Interact.jl error: WebIOServer not defined - julia

I am getting this error when using the Interact.jl #manipulate macro in Juno:
UndefVarError: WebIOServer not defined
enter code here
setup_server() at webio.jl:76
show(::IOContext{Base.GenericIOBuffer{Array{UInt8,1}}}, ::MIME{Symbol("application/prs.juno.plotpane+html")}, ::Widget{:manipulate,Any}) at webio.jl:68
show(::IOContext{Base.GenericIOBuffer{Array{UInt8,1}}}, ::String, ::Widget{:manipulate,Any}) at multimedia.jl:109
displayinplotpane(::Widget{:manipulate,Any}) at showdisplay.jl:51
displayandrender(::Widget{:manipulate,Any}) at showdisplay.jl:131
(::Atom.var"#208#213"{String})() at eval.jl:136
#invokelatest#1 at essentials.jl:712 [inlined]
invokelatest at essentials.jl:711 [inlined]
macro expansion at dynamic.jl:24 [inlined]
eval(::String, ::Int64, ::String, ::String, ::Bool) at eval.jl:113
invokelatest(::Any, ::Any, ::Vararg{Any,N} where N; kwargs::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{,Tuple{}}}) at essentials.jl:712
invokelatest(::Any, ::Any, ::Vararg{Any,N} where N) at essentials.jl:711
macro expansion at eval.jl:41 [inlined]
(::Atom.var"#188#189")() at task.jl:358
Piece of code (the function generatePlot is defined previously for generating Makie plots):
#manipulate for variable = Dict(string(vars[i])=>vars[i] for i=1:16),
labl = Dict(string(label[i])=>label[i] for i=1:length(label))
generatePlot(variable, labl)
end
Env:
[c601a237] Interact v0.10.3
[ee78f7c6] Makie v0.11.0
[85f8d34a] NCDatasets v0.10.2
[2913bbd2] StatsBase v0.33.0
[0f1e0344] WebIO v0.8.14
Any thoughts on what can be the problem?

Related

Julia Roots find_zero with ForwardDiff.Dual type?

