1-8-2016", "11-5-2015", "11-7-2014", "12-10-2013", "12-2-2018", "12-8-2014",
"13-11-2013", "13-3-2017", "14-4-2017", "14-6-2016", "14-7-2015",
"15-12-2013", "15-2-2019", "16-7-2016", "17-4-2018", "17-6-2017",
"18-12-2014", "18-9-2016", "19-4-2013", "19-5-2018", "2-10-2015",
"20-6-2018", "20-8-2017", "21-12-2015", "22-7-2018", "23-10-2017",
"23-2-2016", "23-8-2018", "24-1-2017", "24-3-2015", "24-7-2013",
"25-2-2017", "25-8-2013", "26-9-2013", "27-1-2018", "27-5-2015",
"27-7-2014", "28-6-2015", "28-8-2014", "29-11-2013", "29-12-2018",
"29-3-2017", "3-1-2015", "3-7-2017", "30-6-2016", "31-10-2014",
"4-10-2016", "4-8-2017", "5-12-2015", "5-3-2014", "5-9-2017",
"7-10-2017", "7-8-2018", "8-1-2017", "8-3-2015", "8-5-2014",
"8-7-2013", "8-9-2018", "9-8-2013"), class = "factor"))

Highlight several specific points using ggplot 2

My other Questions was marked as an duplicate (I used a common example, not my real data), therefore I opened a new one.
So again, I hope this time it becomes clear, what my problem is.
I have following data frame called "sample" (it´s extracted from my real dataframe):
county testscr str
1 Alameda 690.80 17.88991
2 Butte 661.20 21.52466
3 Butte 643.60 18.69723
4 Butte 647.70 17.35714
5 Butte 640.85 18.67133
6 Fresno 605.55 21.40625
7 San Joaquin 606.75 19.50000
8 Kern 609.00 20.89412
9 Fresno 612.50 19.94737
10 Sacramento 612.65 20.80556
11 Merced 615.75 21.23809
12 Fresno 616.30 21.00000
13 Tulare 616.30 20.60000
14 Tulare 616.30 20.00822
15 Tulare 616.45 18.02778
16 Tulare 617.35 20.25196
17 Kern 618.05 16.97787
18 Kern 618.30 16.50980
19 Los Angeles 619.80 22.70402
20 Kern 620.30 19.91111
I have plotted the variable testscr against str and added a linear Regression line to the plot using ggplot
ggplot(data=sample,aes(x=str,y=testscr))+
geom_point()+
geom_smooth(method="lm")
Now I want to highlight/color all points, which have "Butte", "Los Angeles" and "Fresno" as County value. All three of them should have different Colors and the rest of the points should be black.
dput(sample)
structure(list(county = structure(c(1L, 2L, 2L, 2L, 2L, 6L, 29L,
11L, 6L, 25L, 19L, 6L, 42L, 42L, 42L, 42L, 11L, 11L, 15L, 11L,
9L, 42L, 11L, 42L, 19L, 42L, 20L, 11L, 42L, 42L, 28L, 20L, 15L,
20L, 27L, 15L, 19L, 6L, 31L, 11L, 44L, 19L, 11L, 11L, 24L, 15L,
33L, 11L, 11L, 33L, 15L, 16L, 20L, 32L, 15L, 15L, 15L, 25L, 20L,
44L, 42L, 25L, 22L, 12L, 12L, 11L, 15L, 12L, 28L, 37L, 11L, 15L,
12L, 19L, 32L, 27L, 4L, 8L, 36L, 36L, 44L, 6L, 19L, 19L, 6L,
27L, 24L, 15L, 11L, 42L, 25L, 13L, 33L, 2L, 31L, 42L, 15L, 9L,
9L, 15L, 11L, 11L, 39L, 18L, 27L, 26L, 15L, 2L, 11L, 44L, 6L,
15L, 16L, 22L, 42L, 33L, 9L, 28L, 35L, 42L, 40L, 42L, 6L, 20L,
42L, 24L, 37L, 15L, 40L, 31L, 36L, 11L, 38L, 43L, 31L, 5L, 19L,
29L, 6L, 25L, 38L, 19L, 44L, 8L, 8L, 28L, 13L, 8L, 44L, 40L,
25L, 29L, 36L, 38L, 6L, 22L, 22L, 12L, 42L, 28L, 35L, 19L, 39L,
28L, 15L, 11L, 39L, 28L, 27L, 22L, 37L, 35L, 40L, 43L, 36L, 8L,
4L, 43L, 23L, 37L, 37L, 38L, 35L, 8L, 42L, 7L, 37L, 14L, 9L,
14L, 22L, 37L, 32L, 8L, 39L, 35L, 11L, 28L, 34L, 24L, 11L, 33L,
9L, 29L, 40L, 8L, 35L, 15L, 21L, 42L, 11L, 25L, 26L, 28L, 39L,
6L, 4L, 36L, 29L, 33L, 12L, 38L, 29L, 23L, 26L, 5L, 27L, 35L,
21L, 31L, 12L, 35L, 3L, 17L, 28L, 33L, 39L, 21L, 8L, 37L, 31L,
40L, 22L, 27L, 15L, 8L, 27L, 30L, 33L, 5L, 15L, 10L, 32L, 16L,
36L, 37L, 21L, 42L, 42L, 43L, 15L, 19L, 31L, 33L, 37L, 11L, 31L,
43L, 23L, 38L, 14L, 35L, 42L, 15L, 33L, 15L, 37L, 11L, 35L, 23L,
36L, 37L, 16L, 8L, 5L, 37L, 40L, 37L, 37L, 23L, 34L, 8L, 27L,
23L, 5L, 22L, 7L, 31L, 32L, 27L, 37L, 33L, 32L, 28L, 22L, 32L,
34L, 7L, 37L, 21L, 12L, 28L, 14L, 44L, 43L, 36L, 37L, 28L, 37L,
8L, 11L, 42L, 33L, 11L, 12L, 28L, 28L, 42L, 28L, 22L, 15L, 15L,
17L, 33L, 40L, 8L, 28L, 35L, 11L, 33L, 22L, 5L, 5L, 23L, 5L,
8L, 15L, 23L, 23L, 37L, 31L, 21L, 16L, 30L, 14L, 6L, 37L, 37L,
31L, 5L, 23L, 28L, 5L, 21L, 37L, 8L, 41L, 21L, 23L, 44L, 41L,
35L, 21L, 8L, 37L, 28L, 17L, 33L, 15L, 37L, 20L, 37L, 33L, 37L,
37L, 38L, 17L, 32L, 37L, 17L, 34L, 31L, 35L, 34L, 34L, 4L, 32L,
17L, 33L, 34L, 33L, 32L, 28L, 31L, 17L, 17L, 4L, 28L, 31L, 4L,
4L, 31L, 32L, 31L, 33L, 31L, 33L, 44L, 45L, 45L), .Label = c("Alameda",
"Butte", "Calaveras", "Contra Costa", "El Dorado", "Fresno",
"Glenn", "Humboldt", "Imperial", "Inyo", "Kern", "Kings", "Lake",
"Lassen", "Los Angeles", "Madera", "Marin", "Mendocino", "Merced",
"Monterey", "Nevada", "Orange", "Placer", "Riverside", "Sacramento",
"San Benito", "San Bernardino", "San Diego", "San Joaquin", "San Luis Obispo",
"San Mateo", "Santa Barbara", "Santa Clara", "Santa Cruz", "Shasta",
"Siskiyou", "Sonoma", "Stanislaus", "Sutter", "Tehama", "Trinity",
"Tulare", "Tuolumne", "Ventura", "Yuba"), class = "factor"),
testscr = c(690.8, 661.2, 643.6, 647.7, 640.85, 605.55, 606.75,
609, 612.5, 612.65, 615.75, 616.3, 616.3, 616.3, 616.45,
617.35, 618.05, 618.3, 619.8, 620.3, 620.5, 621.4, 621.75,
622.05, 622.6, 623.1, 623.2, 623.45, 623.6, 624.15, 624.55,
624.95, 625.3, 625.85, 626.1, 626.8, 626.9, 627.1, 627.25,
627.3, 628.25, 628.4, 628.55, 628.65, 628.75, 629.8, 630.35,
630.4, 630.55, 630.55, 631.05, 631.4, 631.85, 631.9, 631.95,
632, 632.2, 632.25, 632.45, 632.85, 632.95, 633.05, 633.15,
633.65, 633.9, 634, 634.05, 634.1, 634.1, 634.15, 634.2,
634.4, 634.55, 634.7, 634.9, 634.95, 635.05, 635.2, 635.45,
635.6, 635.6, 635.75, 635.95, 636.1, 636.5, 636.6, 636.7,
636.9, 636.95, 637, 637.1, 637.35, 637.65, 637.95, 637.95,
638, 638.2, 638.3, 638.3, 638.35, 638.55, 638.7, 639.25,