I'm trying to apply automatic differentiation (ForwardDiff) to a function that contains an instance of find_zero (Roots) and am encountering an error that seems to relate to find_zero not accepting the ForwardDiff.Dual type.
Here's a (contrived) minimal working example that illustrates the issue:
using Distributions
using Roots
using StatsFuns
using ForwardDiff
function test_fun(θ::AbstractVector{T}) where T
μ,σ,p = θ;
z_star = find_zero(z -> logistic(z) - p, 0.0)
return pdf(Normal(μ,σ),z_star)
end
test_fun([0.0,1.0,0.75])
ForwardDiff.gradient(test_fun,[0.0,1.0,0.75])
This results in the following error:
ERROR: MethodError: no method matching Float64(::ForwardDiff.Dual{ForwardDiff.Tag{typeof(test_fun),Float64},Float64,3})
Closest candidates are:
Float64(::Real, ::RoundingMode) where T<:AbstractFloat at rounding.jl:200
Float64(::T) where T<:Number at boot.jl:716
Float64(::Irrational{:invsqrt2}) at irrationals.jl:189
...
Stacktrace:
[1] convert(::Type{Float64}, ::ForwardDiff.Dual{ForwardDiff.Tag{typeof(test_fun),Float64},Float64,3}) at ./number.jl:7
[2] setproperty!(::Roots.UnivariateZeroState{Float64,ForwardDiff.Dual{ForwardDiff.Tag{typeof(test_fun),Float64},Float64,3}}, ::Symbol, ::ForwardDiff.Dual{ForwardDiff.Tag{typeof(test_fun),Float64},Float64,3}) at ./Base.jl:34
[3] update_state(::Roots.Secant, ::Roots.DerivativeFree{Roots.DerivativeFree{var"#5#6"{ForwardDiff.Dual{ForwardDiff.Tag{typeof(test_fun),Float64},Float64,3}}}}, ::Roots.UnivariateZeroState{Float64,ForwardDiff.Dual{ForwardDiff.Tag{typeof(test_fun),Float64},Float64,3}}, ::Roots.UnivariateZeroOptions{Float64,Float64,ForwardDiff.Dual{ForwardDiff.Tag{typeof(test_fun),Float64},Float64,3},ForwardDiff.Dual{ForwardDiff.Tag{typeof(test_fun),Float64},Float64,3}}) at /bbkinghome/asharris/.julia/packages/Roots/TZpjF/src/derivative_free.jl:163
[4] find_zero(::Roots.Secant, ::Roots.AlefeldPotraShi, ::Roots.DerivativeFree{Roots.DerivativeFree{var"#5#6"{ForwardDiff.Dual{ForwardDiff.Tag{typeof(test_fun),Float64},Float64,3}}}}, ::Roots.UnivariateZeroState{Float64,ForwardDiff.Dual{ForwardDiff.Tag{typeof(test_fun),Float64},Float64,3}}, ::Roots.UnivariateZeroOptions{Float64,Float64,ForwardDiff.Dual{ForwardDiff.Tag{typeof(test_fun),Float64},Float64,3},ForwardDiff.Dual{ForwardDiff.Tag{typeof(test_fun),Float64},Float64,3}}, ::Roots.NullTracks) at /bbkinghome/asharris/.julia/packages/Roots/TZpjF/src/find_zero.jl:868
[5] find_zero(::Roots.DerivativeFree{var"#5#6"{ForwardDiff.Dual{ForwardDiff.Tag{typeof(test_fun),Float64},Float64,3}}}, ::Float64, ::Roots.Secant, ::Roots.AlefeldPotraShi; tracks::Roots.NullTracks, verbose::Bool, p::Nothing, kwargs::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}) at /bbkinghome/asharris/.julia/packages/Roots/TZpjF/src/find_zero.jl:689
[6] #find_zero#36 at /bbkinghome/asharris/.julia/packages/Roots/TZpjF/src/derivative_free.jl:123 [inlined]
[7] find_zero at /bbkinghome/asharris/.julia/packages/Roots/TZpjF/src/derivative_free.jl:120 [inlined]
[8] #find_zero#5 at /bbkinghome/asharris/.julia/packages/Roots/TZpjF/src/find_zero.jl:707 [inlined]
[9] find_zero at /bbkinghome/asharris/.julia/packages/Roots/TZpjF/src/find_zero.jl:707 [inlined]
[10] test_fun at ./REPL[7856]:3 [inlined]
[11] vector_mode_dual_eval at /bbkinghome/asharris/.julia/packages/ForwardDiff/QOqCN/src/apiutils.jl:37 [inlined]
[12] vector_mode_gradient(::typeof(test_fun), ::Array{Float64,1}, ::ForwardDiff.GradientConfig{ForwardDiff.Tag{typeof(test_fun),Float64},Float64,3,Array{ForwardDiff.Dual{ForwardDiff.Tag{typeof(test_fun),Float64},Float64,3},1}}) at /bbkinghome/asharris/.julia/packages/ForwardDiff/QOqCN/src/gradient.jl:106
[13] gradient(::Function, ::Array{Float64,1}, ::ForwardDiff.GradientConfig{ForwardDiff.Tag{typeof(test_fun),Float64},Float64,3,Array{ForwardDiff.Dual{ForwardDiff.Tag{typeof(test_fun),Float64},Float64,3},1}}, ::Val{true}) at /bbkinghome/asharris/.julia/packages/ForwardDiff/QOqCN/src/gradient.jl:19
[14] gradient(::Function, ::Array{Float64,1}, ::ForwardDiff.GradientConfig{ForwardDiff.Tag{typeof(test_fun),Float64},Float64,3,Array{ForwardDiff.Dual{ForwardDiff.Tag{typeof(test_fun),Float64},Float64,3},1}}) at /bbkinghome/asharris/.julia/packages/ForwardDiff/QOqCN/src/gradient.jl:17 (repeats 2 times)
[15] top-level scope at REPL[7858]:1
[16] run_repl(::REPL.AbstractREPL, ::Any) at /builddir/build/BUILD/julia/build/usr/share/julia/stdlib/v1.5/REPL/src/REPL.jl:288
I have limited experience using the FowardDiff package and am probably misunderstanding how the Dual type works, so I would really appreciate if someone knows how to solve this issue. Thanks so much!
z_star = find_zero(z -> logistic(z) - p, 0.0)
You have a fixed initial condition which is non-dual. Make it dual.
z_star = find_zero(z -> logistic(z) - p, zero(eltype(θ))