639.3, 639.35, 639.5, 639.75, 639.8, 639.85, 639.9, 640.1,
640.15, 640.5, 640.75, 640.9, 641.1, 641.45, 641.45, 641.55,
641.8, 642.2, 642.2, 642.4, 642.75, 643.05, 643.2, 643.25,
643.4, 643.4, 643.5, 643.5, 643.7, 643.7, 644.2, 644.2, 644.4,
644.45, 644.45, 644.5, 644.55, 644.7, 644.95, 645.1, 645.25,
645.55, 645.55, 645.6, 645.75, 645.75, 646, 646.2, 646.35,
646.4, 646.5, 646.55, 646.7, 646.9, 646.95, 647.05, 647.25,
647.3, 647.6, 647.6, 648, 648.2, 648.25, 648.35, 648.7, 648.95,
649.15, 649.3, 649.5, 649.7, 649.85, 650.45, 650.55, 650.6,
650.65, 650.9, 650.9, 651.15, 651.2, 651.35, 651.4, 651.45,
651.8, 651.85, 651.9, 652, 652.1, 652.1, 652.3, 652.3, 652.35,
652.4, 652.4, 652.5, 652.85, 653.1, 653.4, 653.5, 653.55,
653.55, 653.7, 653.8, 653.85, 653.95, 654.1, 654.2, 654.2,
654.3, 654.6, 654.85, 654.85, 654.9, 655.05, 655.05, 655.05,
655.2, 655.3, 655.35, 655.35, 655.4, 655.55, 655.7, 655.8,
655.85, 656.4, 656.5, 656.55, 656.65, 656.7, 656.8, 656.8,
657, 657, 657.15, 657.4, 657.5, 657.55, 657.65, 657.75, 657.8,
657.9, 658, 658.35, 658.6, 658.8, 659.05, 659.15, 659.35,
659.4, 659.4, 659.8, 659.9, 660.05, 660.1, 660.2, 660.3,
660.75, 660.95, 661.35, 661.45, 661.6, 661.6, 661.85, 661.85,
661.85, 661.9, 661.9, 661.95, 662.4, 662.4, 662.45, 662.5,
662.55, 662.55, 662.65, 662.7, 662.75, 662.9, 663.35, 663.45,
663.5, 663.85, 663.85, 663.9, 664, 664, 664.15, 664.15, 664.3,
664.4, 664.45, 664.7, 664.75, 664.95, 664.95, 665.1, 665.2,
665.35, 665.65, 665.9, 665.95, 666, 666.05, 666.1, 666.15,
666.15, 666.45, 666.55, 666.6, 666.65, 666.65, 666.7, 666.85,
666.85, 667.15, 667.2, 667.45, 667.45, 667.6, 668, 668.1,
668.4, 668.6, 668.65, 668.8, 668.9, 668.95, 669.1, 669.3,
669.3, 669.35, 669.35, 669.8, 669.85, 669.95, 670, 670.7,
671.25, 671.3, 671.6, 671.6, 671.65, 671.7, 671.75, 671.9,
671.9, 671.95, 672.05, 672.05, 672.3, 672.35, 672.45, 672.55,
672.7, 673.05, 673.25, 673.3, 673.55, 673.55, 673.9, 674.25,
675.4, 675.7, 676.15, 676.55, 676.6, 676.85, 676.95, 677.25,
677.95, 678.05, 678.4, 678.8, 679.4, 679.5, 679.65, 679.75,
679.8, 680.05, 680.45, 681.3, 681.3, 681.6, 681.9, 682.15,
682.45, 682.55, 682.65, 683.35, 683.4, 684.3, 684.35, 684.8,
684.95, 686.05, 686.7, 687.55, 689.1, 691.05, 691.35, 691.9,
693.95, 694.25, 694.8, 695.2, 695.3, 696.55, 698.2, 698.25,
698.45, 699.1, 700.3, 704.3, 706.75, 645, 672.2, 655.75),
str = c(17.88991, 21.52466, 18.69723, 17.35714, 18.67133,
21.40625, 19.5, 20.89412, 19.94737, 20.80556, 21.23809, 21,
20.6, 20.00822, 18.02778, 20.25196, 16.97787, 16.5098, 22.70402,
19.91111, 18.33333, 22.61905, 19.44828, 25.05263, 20.67544,
18.68235, 22.84553, 19.26667, 19.25, 20.54545, 20.60697,
21.07268, 21.53581, 19.904, 21.19407, 21.86535, 18.32965,
16.22857, 19.17857, 20.27737, 22.98614, 20.44444, 19.82085,
23.20522, 19.26697, 23.30189, 21.18829, 20.8718, 19.01749,
21.91938, 20.10124, 21.47651, 20.06579, 20.3751, 22.44648,
22.89524, 20.49797, 20, 22.25658, 21.56436, 19.47737, 17.67002,
21.94756, 21.78339, 19.14, 18.1105, 20.68242, 22.62361, 21.7865,
18.58293, 21.54545, 21.15289, 16.63333, 21.14438, 19.78182,
18.98373, 17.66767, 17.75499, 15.27273, 14, 20.59613, 16.31169,
21.12796, 17.48801, 17.88679, 19.30676, 20.89231, 21.28684,
20.1956, 24.95, 18.13043, 20, 18.72951, 18.25, 18.99257,
19.88764, 19.37895, 20.46259, 22.29157, 20.70474, 19.06005,
20.23247, 19.69012, 20.36254, 19.75422, 19.37977, 22.92351,
19.3734, 19.15516, 21.3, 18.30357, 21.07926, 18.79121, 19.62662,
19.59016, 20.87187, 21.115, 20.08452, 19.91049, 17.81285,
18.13333, 19.22221, 18.66072, 19.6, 19.28384, 22.81818, 18.80922,
21.37363, 20.02041, 21.49862, 15.42857, 22.4, 20.12709, 19.03798,
17.34216, 17.01863, 20.8, 21.15385, 18.45833, 19.14082, 19.40766,
19.56896, 21.5012, 17.52941, 16.43017, 19.79654, 17.18613,
17.61589, 20.12537, 22.16667, 19.96154, 19.03945, 15.22436,
21.14475, 19.6439, 21.04869, 20.17544, 21.3913, 20.00833,
20.29137, 17.66667, 18.22055, 20.271, 20.19895, 21.38424,
20.97368, 20, 17.15328, 22.34977, 22.17007, 18.18182, 18.95714,
19.74533, 16.42623, 16.6254, 16.38177, 20.07416, 17.99544,
19.3913, 16.42857, 16.72949, 24.41345, 18.26415, 18.95504,
21.03896, 20.74074, 18.1, 19.84615, 21.6, 22.44242, 23.01438,
17.74892, 18.28664, 19.26544, 22.66667, 19.29412, 17.36364,
19.82143, 20.43378, 21.03721, 19.92462, 19.00986, 23.82222,
19.36909, 19.82857, 15.25885, 17.16129, 21.81333, 19.07471,
25.78512, 18.21261, 18.16606, 16.97297, 21.50087, 20.6, 16.99029,
20.77954, 15.51247, 19.88506, 21.39882, 20.49751, 19.36376,
17.65957, 21.01796, 19.05565, 22.53846, 21.10787, 20.05135,
14.20176, 18.47687, 18.63542, 20.94595, 21.08548, 18.69288,
20.86808, 19.82558, 19.75, 19.5, 18.3908, 18.78676, 19.77018,
19.33333, 21.46392, 23.08492, 21.06299, 18.68687, 20.77024,
19.30556, 20.1328, 20.66964, 22.28155, 20.60027, 20.82734,
19.22492, 17.65477, 17, 16.49773, 19.78261, 22.30216, 17.73077,
20.44836, 20.37169, 20.16479, 21.61538, 20.56143, 19.95551,
21.18387, 18.81042, 20.57838, 18.32461, 18.82063, 20.81633,
20, 19.68182, 19.39018, 20.92732, 19.94437, 20.79109, 19.20354,
19.02439, 17.62058, 20.23715, 19.29374, 18.82998, 20.33949,
19.229, 17.8913, 19.51881, 19.08451, 19.93548, 18.87326,
20.14178, 23.55637, 21.46479, 19.19101, 20.1308, 25.8, 18.77774,
19.10982, 19.70109, 18.61594, 20.99721, 20, 20.98325, 21.64262,
20.02967, 19.8114, 18, 19.35811, 20.17912, 21.11986, 23.38974,
22.18182, 19.94283, 17.78826, 14.70588, 19.04077, 20.89195,
19.83851, 19.52191, 20.68622, 18.18182, 18.89224, 24.88889,
18.58064, 18.04, 17.73399, 21.45455, 19.92343, 20.33942,
22.54608, 21.10344, 18.19743, 20.10768, 19.15984, 19.54545,
20.88889, 18.3915, 19.1799, 19.39771, 21.67827, 19.28889,
20.34927, 20.96416, 19.46039, 19.28572, 20.91979, 20.90021,
20.59575, 19.375, 19.95122, 18.84973, 18.11787, 19.18341,
22, 21.58416, 20.38889, 16.2931, 18.27778, 19.37472, 18.90909,
16.40693, 15.5914, 18.70694, 18.32985, 17.90235, 18.91157,
20.32497, 20.02457, 24, 17.60784, 19.34853, 19.67846, 18.72861,
15.88235, 20.05491, 17.98825, 16.96629, 19.23937, 19.19586,
19.59906, 20.54348, 18.58848, 15.60419, 15.29304, 17.65537,
17.57976, 22.33333, 18.75, 18.10241, 20.25641, 18.80207,
18.7723, 20.40521, 18.65079, 20.70707, 22, 17.69978, 21.48329,
16.70103, 19.57567, 17.25806, 17.37526, 17.34931, 16.26229,
17.70045, 20.12881, 18.26539, 14.54214, 19.15261, 17.36574,
15.13898, 17.84266, 15.40704, 18.86534, 16.47413, 17.86263,
21.88586, 20.2, 19.0364)), class = "data.frame", row.names = c(NA,
-420L))
First order of business is to not use $ in aes calls.
Second, create a variable in the data the hold the 3 factor levels you want, and all other levels collapsed into an "other" level, which you'll use to assign color. The easiest way to do that is with forcats::fct_other, where you specify the levels to keep.
You can assign specific colors by name; for a quick example, I didn't, and just put the "other" color last, knowing that fct_other puts this as the last level.
library(ggplot2)
library(dplyr)
hilite_counties <- as_tibble(sample) %>%
mutate(county2 = forcats::fct_other(county, keep = c("Butte", "Los Angeles", "Fresno")))
ggplot(hilite_counties, aes(x = str, y = testscr)) +
geom_point(aes(color = county2)) +
geom_smooth(method = lm) +
scale_color_manual(values = c("red", "blue", "orange", "black"))
Edit: Taking a second pass to make the color palette more flexible. Like I said, you can assign names to colors to make sure you match the county to the color. I'll put black as the last color because "Other" is the last level, but I could assign them in any order and keep the colors and counties matched by name.
Instead of manually naming colors, I'll add another county to the highlighted group, pull a palette from Color Brewer with the length of the county2 levels minus 1, and tack on "black" as the last color, then assign names. Again, I could do this out of order as well.
hilite_counties <- as_tibble(sample) %>%
mutate(county2 = forcats::fct_other(county, keep = c("Butte", "Los Angeles", "Fresno", "Sacramento")))
county_lvls <- levels(hilite_counties$county2)
pal <- c(RColorBrewer::brewer.pal(n = length(county_lvls) - 1, name = "Dark2"), "black")
names(pal) <- county_lvls
pal
#> Butte Fresno Los Angeles Sacramento Other
#> "#1B9E77" "#D95F02" "#7570B3" "#E7298A" "black"
ggplot(hilite_counties, aes(x = str, y = testscr)) +
geom_point(aes(color = county2)) +
geom_smooth(method = lm) +
scale_color_manual(values = pal)
One note: by default, geom_smooth will make lines for each group i.e. color. I'm guessing that's not what you wanted, but you can avoid that by moving the color assignment to a separate aes that only applies to geom_point.
After doing :
p = ggplot(data=sample,aes(x=str, y=testscr))+
geom_point()+
geom_smooth(method="lm")
You could use dplyr library to show in red points of interest :
p + geom_point(data=filter(sample,county %in% c('Butte','Los Angeles','Fresno')),aes(x=str,y=testscr),colour='red')
Or you can add a column indicating if you want to highlight specific points :
sample$code = ifelse(sample$county %in% c('Butte','Los Angeles','Fresno'), TRUE, FALSE)
ggplot(data=sample,aes(x=str,y=testscr))+
geom_point(aes(colour=code),sample)+
geom_smooth(method="lm") +
scale_colour_manual(name = 'County', values = c("black", "red"), labels = c('Others', 'B, LA, F'))
[edit]
Or with one color by city :
city = c('Butte','Los Angeles','Fresno')
sample %>% mutate_if(is.factor, as.character) -> sample
sample$code = ifelse(sample$county %in% city, sample$county, 'others')
ggplot(data=sample,aes(x=str,y=testscr))+
geom_point(aes(colour=code),sample)+
geom_smooth(method="lm") +
scale_colour_manual(name = 'County', values = c("blue", "red","green","black"))
Another option would be to create two separate layers, one for the special counties and another for the rest. You can do that by subsetting the default dataset in the specification of each layer.
special_county <- c("Butte", "Los Angeles", "Fresno")
ggplot(data=sample, aes(x=str,y=testscr))+
geom_smooth(method="lm") +
geom_point(data = function(x) subset(x, !county %in% special_county)) +
geom_point(data = function(x) subset(x, county %in% special_county),
aes(color = county))
For completeness sake, you can also get the result you want by using scale_color_manual to specify the color for each of the 45 counties, but I guess that wouldn't be very elegant.

R check if there is a letter and then multiply the value by -1

I have a dataframe (databycitydiff2) column as follows:
x
10N
20N
35S
25S
What I want to do is check if the letter at the end is N or S. If it is S, I want to remove the S and multiply the number by -1. If it is N, then I just want to remove the N.
I tried the following but it adds "-" to all values:
databycitydiff2$x<-gsub( "N", "", databycitydiff2$x)
databycitydiff2$x<-sub("^","-", gsub( "S", "", databycitydiff2$x))
What I get is:
x
-10
-20
-35
-25
What I want is:
x
10
20
-35
-25
Any suggestions? thank you!