MXNet regression example in Julia fails

Running the code for regression-example.jl fails with the following error:
MethodError: no method matching (::MXNet.mx.var"#5784#5785")(::Float64, ::NDArray{Float32,1})
Closest candidates are:
#5784(::Any) at /Users/**********/.julia/packages/MXNet/XoVCW/src/metric.jl:263
Stacktrace:
[1] (::Base.var"#3#4"{MXNet.mx.var"#5784#5785"})(::Tuple{Float64,NDArray{Float32,1}}) at ./generator.jl:36
[2] iterate at ./generator.jl:47 [inlined]
[3] mapfoldl_impl(::Function, ::Function, ::NamedTuple{(),Tuple{}}, ::Base.Generator{Base.Iterators.Zip{Tuple{Float64,Array{NDArray{Float32,1},1}}},Base.var"#3#4"{MXNet.mx.var"#5784#5785"}}) at ./reduce.jl:55
[4] #mapfoldl#186 at ./reduce.jl:72 [inlined]
[5] mapfoldl at ./reduce.jl:72 [inlined]
[6] #mapreduce#194 at ./reduce.jl:200 [inlined]
[7] mapreduce at ./reduce.jl:200 [inlined]
[8] #reduce#196 at ./reduce.jl:357 [inlined]
[9] reduce(::Function, ::Base.Generator{Base.Iterators.Zip{Tuple{Float64,Array{NDArray{Float32,1},1}}},Base.var"#3#4"{MXNet.mx.var"#5784#5785"}}) at ./reduce.jl:357
[10] #mapreduce#195(::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}, ::typeof(mapreduce), ::Function, ::Function, ::Float64, ::Vararg{Any,N} where N) at ./reduce.jl:201
[11] mapreduce(::Function, ::Function, ::Float64, ::Array{NDArray{Float32,1},1}) at ./reduce.jl:201
[12] get(::MSE{1}) at /Users/*******/.julia/packages/MXNet/XoVCW/src/metric.jl:263
[13] #fit#5876(::Base.Iterators.Pairs{Symbol,Any,NTuple{5,Symbol},NamedTuple{(:initializer, :eval_metric, :eval_data, :n_epoch, :callbacks),Tuple{NormalInitializer,MSE{1},ArrayDataProvider{Float32,2},Int64,Array{MXNet.mx.BatchCallback,1}}}}, ::typeof(MXNet.mx.fit), ::FeedForward, ::ADAM, ::ArrayDataProvider{Float32,2}) at /Users/********/.julia/packages/MXNet/XoVCW/src/model.jl:545
[14] (::MXNet.mx.var"#kw##fit")(::NamedTuple{(:initializer, :eval_metric, :eval_data, :n_epoch, :callbacks),Tuple{NormalInitializer,MSE{1},ArrayDataProvider{Float32,2},Int64,Array{MXNet.mx.BatchCallback,1}}}, ::typeof(MXNet.mx.fit), ::FeedForward, ::ADAM, ::ArrayDataProvider{Float32,2}) at ./none:0
[15] top-level scope at In[33]:81
Crucial piece of code failing:
mx.fit(model, optimizer, trainprovider,
initializer = mx.NormalInitializer(0.0, 0.1),
eval_metric = mx.MSE(),
eval_data = evalprovider,
n_epoch = 20,
callbacks = [mx.speedometer()])
I suspect the issue is related to mx.MSE() usage but I have no clue how to fix it particularly that there is no good documentation for MXNet.jl

How to overload Base.show for custom array types?