Dput of the dataframe column (before i changed it to as.character):
structure(c(57L, 47L, 62L, 45L, 45L, 57L, 62L, 55L, 29L, 55L,
60L, 54L, 70L, 70L, 62L, 13L, 55L, 37L, 33L, 29L, 70L, 23L, 72L,
11L, 72L, 55L, 19L, 51L, 62L, 29L, 37L, 72L, 36L, 7L, 17L, 71L,
9L, 41L, 29L, 21L, 55L, 37L, 25L, 19L, 21L, 13L, 29L, 31L, 49L,
21L, 31L, 25L, 35L, 37L, 41L, 17L, 45L, 39L, 45L, 49L, 70L, 17L,
6L, 7L, 37L, 72L, 41L, 26L, 35L, 38L, 45L, 45L, 45L, 37L, 41L,
37L, 37L, 27L, 23L, 45L, 47L, 37L, 58L, 61L, 55L, 53L, 27L, 41L,
35L, 55L, 35L, 29L, 13L, 2L, 7L, 44L, 5L, 22L, 58L, 54L, 37L,
19L, 31L, 27L, 58L, 12L, 72L, 33L, 21L, 2L, 9L, 21L, 65L, 49L,
51L, 45L, 58L, 9L, 53L, 22L, 45L, 35L, 33L, 41L, 47L, 31L, 37L,
45L, 25L, 37L, 39L, 14L, 39L, 9L, 22L, 18L, 57L, 55L, 37L, 49L,
58L, 25L, 7L, 22L, 57L, 23L, 20L, 4L, 51L, 71L, 35L, 4L, 20L,
20L, 22L, 24L, 39L, 12L, 14L, 71L, 67L, 41L, 51L, 43L, 58L, 44L,
41L, 37L, 61L, 49L, 37L, 21L, 33L, 39L, 31L, 37L, 31L, 9L, 57L,
71L, 51L, 24L, 21L, 25L, 39L, 22L, 35L, 37L, 53L, 38L, 53L, 17L,
45L, 29L, 7L, 70L, 55L, 8L, 55L, 25L, 5L, 70L, 71L, 37L, 72L,
51L, 3L, 9L, 41L, 45L, 47L, 13L, 55L, 25L, 33L, 37L, 11L, 11L,
27L, 21L, 29L, 29L, 42L, 5L, 27L, 53L, 51L, 21L, 37L, 37L, 45L,
58L, 61L, 19L, 2L, 9L, 25L, 21L, 53L, 41L, 23L, 5L, 5L, 55L,
23L, 55L, 39L, 15L, 15L, 44L, 71L, 37L, 5L, 21L, 7L, 43L, 49L,
71L, 44L, 21L, 21L, 23L, 73L, 41L, 35L, 53L, 21L, 21L, 21L, 20L,
3L, 21L, 27L, 45L, 72L, 19L, 21L, 29L, 60L, 3L, 20L, 70L, 3L,
6L, 18L, 49L, 13L, 22L, 3L, 53L, 58L, 21L, 25L, 31L, 15L, 31L,
7L, 53L, 39L, 29L, 44L, 3L, 20L, 17L, 35L, 29L, 25L, 23L, 53L,
29L, 19L, 45L, 18L, 35L, 56L, 2L, 43L, 61L, 22L, 9L, 57L, 49L,
9L, 53L, 55L, 18L, 33L, 33L, 33L, 44L, 6L, 29L, 29L, 26L, 45L,
33L, 3L, 63L, 51L, 64L, 57L, 39L, 58L, 53L, 43L, 53L, 26L, 18L,
25L, 7L, 21L, 23L, 23L, 27L, 19L, 21L, 19L, 19L, 23L, 11L, 25L,
17L, 27L, 21L, 17L, 21L, 19L, 3L, 60L, 13L, 72L, 13L, 58L, 57L,
23L, 11L, 27L, 54L, 19L, 47L, 7L, 43L, 15L, 39L, 25L, 25L, 20L,
33L, 33L, 5L, 34L, 5L, 1L, 58L, 60L, 60L, 57L, 10L, 73L, 30L,
26L, 15L, 3L, 58L, 71L, 43L, 70L, 39L, 21L, 26L, 49L, 60L, 56L,
13L, 57L, 1L, 49L, 35L, 37L, 47L, 19L, 53L, 30L, 58L, 22L, 70L,
54L, 57L, 33L, 60L, 45L, 22L, 13L, 51L, 26L, 10L, 51L, 53L, 61L,
44L, 71L, 58L, 60L, 60L, 51L, 54L, 45L, 57L, 7L, 28L, 58L, 24L,
54L, 25L, 57L, 58L, 57L, 60L, 70L, 49L, 53L, 27L, 43L, 47L, 43L,
43L, 29L, 44L, 37L, 16L, 55L, 27L, 9L, 18L, 5L, 25L, 35L, 29L,
47L, 47L, 19L, 41L, 29L, 1L, 55L, 72L, 51L, 60L, 57L, 72L, 13L,
9L, 3L, 22L, 3L, 30L, 18L, 37L, 54L, 72L, 41L, 3L, 9L, 12L, 29L,
71L, 55L, 72L, 22L, 7L, 21L, 57L, 43L, 19L, 5L, 6L, 19L, 71L,
47L, 17L, 71L, 22L, 18L, 20L, 3L, 38L, 19L, 39L, 30L, 3L, 70L,
17L, 55L, 25L, 34L, 24L, 3L, 3L, 22L, 58L, 18L, 13L, 13L, 13L,
33L, 3L, 43L, 73L, 37L, 33L, 24L, 2L, 28L, 20L, 39L, 3L, 44L,
9L, 56L, 30L, 3L, 47L, 17L, 33L, 17L, 21L, 21L, 27L, 31L, 33L,
21L, 17L, 49L, 27L, 49L, 31L, 31L, 45L, 21L, 26L, 3L, 57L, 33L,
35L, 21L, 35L, 72L, 61L, 58L, 58L, 61L, 57L, 45L, 31L, 21L, 25L,
63L, 54L, 49L, 58L, 54L, 37L, 13L, 25L, 23L, 19L, 13L, 47L, 71L,
47L, 37L, 27L, 7L, 38L, 13L, 17L, 73L, 14L, 5L, 8L, 6L, 31L,
29L, 53L, 58L, 7L, 23L, 14L, 31L, 37L, 9L, 7L, 29L, 57L, 6L,
50L, 33L, 19L, 23L, 23L, 27L, 33L, 71L, 71L, 71L, 71L, 56L, 56L,
71L, 19L, 19L, 71L, 56L, 56L, 56L, 56L, 71L, 71L, 41L, 71L, 71L,
56L, 71L, 71L, 56L, 56L, 72L, 72L, 19L, 37L, 27L, 51L, 45L, 53L,
17L, 13L, 12L, 45L, 18L, 58L, 17L, 57L, 70L, 41L, 35L, 41L, 52L,
72L, 38L, 39L, 32L, 18L, 49L, 37L, 18L, 61L, 28L, 30L, 25L, 32L,
58L, 5L, 33L, 18L, 27L, 28L, 33L, 70L, 22L, 70L, 58L, 58L, 57L,
49L, 57L, 28L, 17L, 13L, 22L, 9L, 16L, 13L, 10L, 23L, 3L, 36L,
24L, 56L, 8L, 57L, 5L, 9L, 57L, 29L, 57L, 55L, 25L, 11L, 37L,
35L, 9L, 25L, 41L, 21L, 33L, 70L, 33L, 5L, 21L, 41L, 21L, 71L,
25L, 25L, 57L, 33L, 7L, 45L, 45L, 61L, 70L, 7L, 41L, 31L, 41L,
72L, 53L, 29L, 23L, 49L, 31L, 27L, 27L, 13L, 39L, 73L, 33L, 41L,
25L, 71L, 29L, 31L, 47L, 60L, 45L, 3L, 47L, 21L, 31L, 33L, 39L,
21L, 21L, 25L, 9L, 25L, 17L, 22L, 27L, 51L, 70L, 53L, 25L, 60L,
23L, 3L, 41L, 9L, 3L, 18L, 55L, 3L, 33L, 56L, 23L, 21L, 17L,
45L, 33L, 39L, 58L, 58L, 39L, 55L, 43L, 20L, 35L, 57L, 49L, 23L,
60L, 58L, 57L, 21L, 33L, 72L, 15L, 62L, 52L, 47L, 22L, 23L, 30L,
19L, 21L, 37L, 45L, 41L, 62L, 34L, 35L, 57L, 47L, 37L, 17L, 43L,
70L, 61L, 47L, 45L, 60L, 58L, 72L, 70L, 58L, 29L, 3L, 31L, 35L,
31L, 9L, 72L, 45L, 60L, 1L, 61L, 51L, 45L, 11L, 22L, 58L, 19L,
57L, 58L, 31L, 70L, 55L, 57L, 54L, 5L, 41L, 41L, 33L, 9L, 45L,
33L, 41L, 37L, 18L, 64L, 57L, 27L, 25L, 49L, 39L, 57L, 29L, 54L,
39L, 31L, 25L, 27L, 21L, 27L, 25L, 35L, 6L, 45L, 21L, 24L, 49L,
22L, 35L, 20L, 25L, 31L, 47L, 49L, 15L, 28L, 70L, 51L, 45L, 35L,
49L, 26L, 45L, 25L, 45L, 33L, 44L, 21L, 24L, 18L, 22L, 22L, 57L,
72L, 53L, 39L, 21L, 37L, 37L, 45L, 35L, 35L, 37L, 35L, 37L, 37L,
35L, 29L, 33L, 37L, 5L, 45L, 47L, 33L, 51L, 25L, 63L, 58L, 23L,
24L, 9L, 55L, 29L, 51L, 71L, 21L, 21L, 29L, 25L, 9L, 25L, 37L,
19L, 73L, 33L, 33L, 33L, 72L, 71L, 25L, 7L, 23L, 39L, 21L, 33L,
70L, 70L, 60L, 60L, 45L, 40L, 21L, 58L, 43L, 25L, 51L, 49L, 57L,
36L, 70L, 57L, 45L, 27L, 23L, 49L, 33L, 57L, 70L, 43L, 45L, 29L,
61L, 63L, 35L, 57L, 58L, 21L, 12L, 31L, 28L, 16L, 3L, 58L, 39L,
25L, 19L, 5L, 49L, 25L, 37L, 1L, 58L, 14L, 39L, 33L, 47L, 30L,
53L, 49L, 37L, 51L, 71L, 60L, 30L, 3L, 17L, 25L, 72L, 31L, 33L,
21L, 17L, 18L, 24L, 22L, 3L, 22L, 22L, 9L, 9L, 3L, 16L, 27L,
5L, 11L, 49L, 23L, 25L, 33L, 33L, 11L, 15L, 23L, 9L, 11L, 27L,
5L, 25L, 25L, 18L, 53L, 45L, 19L, 17L, 58L, 58L, 35L, 21L, 45L,
37L, 37L, 5L, 31L, 58L, 9L, 19L, 41L, 45L, 33L, 23L, 54L, 53L,
21L, 23L, 45L, 19L, 29L, 49L, 21L, 57L, 35L, 35L, 60L, 47L, 47L,
58L, 37L, 35L, 37L, 41L, 29L, 19L, 58L, 29L, 33L, 21L, 27L, 14L,
51L, 25L, 72L, 29L, 45L, 7L, 70L, 27L, 39L, 21L, 37L, 31L, 53L,
54L, 57L, 54L, 64L, 37L, 51L, 39L, 25L, 11L, 35L, 29L, 58L, 35L,
25L, 13L, 41L, 35L, 58L, 35L, 7L, 37L, 35L, 37L, 45L, 35L, 29L,
37L, 3L, 48L, 35L, 45L, 17L, 25L, 19L, 51L, 29L, 54L, 22L, 21L,
31L, 9L, 5L, 37L, 29L, 60L, 23L, 23L, 23L, 4L, 47L, 35L, 27L,
33L, 33L, 8L, 6L, 41L, 21L, 27L, 29L, 9L, 60L, 11L, 39L, 21L,
17L, 21L, 51L, 53L, 21L, 33L, 35L, 31L, 23L, 53L, 70L, 43L, 35L,
1L, 7L, 18L, 8L, 11L, 35L, 37L, 35L, 37L, 70L, 72L, 13L, 37L,
70L, 70L, 70L, 70L, 70L, 70L, 35L, 70L, 55L, 70L, 33L, 70L, 44L,
72L, 10L, 72L, 70L, 3L, 72L, 35L, 56L, 23L, 35L, 22L, 41L, 41L,
21L, 56L, 41L, 35L, 54L, 23L, 70L, 53L, 18L, 43L, 58L, 18L, 44L,
35L, 25L, 17L, 33L, 37L, 71L, 58L, 37L, 33L, 33L, 70L, 37L, 37L,
70L, 41L, 15L, 37L, 33L, 31L, 39L, 45L, 22L, 10L, 55L, 22L, 26L,
35L, 22L, 22L, 22L, 22L, 21L, 22L, 62L, 39L, 35L, 37L, 70L, 17L,
62L, 39L, 45L, 35L, 39L, 20L, 21L, 73L, 22L, 33L, 29L, 27L, 72L,
29L, 27L, 25L, 56L, 35L, 31L, 72L, 17L, 25L, 23L, 1L, 2L, 33L,
19L, 21L, 21L, 22L, 26L, 33L, 31L, 25L, 73L, 8L, 37L, 45L, 31L,
19L, 31L, 23L, 33L, 27L, 4L, 53L, 25L, 21L, 31L, 31L, 49L, 27L,
37L, 35L, 31L, 41L, 21L, 5L, 19L, 21L, 33L, 49L, 72L, 70L, 37L,
39L, 23L, 29L, 29L, 29L, 45L, 45L, 45L, 27L, 27L, 49L, 29L, 45L,
49L, 13L, 51L, 71L, 25L, 39L, 26L, 1L, 26L, 45L, 55L, 71L, 3L,
73L, 31L, 71L, 43L, 20L, 24L, 10L, 19L, 22L, 41L, 3L, 35L, 8L,
14L, 3L, 39L, 35L, 25L, 29L, 21L, 37L, 11L, 35L, 56L, 61L, 58L,
39L, 70L, 21L, 60L, 17L, 37L, 35L, 31L, 21L, 61L, 31L, 1L, 57L,
56L, 7L, 21L, 3L, 70L, 3L, 5L, 25L, 41L, 61L, 21L, 7L, 11L, 23L,
37L, 39L, 51L, 71L, 56L, 13L, 35L, 54L, 29L, 35L, 41L, 35L, 29L,
37L, 9L, 57L, 33L, 35L, 37L, 31L, 27L, 23L, 57L, 7L, 73L, 61L,
37L, 37L, 35L, 37L, 41L, 61L, 71L, 53L, 71L, 71L, 23L, 54L, 71L,
61L, 44L, 35L, 51L, 29L, 35L, 54L, 27L, 11L, 19L, 29L, 31L, 27L,
19L, 21L, 9L, 53L, 61L, 7L, 33L, 11L, 33L, 29L, 39L, 45L, 21L,
27L, 33L, 27L, 60L, 57L, 57L, 16L, 44L, 56L, 31L, 28L, 3L, 16L,
13L, 60L, 44L, 37L, 63L, 54L, 37L, 1L, 15L, 35L, 72L, 35L, 49L,
2L, 2L, 35L, 49L, 49L, 6L, 61L, 15L, 71L, 26L, 15L, 37L, 35L,
57L, 3L, 37L, 37L, 33L, 72L, 37L, 7L, 11L, 72L, 61L, 64L, 35L,
37L, 57L, 37L, 39L, 19L, 72L, 39L, 45L, 55L, 37L, 54L, 62L, 60L,
29L, 23L, 55L, 55L, 70L, 5L, 62L, 70L, 49L, 51L, 61L, 57L, 54L,
56L, 21L, 28L, 26L, 53L, 15L, 55L, 43L, 1L, 33L, 6L, 55L, 21L,
37L, 47L, 70L, 43L, 3L, 23L, 4L, 35L, 35L, 61L, 58L, 33L, 35L,
7L, 35L, 49L, 14L, 58L, 9L, 23L, 36L, 30L, 13L, 30L, 13L, 41L,
60L, 17L, 29L, 72L, 72L, 28L, 55L, 55L, 31L, 37L, 37L, 41L, 27L,
25L, 27L, 24L, 13L, 35L, 41L, 47L, 37L, 13L, 33L, 3L, 27L, 27L,
27L, 19L, 37L, 29L, 21L, 45L, 13L, 51L, 71L, 54L, 53L, 5L, 60L,
45L, 7L, 49L, 57L, 58L, 58L, 57L, 25L, 71L, 35L, 27L, 60L, 29L,
71L, 57L, 39L, 57L, 19L, 23L, 37L, 45L, 1L, 21L, 8L, 4L, 57L,
8L, 6L, 20L, 51L, 27L, 45L, 37L, 27L, 18L, 37L, 37L, 41L, 37L,
54L, 7L, 58L, 15L, 41L, 35L, 21L, 23L, 60L, 14L, 51L, 45L, 2L,
6L, 47L, 44L, 47L, 22L, 33L, 3L, 51L, 53L, 47L, 23L, 27L, 35L,
25L, 17L, 3L, 27L, 9L, 39L, 55L, 47L, 46L, 31L, 39L, 73L, 8L,
10L, 33L, 57L, 6L, 7L, 23L, 31L, 54L, 73L, 33L, 35L, 27L, 24L,
10L, 58L, 25L, 29L, 12L, 57L, 51L, 61L, 37L, 37L, 19L, 57L, 57L,
58L, 45L, 31L, 57L, 23L, 9L, 20L, 1L, 4L, 44L, 31L, 37L, 9L,
7L, 21L, 47L, 71L, 7L, 45L, 3L, 22L, 72L, 58L, 71L, 60L, 37L,
10L, 11L, 21L, 5L, 5L, 57L, 5L, 71L, 56L, 9L, 47L, 53L, 70L,