Suppose I make my own custom vector type with it's own custom show method:
struct MyVector{T} <: AbstractVector{T}
v::Vector{T}
end
function Base.show(io::IO, v::MyVector{T}) where {T}
println(io, "My custom vector with eltype $T with elements")
for i in eachindex(v)
println(io, " ", v.v[i])
end
end
If I try making one of these objects at the REPL I get unexpected errors related to functions I never intended to call:
julia> MyVector([1, 2, 3])
Error showing value of type MyVector{Int64}:
ERROR: MethodError: no method matching size(::MyVector{Int64})
Closest candidates are:
size(::AbstractArray{T,N}, ::Any) where {T, N} at abstractarray.jl:38
size(::BitArray{1}) at bitarray.jl:77
size(::BitArray{1}, ::Integer) at bitarray.jl:81
...
Stacktrace:
[1] axes at ./abstractarray.jl:75 [inlined]
[2] summary(::IOContext{REPL.Terminals.TTYTerminal}, ::MyVector{Int64}) at ./show.jl:1877
[3] show(::IOContext{REPL.Terminals.TTYTerminal}, ::MIME{Symbol("text/plain")}, ::MyVector{Int64}) at ./arrayshow.jl:316
[4] display(::REPL.REPLDisplay, ::MIME{Symbol("text/plain")}, ::Any) at /Users/mason/julia/usr/share/julia/stdlib/v1.3/REPL/src/REPL.jl:132
[5] display(::REPL.REPLDisplay, ::Any) at /Users/mason/julia/usr/share/julia/stdlib/v1.3/REPL/src/REPL.jl:136
[6] display(::Any) at ./multimedia.jl:323
...
Okay, whatever so I'll implement Base.size so it'll leave me alone:
julia> Base.size(v::MyVector) = size(v.v)
julia> MyVector([1, 2, 3])
3-element MyVector{Int64}:
Error showing value of type MyVector{Int64}:
ERROR: getindex not defined for MyVector{Int64}
Stacktrace:
[1] error(::String, ::Type) at ./error.jl:42
[2] error_if_canonical_getindex(::IndexCartesian, ::MyVector{Int64}, ::Int64) at ./abstractarray.jl:991
[3] _getindex at ./abstractarray.jl:980 [inlined]
[4] getindex at ./abstractarray.jl:981 [inlined]
[5] isassigned(::MyVector{Int64}, ::Int64, ::Int64) at ./abstractarray.jl:405
[6] alignment(::IOContext{REPL.Terminals.TTYTerminal}, ::MyVector{Int64}, ::UnitRange{Int64}, ::UnitRange{Int64}, ::Int64, ::Int64, ::Int64) at ./arrayshow.jl:67
[7] print_matrix(::IOContext{REPL.Terminals.TTYTerminal}, ::MyVector{Int64}, ::String, ::String, ::String, ::String, ::String, ::String, ::Int64, ::Int64) at ./arrayshow.jl:186
[8] print_matrix at ./arrayshow.jl:159 [inlined]
[9] print_array at ./arrayshow.jl:308 [inlined]
[10] show(::IOContext{REPL.Terminals.TTYTerminal}, ::MIME{Symbol("text/plain")}, ::MyVector{Int64}) at ./arrayshow.jl:345
[11] display(::REPL.REPLDisplay, ::MIME{Symbol("text/plain")}, ::Any) at /Users/mason/julia/usr/share/julia/stdlib/v1.3/REPL/src/REPL.jl:132
[12] display(::REPL.REPLDisplay, ::Any) at /Users/mason/julia/usr/share/julia/stdlib/v1.3/REPL/src/REPL.jl:136
[13] display(::Any) at ./multimedia.jl:323
...
Hmm, now it wants getindex
julia> Base.getindex(v::MyVector, args...) = getindex(v.v, args...)
julia> MyVector([1, 2, 3])
3-element MyVector{Int64}:
1
2
3
What? That wasn't the print formatting I told it to do! what's going on here?
The problem is that in julia, Base defines a method Base.show(io::IO ::MIME"text/plain", X::AbstractArray) which is actually more specific than the Base.show(io::IO, v::MyVector) for the purposes of display. This section of the julia manual describes the sort of custom printing that AbstractArray uses. So if we want to use our custom show method, we instead need to do
julia> function Base.show(io::IO, ::MIME"text/plain", v::MyVector{T}) where {T}
println(io, "My custom vector with eltype $T and elements")
for i in eachindex(v)
println(io, " ", v.v[i])
end
end
julia> MyVector([1, 2, 3])
My custom vector with eltype Int64 and elements
1
2
3
See also: https://discourse.julialang.org/t/extending-base-show-for-array-of-types/31289