43L, 72L, 3L, 71L, 39L, 17L, 29L, 61L, 9L, 70L, 1L, 5L, 25L,
16L, 37L, 47L, 19L, 3L, 33L, 23L, 5L, 7L, 9L, 41L, 55L, 54L,
2L, 13L, 26L, 19L, 26L, 40L, 56L, 3L, 44L, 3L, 7L, 39L, 20L,
41L, 70L, 37L, 35L, 3L, 22L, 37L, 3L, 31L, 47L, 44L, 29L, 5L,
30L, 37L, 31L, 56L, 25L, 21L, 45L, 73L, 27L, 26L, 35L, 37L, 37L,
35L, 3L, 25L, 22L, 11L, 22L, 49L, 19L, 21L, 58L, 1L, 73L, 55L,
7L, 56L, 19L, 43L, 55L, 17L, 19L, 7L, 15L, 40L, 35L, 34L, 41L,
34L, 5L, 37L, 33L, 33L, 39L, 29L, 13L, 56L, 54L, 33L, 17L, 9L,
60L, 25L, 37L, 31L, 61L, 26L, 60L, 26L, 16L, 51L, 47L, 13L, 35L,
37L, 72L, 51L, 60L, 25L, 43L, 23L, 23L, 37L, 35L, 53L, 33L, 37L,
9L, 31L, 31L, 70L, 49L, 39L, 57L, 31L, 15L, 22L, 71L, 3L, 44L,
25L, 70L, 9L, 72L, 25L, 12L, 36L, 33L, 49L, 51L, 19L, 51L, 9L,
27L, 70L, 17L, 25L, 35L, 35L, 9L, 71L, 21L, 61L, 44L, 56L, 47L,
25L, 72L, 3L, 49L, 6L, 53L, 29L, 23L, 53L, 39L, 31L, 68L, 61L,
21L, 37L, 2L, 14L, 29L, 29L, 25L, 16L, 71L, 3L, 19L, 61L, 49L,
10L, 21L, 35L, 7L, 39L, 37L, 21L, 72L, 35L, 19L, 21L, 2L, 11L,
47L, 7L, 9L, 72L, 2L, 47L, 11L, 17L, 45L, 10L, 57L, 53L, 27L,
31L, 54L, 13L, 19L, 9L, 27L, 31L, 21L, 45L, 53L, 31L, 21L, 33L,
45L, 45L, 37L, 21L, 37L, 21L, 37L, 23L, 56L, 17L, 21L, 41L, 17L,
23L, 25L, 39L, 49L, 72L, 8L, 61L, 65L, 70L, 54L, 29L, 15L, 24L,
33L, 42L, 57L, 49L, 27L, 45L, 29L, 45L, 45L, 28L, 61L, 58L, 39L,
35L, 37L, 5L, 17L, 70L, 7L, 5L, 7L, 49L, 17L, 26L, 39L, 35L,
37L, 58L, 22L, 29L, 47L, 35L, 35L, 22L, 13L, 61L, 64L, 62L, 62L,
55L, 55L, 55L, 33L, 37L, 31L, 61L, 7L, 37L, 69L, 35L, 37L, 38L,
58L, 35L, 58L, 4L, 60L, 13L, 20L, 22L, 51L, 51L, 30L, 61L, 53L,
60L, 60L, 49L, 61L, 57L, 70L, 7L, 27L, 47L, 35L, 54L, 53L, 70L,
39L, 11L, 57L, 47L, 61L, 55L, 27L, 55L, 33L, 3L, 37L, 61L, 51L,
61L, 72L, 57L, 35L, 72L, 31L, 35L, 37L, 43L, 60L, 41L, 58L, 60L,
71L, 54L, 9L, 60L, 45L, 37L, 61L, 33L, 70L, 9L, 55L, 35L, 43L,
57L, 58L, 53L, 25L, 33L, 45L, 61L, 13L, 26L, 53L, 27L, 55L, 60L,
57L, 39L, 14L, 22L, 49L, 70L, 64L, 39L, 58L, 46L, 57L, 37L, 47L,
51L, 70L, 5L, 67L, 41L, 47L, 55L, 70L, 58L, 35L, 37L, 70L, 39L,
12L, 73L, 51L, 13L, 36L, 21L, 71L, 17L, 71L, 2L, 58L, 51L, 70L,
7L, 19L, 29L, 3L, 23L, 16L, 39L, 28L, 25L, 7L, 41L, 17L, 4L,
35L, 43L, 3L, 2L, 27L, 56L, 47L, 56L, 72L, 23L, 61L, 71L, 21L,
29L, 13L, 25L, 37L, 72L, 55L, 32L, 24L, 17L, 54L, 49L, 16L, 56L,
41L, 56L, 35L, 56L, 71L, 1L, 28L, 1L, 71L, 21L, 23L, 45L, 33L,
11L, 71L, 29L, 23L, 14L, 71L, 58L, 54L, 2L, 71L, 41L, 32L, 71L,
8L, 25L, 60L, 45L, 43L, 55L, 39L, 63L, 47L, 32L, 47L, 62L, 47L,
35L, 15L, 9L, 3L, 58L, 22L, 73L, 61L, 60L, 65L, 54L, 31L, 22L,
3L, 41L, 11L, 5L, 33L, 7L, 53L, 27L, 30L, 22L, 27L, 13L, 19L,
22L, 3L, 23L, 35L, 37L, 21L, 21L, 27L, 58L, 22L, 49L, 45L, 56L,
7L, 33L, 49L, 58L, 51L, 47L, 71L, 57L, 57L, 22L, 20L, 47L, 61L,
27L, 54L, 35L, 13L, 5L, 3L, 24L, 2L, 57L, 19L, 13L, 5L, 36L,
2L, 43L, 18L, 73L, 31L, 25L, 51L, 13L, 45L, 30L, 2L, 57L, 28L,
26L, 22L, 18L, 58L, 20L, 58L, 44L, 57L, 22L, 49L, 20L, 60L, 24L,
56L, 47L, 47L, 71L, 9L, 60L, 47L, 41L, 62L, 73L, 3L, 13L, 39L,
3L, 46L, 17L, 3L, 17L, 41L, 13L, 10L, 59L, 5L, 29L, 17L, 25L,
21L, 71L, 71L, 71L, 71L, 37L, 49L, 13L, 35L, 29L, 31L, 37L, 37L,
25L, 51L, 29L, 37L, 21L, 41L, 19L, 53L, 51L, 35L, 60L, 23L, 39L,
53L, 32L, 22L, 14L, 41L, 17L, 29L, 9L, 2L, 7L, 34L, 2L, 23L,
37L, 7L, 35L, 3L, 57L, 25L, 29L, 11L, 23L, 19L, 19L, 11L, 72L,
19L, 21L, 23L, 37L, 33L, 51L, 27L, 71L, 36L, 21L, 35L, 26L, 53L,
56L, 11L, 25L, 21L, 15L, 39L, 54L, 21L, 19L, 49L, 33L, 43L, 5L,
57L, 73L, 58L, 39L, 57L, 54L, 57L, 56L, 53L, 41L, 20L, 28L, 54L,
23L, 27L, 67L, 25L, 35L, 18L, 22L, 20L, 28L, 33L, 39L, 62L, 51L,
49L, 4L, 20L, 34L, 22L, 32L, 16L, 21L, 35L, 57L, 23L, 37L, 7L,
47L, 47L, 27L, 47L, 12L, 29L, 34L, 41L, 60L, 53L, 60L, 58L, 54L,
5L, 58L, 57L, 27L, 2L, 49L, 26L, 60L, 63L, 57L, 57L, 22L, 22L,
20L, 22L, 22L, 28L, 18L, 22L, 24L, 30L, 16L, 22L, 22L, 54L, 45L,
18L, 25L, 33L, 37L, 39L, 27L, 35L, 33L, 37L, 21L, 29L, 25L, 31L,
51L, 20L, 60L, 41L, 51L, 27L, 37L, 35L, 41L, 37L, 11L, 17L, 71L,
60L, 49L, 45L, 58L, 37L, 45L, 24L, 23L, 32L, 8L, 53L, 58L, 60L,
2L, 41L, 19L, 27L, 45L, 7L, 29L, 35L, 34L, 46L, 13L, 33L, 9L,
39L, 17L, 3L, 39L, 13L, 17L, 9L, 24L, 34L, 19L, 33L, 34L, 9L,
72L, 25L, 34L, 55L, 7L, 17L, 7L, 13L, 9L, 36L, 7L, 35L, 19L,
23L, 19L, 35L, 55L, 23L, 35L, 25L, 33L, 25L, 39L, 35L, 7L, 27L,
30L, 32L, 18L, 30L, 3L, 71L, 39L, 3L, 49L, 16L, 17L, 17L, 28L,
22L, 13L, 22L, 55L, 30L, 37L, 49L, 60L, 62L, 58L, 31L, 72L, 37L,
23L, 33L, 58L, 45L, 11L, 21L, 23L, 53L, 31L, 35L, 25L, 56L, 37L,
33L, 53L, 55L, 1L, 5L, 71L, 57L, 37L, 19L, 39L, 56L, 56L, 7L,
15L, 62L, 61L, 18L, 41L, 18L, 37L, 67L, 62L, 39L, 70L, 15L, 37L,
27L, 33L, 31L, 37L, 53L, 72L, 31L, 35L, 27L, 21L, 23L, 27L, 29L,
25L, 21L, 23L, 29L, 60L, 31L, 45L, 21L, 51L, 23L, 49L, 27L, 25L,
23L, 21L, 31L, 7L, 35L, 44L, 29L, 29L, 33L, 41L, 13L, 33L, 21L,
51L, 53L, 23L, 41L, 47L, 7L, 33L, 61L, 51L, 15L, 71L, 57L, 39L,
27L, 3L, 23L, 35L, 72L, 1L, 73L, 1L, 7L, 49L, 23L, 29L, 29L,
27L, 41L, 39L, 25L, 47L, 58L, 61L, 43L, 44L, 72L, 49L, 47L, 55L,
25L, 37L, 72L, 7L, 3L, 64L, 57L, 36L, 4L, 27L, 71L, 22L, 2L,
57L, 55L, 45L, 57L, 58L, 26L, 7L, 13L, 49L, 53L, 37L, 47L, 26L,
13L, 35L, 45L, 47L, 57L, 63L, 49L, 47L, 60L, 63L, 60L, 39L, 58L,
54L, 54L, 71L, 53L, 14L, 51L, 29L, 53L, 29L, 35L, 45L, 71L, 71L,
27L, 72L, 56L, 25L, 22L, 71L, 57L, 61L, 55L, 43L, 39L, 37L, 33L,
71L, 71L, 19L, 72L, 21L, 65L, 11L, 31L, 37L, 58L, 22L, 35L, 35L,
58L, 58L, 36L, 65L, 47L, 60L, 53L, 60L, 51L, 37L, 41L, 22L, 56L,
39L, 27L, 37L, 5L, 14L, 53L, 11L, 53L, 70L, 37L, 19L, 23L, 21L,
23L, 43L, 21L, 39L, 33L, 37L, 37L, 35L, 37L, 35L, 55L, 44L, 38L,
38L, 23L, 3L, 31L, 29L, 63L, 37L, 72L, 71L, 7L, 58L, 56L, 27L,
65L, 19L, 40L, 25L, 56L, 56L, 56L, 41L, 37L, 39L, 43L, 23L, 31L,
9L, 51L, 23L, 9L, 45L, 47L, 51L, 33L, 20L, 9L, 57L, 45L, 39L,
63L, 35L, 45L, 71L, 22L, 17L, 40L, 43L, 9L, 45L, 14L, 43L, 71L,
7L, 13L, 45L, 31L, 56L, 55L, 26L, 57L, 33L, 42L, 11L, 35L, 19L,
20L, 56L, 39L, 1L, 47L, 45L, 55L, 12L, 17L, 19L, 13L, 29L, 17L,
3L, 7L, 11L, 58L, 45L, 9L, 72L, 41L, 35L, 3L, 41L, 31L, 53L,
47L, 53L, 33L, 58L, 51L, 56L, 45L, 3L, 72L, 7L, 3L, 5L, 7L, 21L,
17L, 17L, 14L, 37L, 45L, 37L, 35L, 37L, 45L, 22L, 13L, 60L, 47L,
41L, 62L, 17L, 35L, 35L, 49L, 31L, 41L, 25L, 41L, 49L, 35L, 23L,
45L, 58L, 35L, 21L, 47L, 49L, 13L, 53L, 14L, 35L, 35L, 35L, 35L,
45L, 48L, 51L, 54L, 51L, 72L, 33L, 51L, 66L, 73L, 56L, 37L, 37L,
31L, 23L, 31L, 26L, 13L, 60L, 17L, 37L, 43L, 44L, 7L, 21L, 37L,
55L, 39L, 45L, 51L, 64L, 3L, 11L, 49L, 62L, 57L, 62L, 35L, 18L,
14L, 9L, 13L, 11L, 7L, 37L, 61L, 55L, 36L, 35L, 21L, 66L, 53L,
58L, 13L, 54L, 21L, 60L, 9L, 55L, 71L, 25L, 64L, 37L, 9L, 39L,
70L, 17L, 30L, 41L, 49L, 63L, 58L, 44L, 55L, 54L, 10L, 22L, 64L,
19L, 42L, 3L, 45L, 3L, 39L, 34L, 39L, 45L, 51L, 26L, 37L, 23L,
20L, 47L, 21L, 62L, 63L, 5L, 51L, 13L, 19L, 26L, 51L, 26L, 30L,
51L, 54L, 21L, 54L, 13L, 47L, 29L, 11L, 18L, 9L, 9L, 13L, 43L,
51L, 61L, 34L, 13L, 3L, 54L, 54L, 39L, 17L, 28L, 37L, 13L, 37L,
18L, 10L, 73L, 47L, 13L, 47L, 61L, 47L, 53L, 54L, 63L, 20L, 54L,
58L, 28L, 3L, 54L, 31L, 7L, 35L, 37L, 38L, 57L, 58L, 31L, 13L,
17L, 31L, 47L, 55L, 58L, 71L, 41L, 45L, 49L, 58L, 70L, 33L, 37L,
39L, 35L, 28L, 46L, 39L, 27L, 71L, 58L, 35L, 45L, 45L, 41L, 26L,
39L, 35L, 57L, 22L, 47L, 57L, 37L, 26L, 58L, 58L, 58L, 36L, 58L,
47L, 57L, 41L, 27L, 29L, 31L, 51L, 29L, 57L, 39L, 31L, 29L, 21L,
24L, 17L, 23L, 35L, 27L, 33L, 29L, 35L, 21L, 35L, 27L, 17L, 39L,
23L, 37L, 35L, 37L, 37L, 33L, 39L, 45L, 31L, 35L, 35L, 23L, 29L,
37L, 35L, 54L, 70L, 29L, 37L, 33L, 19L, 23L, 33L, 47L, 39L, 35L,
43L, 62L, 33L, 17L, 31L, 62L, 7L, 58L, 17L, 45L, 51L, 27L, 31L,
53L, 37L, 39L, 31L, 45L, 31L, 49L, 27L, 33L, 71L, 35L, 35L, 37L,
25L, 45L, 60L, 39L, 29L, 19L, 35L, 23L, 21L, 31L, 49L, 29L, 58L,
31L, 57L, 21L, 51L, 53L, 37L, 70L, 17L, 37L, 56L, 31L, 35L, 17L,
53L, 45L, 3L, 61L, 61L, 49L, 37L, 45L, 23L, 19L, 39L, 51L, 21L,
25L, 33L, 33L, 53L, 29L, 19L, 23L, 37L, 33L, 37L, 19L, 29L, 61L,
33L, 41L, 27L, 57L, 58L, 29L, 5L, 7L, 61L, 58L, 45L, 37L, 27L,
53L, 33L, 58L), .Label = c("0.80N", "0.80S", "10.45N", "10.45S",
"12.05N", "12.05S", "13.66N", "13.66S", "15.27N", "15.27S", "16.87N",
"16.87S", "18.48N", "18.48S", "2.41N", "2.41S", "20.09N", "20.09S",
"21.70N", "21.70S", "23.31N", "23.31S", "24.92N", "24.92S", "26.52N",
"26.52S", "28.13N", "28.13S", "29.74N", "29.74S", "31.35N", "31.35S",
"32.95N", "32.95S", "34.56N", "34.56S", "36.17N", "36.17S", "37.78N",
"37.78S", "39.38N", "39.38S", "4.02N", "4.02S", "40.99N", "40.99S",
"42.59N", "42.59S", "44.20N", "44.20S", "45.81N", "45.81S", "47.42N",
"49.03N", "5.63N", "5.63S", "50.63N", "52.24N", "52.24S", "53.84N",
"55.45N", "57.05N", "58.66N", "60.27N", "61.88N", "63.49N", "65.09N",
"68.31N", "69.92N", "7.23N", "7.23S", "8.84N", "8.84S"), class = "factor")
Here is a base R approach with chartr to change "N" to "+" and "S" to "-", and then some string processing with sub to change the "+" and "-" to be in front of the number
tmp <- chartr("NS", "+-", c("10N", "10N", "35S", "25S"))
as.numeric(sub("(\\d+)([-+])", "\\2\\1", tmp))
#[1] 10 10 -35 -25