LoadError:PyCall.PyError ("\$(Expr(:escape, :(ccall(#= /home/omkar/.julia/packages/PyCall/ttONZ/src/pyfncall.jl:44 =# #pysym(:PyObject_Call)

I am getting the following Error for PyCall and am on Julia v 1.2.0
ERROR: LoadError: PyCall.PyError("\$(Expr(:escape, :(ccall(#= /home/omkar/.julia/packages/PyCall/ttONZ/src/pyfncall.jl:44 =# #pysym(:PyObject_Call), PyPtr, (PyPtr, PyPtr, PyPtr), o, pyargsptr, kw))))", PyCall.PyObject(Ptr{PyCall.PyObject_struct} #0x00007f9ea56a2520), PyCall.PyObject(Ptr{PyCall.PyObject_struct} #0x00007f9db65dcca8), PyCall.PyObject(Ptr{PyCall.PyObject_struct} #0x00007f9d004f9f08))
Stacktrace:
[1] pyerr_check at /home/omkar/.julia/packages/PyCall/ttONZ/src/exception.jl:60 [inlined]
[2] pyerr_check at /home/omkar/.julia/packages/PyCall/ttONZ/src/exception.jl:64 [inlined]
[3] macro expansion at /home/omkar/.julia/packages/PyCall/ttONZ/src/exception.jl:84 [inlined]
[4] __pycall!(::PyCall.PyObject, ::Ptr{PyCall.PyObject_struct}, ::PyCall.PyObject, ::Ptr{Nothing}) at /home/omkar/.julia/packages/PyCall/ttONZ/src/pyfncall.jl:44
[5] _pycall!(::PyCall.PyObject, ::PyCall.PyObject, ::Tuple{String,String,String,String,String,Float64,String,Float64}, ::Int64, ::Ptr{Nothing}) at /home/omkar/.julia/packages/PyCall/ttONZ/src/pyfncall.jl:29
[6] _pycall!(::PyCall.PyObject, ::PyCall.PyObject, ::Tuple{String,String,String,String,String,Float64,String,Float64}, ::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}) at /home/omkar/.julia/packages/PyCall/ttONZ/src/pyfncall.jl:11
[7] #call#111(::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}, ::PyCall.PyObject, ::String, ::Vararg{Any,N} where N) at /home/omkar/.julia/packages/PyCall/ttONZ/src/pyfncall.jl:89
[8] (::PyCall.PyObject)(::String, ::Vararg{Any,N} where N) at /home/omkar/.julia/packages/PyCall/ttONZ/src/pyfncall.jl:89
I have already tried update and below is the setup for the build file
ENV["PYTHON"] = " "
Pkg.build("PyCall")
using PyCall, Conda
pyexec = pyimport("sys").executable

No method matching ^

I created a UnitRange in Julia and trying to create a plot of x with respect to x and x ^ 2. I have written the following code.
x = [-10:10]
p1 = plot(x, x)
p2 = plot(x, x.^2)
I am getting the following error:
MethodError: no method matching ^(::UnitRange{Int64}, ::Int64)
Closest candidates are:
^(!Matched::Float16, ::Integer) at math.jl:795
^(!Matched::Missing, ::Integer) at missing.jl:120
^(!Matched::Missing, ::Number) at missing.jl:93
...
Stacktrace:
[1] _broadcast_getindex at ./none:0 [inlined]
[2] getindex at ./broadcast.jl:515 [inlined]
[3] copy at ./broadcast.jl:790 [inlined]
[4] materialize(::Base.Broadcast.Broadcasted{Base.Broadcast.DefaultArrayStyle{1},Nothing,typeof(Base.literal_pow),Tuple{Base.RefValue{typeof(^)},Array{UnitRange{Int64},1},Base.RefValue{Val{2}}}}) at ./broadcast.jl:756
[5] top-level scope at In[18]:3
What is the mistake in my code?
You can change:
x.^2
to:
x[1].^2

Resources