not that efficient though, (and it assumes that always N/S will be present)
ifelse(grepl("N",df$x), as.numeric(gsub("N","",df$x)), -1*as.numeric(gsub("S","",df$x)))
# [1] 10 20 -35 -25
With gsub and grepl:
as.numeric(gsub('[NS]','',x)) * c(-1,1)[grepl('N',x) + 1]
This results in:
> as.numeric(gsub('[NS]','',x)) * c(-1,1)[grepl('N',x) + 1]
[1] 10 20 -35 -25
Even another option is to use the gsubfn package:
x <- c('10N','20N','35S','25S')
library(gsubfn)
sapply(gsubfn('N|S', list('N'='*1','S'='*-1'), x),
function(x) eval(parse(text = x)),
USE.NAMES = FALSE)
This results in:
> sapply(gsubfn('N|S', list('N'='*1','S'='*-1'), x),
+ function(x) eval(parse(text = x)),
+ USE.NAMES = FALSE)
[1] 10 20 -35 -25
Here is an option with parse_number() from readr package to get the numeric values from the column and endsWith (which is a more efficient version of grepl) to check the trailing letter and make a vector of 1 or -1 based on which letter it is with a little mathematics:
df$x <- with(df, readr::parse_number(x) * (-1) ^ endsWith(x, "S"))
df
# x
#1 10
#2 20
#3 -35
#4 -25

strange error when creating a model with zelig

dput(t)
structure(list(Volume = c(2625941L, 4685483L, 3160694L, 2627816L,
2430273L, 2498011L, 2632445L, 3224434L, 2531941L, 5043867L, 2788003L,
3278796L, 3273977L, 3192613L, 3456297L, 2668175L, 2805861L, 2689392L,
2733510L, 3285889L, 2957370L, 3420479L, 3868692L, 4353776L, 3134759L,
2914727L, 3160491L, 3803716L, 3427911L, 2646258L, 3616962L, 3071943L,
3013008L, 4024996L, 4357129L, 3110560L, 3063334L, 4537971L, 1902002L,
2618413L, 2473005L, 2844029L, 2398462L, 3406776L, 3071573L, 3714231L,
4276458L, 3825187L, 2652650L, 3040994L, 2695117L, 3038566L, 2695652L,
2919113L, 2840214L, 2768958L, 5246649L, 3023172L, 3565584L, 2928450L,
3503840L, 2948165L, 3512192L, 3409995L, 3511665L, 3155152L, 3020401L,
2758133L, 2548245L, 3033309L, 2740213L, 2851881L, 3134557L, 4445879L,
3173913L, 3720477L, 3753070L, 3609973L, 3826284L, 4864280L, 4159588L,
3095322L, 3138732L, 3591433L, 3063357L, 3215559L, 3258059L, 3559727L,
4886550L, 4025763L, 4108614L, 5720774L, 4075195L, 3322352L, 3048940L,
3249172L, 3148053L, 3321660L, 3159642L, 3976820L, 3848960L, 3466783L,
3811408L, 6033563L, 4114751L, 3181385L, 2926695L, 2866148L, 2692198L,
3400891L, 2922295L, 3912049L, 3079066L, 2833293L, 3560196L, 3317644L,
3151086L, 3776538L, 5479510L, 3954497L, 3594429L, 3088262L, 2778180L,
3532457L), SLA = c(28L, 44L, 12L, 28L, 4L, 28L, 4L, 4L, 8L, 12L,
8L, 4L, 8L, 4L, 8L, 8L, 32L, 4L, 36L, 8L, 4L, 8L, 20L, 8L, 32L,
12L, 32L, 8L, 16L, 40L, 8L, 20L, 4L, 4L, 8L, 20L, 16L, 4L, 12L,
8L, 4L, 8L, 4L, 4L, 8L, 12L, 12L, 16L, 28L, 28L, 12L, 16L, 16L,
8L, 20L, 20L, 24L, 44L, 12L, 24L, 24L, 24L, 20L, 24L, 36L, 16L,
40L, 24L, 4L, 44L, 8L, 16L, 12L, 8L, 32L, 12L, 20L, 16L, 28L,
8L, 24L, 24L, 4L, 4L, 8L, 8L, 4L, 12L, 8L, 44L, 12L, 24L, 40L,
8L, 4L, 8L, 12L, 12L, 8L, 16L, 24L, 8L, 36L, 48L, 36L, 12L, 36L,
28L, 20L, 12L, 20L, 32L, 24L, 4L, 12L, 16L, 8L, 24L, 16L, 36L,
44L, 12L, 8L, 4L), Duration = c(21L, 25L, 15L, 13L, 15L, 20L,
17L, 20L, 12L, 15L, 31L, 12L, 24L, 16L, 25L, 13L, 13L, 20L, 21L,
20L, 26L, 15L, 26L, 21L, 27L, 20L, 34L, 29L, 74L, 62L, 33L, 27L,
26L, 23L, 30L, 26L, 26L, 18L, 19L, 13L, 25L, 18L, 20L, 18L, 37L,
20L, 22L, 25L, 24L, 22L, 42L, 17L, 18L, 18L, 28L, 18L, 28L, 32L,
23L, 31L, 12L, 30L, 40L, 30L, 18L, 18L, 19L, 27L, 21L, 31L, 23L,
26L, 14L, 22L, 21L, 21L, 26L, 30L, 21L, 23L, 12L, 22L, 24L, 29L,
36L, 19L, 21L, 25L, 24L, 29L, 26L, 34L, 33L, 17L, 17L, 24L, 19L,
18L, 12L, 18L, 11L, 19L, 22L, 48L, 49L, 25L, 16L, 43L, 18L, 18L,
19L, 15L, 38L, 19L, 22L, 28L, 28L, 34L, 16L, 53L, 38L, 23L, 27L,
17L)), .Names = c("Volume", "SLA", "Duration"), class = "data.frame", row.names = c(2L,
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L,
17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L,
30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L,
43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L,
56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L, 68L,
69L, 70L, 71L, 72L, 73L, 75L, 76L, 77L, 79L, 80L, 81L, 82L, 84L,
85L, 86L, 87L, 88L, 89L, 90L, 91L, 92L, 93L, 94L, 95L, 96L, 97L,
98L, 99L, 100L, 101L, 102L, 103L, 105L, 106L, 107L, 108L, 110L,
111L, 112L, 113L, 115L, 116L, 117L, 118L, 119L, 120L, 121L, 122L,
123L, 124L, 125L, 126L, 127L, 128L, 129L, 130L, 131L))
when I do this:
z.out1 <- zelig(Duration ~ Volume, model = "logit", data = t)
I get this error:
Error in `rownames<-`(`*tmp*`, value = c(1L, 0L)) :
attempt to set rownames on object with no dimensions
any ideas?

Resources