Manipulating large dataset with dcast - r

Apologies if this is a repeat question but I could not find the specific answer I am looking for. I have a dataframe with counts of different species caught on a given trip. A simplified example with 5 trips and 4 species is below:
trip = c(1,1,1,2,2,3,3,3,3,4,5,5)
species = c("a","b","c","b","d","a","b","c","d","c","c","d")
count = c(5,7,3,1,8,10,1,4,3,1,2,10)
dat = cbind.data.frame(trip, species, count)
dat
> dat
trip species count
1 1 a 5
2 1 b 7
3 1 c 3
4 2 b 1
5 2 d 8
6 3 a 10
7 3 b 1
8 3 c 4
9 3 d 3
10 4 c 1
11 5 c 2
12 5 d 10
I am only interested in the counts of species b for each trip. So I want to manipulate this data frame so I end up with one that looks like this:
trip2 = c(1,2,3,4,5)
species2 = c("b","b","b","b","b")
count2 = c(7,1,1,0,0)
dat2 = cbind.data.frame(trip2, species2, count2)
dat2
> dat2
trip2 species2 count2
1 1 b 7
2 2 b 1
3 3 b 1
4 4 b 0
5 5 b 0
I want to keep all trips, including trips where species b was not observed. So I can't just subset the data by species b. I know I can cast the data so species are the columns and then just remove the columns for the other species like so:
library(dplyr)
library(reshape2)
test = dcast(dat, trip ~ species, value.var = "count", fun.aggregate = sum)
test
> test
trip a b c d
1 1 5 7 3 0
2 2 0 1 0 8
3 3 10 1 4 3
4 4 0 0 1 0
5 5 0 0 2 10
However, my real dataset has several hundred species caught on thousands of trips, and if I try to cast that many species to columns R chokes. There are way too many columns. Is there a way to specify in dcast that I only want to cast species b? Or is there another way to do this that doesn't require casting the data? Thank you.

Here is a data.table approach which I suspect will be very fast for you:
library(data.table)
setDT(dat)
result <- dat[,.(species = "b", count = sum(.SD[species == "b",count])),by = trip]
result
trip species count
1: 1 b 7
2: 2 b 1
3: 3 b 1
4: 4 b 0
5: 5 b 0

We can use tidyverse
library(dplyr)
library(tidyr)
dat %>%
filter(species == 'b') %>%
group_by(trip, species) %>%
summarise(count = sum(count)) %>%
ungroup %>%
complete(trip = unique(dat$trip), fill = list(species = 'b', count = 0))
# A tibble: 5 x 3
# trip species count
# <dbl> <chr> <dbl>
#1 1 b 7
#2 2 b 1
#3 3 b 1
#4 4 b 0
#5 5 b 0

Related

How to create new column of repeating sequence based on other column

I have a the following dataframe:
Participant_ID Order
1 A
1 A
2 B
2 B
3 A
3 A
4 B
4 B
5 B
5 B
6 A
6 A
Every two rows refer to the same participant. I want to create a new column based on the value in the column 'Order'. If the 'Order' == A, then I want it to create a new column with two rows of [1, 2], and then if the 'Order' == B, then I want it to create two rows of [2,1] in the same column
The preferred output would be the following:
Participant_ID Order Period
1 A 1
1 A 2
2 B 2
2 B 1
3 A 1
3 A 2
4 B 2
4 B 1
5 B 2
5 B 1
6 A 1
6 A 2
Any help would be appreciated
Here are a couple of possibilities. This assumes that Order value is same for a given Participant_ID. If this isn't the case, you will need to include additional logic.
You can use if_else:
library(tidyverse)
df %>%
group_by(Participant_ID) %>%
mutate(Period = if_else(Order == "A", 1:2, 2:1))
Or to explicitly check for multiple different values (e.g., "A", "B", etc.), have more flexibility, and include NA for other cases, you can use case_when:
df %>%
group_by(Participant_ID) %>%
mutate(Period = case_when(
Order == "A" ~ 1:2,
Order == "B" ~ 2:1,
TRUE ~ NA_integer_
))
Output
Participant_ID Order Period
<int> <chr> <int>
1 1 A 1
2 1 A 2
3 2 B 2
4 2 B 1
5 3 A 1
6 3 A 2
7 4 B 2
8 4 B 1
9 5 B 2
10 5 B 1
11 6 A 1
12 6 A 2

In R, take sum of multiple variables if combination of values in two other columns are unique

I am trying to expand on the answer to this problem that was solved, Take Sum of a Variable if Combination of Values in Two Other Columns are Unique
but because I am new to stack overflow, I can't comment directly on that post so here is my problem:
I have a dataset like the following but with about 100 columns of binary data as shown in "ani1" and "bni2" columns.
Locations <- c("A","A","A","A","B","B","C","C","D", "D","D")
seasons <- c("2", "2", "3", "4","2","3","1","2","2","4","4")
ani1 <- c(1,1,1,1,0,1,1,1,0,1,0)
bni2 <- c(0,0,1,1,1,1,0,1,0,1,1)
df <- data.frame(Locations, seasons, ani1, bni2)
Locations seasons ani1 bni2
1 A 2 1 0
2 A 2 1 0
3 A 3 1 1
4 A 4 1 1
5 B 2 0 1
6 B 3 1 1
7 C 1 1 0
8 C 2 1 1
9 D 2 0 0
10 D 4 1 1
11 D 4 0 1
I am attempting to sum all the columns based on the location and season, but I want to simplify so I get a total column for column #3 and after for each unique combination of location and season.
The problem is not all the columns have a 1 value for every combination of location and season and they all have different names.
I would like something like this:
Locations seasons ani1 bni2
1 A 2 2 0
2 A 3 1 1
3 A 4 1 1
4 B 2 0 1
5 B 3 1 1
6 C 1 1 0
7 C 2 1 1
8 D 2 0 0
9 D 4 1 2
Here is my attempt using a for loop:
df2 <- 0
for(i in 3:length(df)){
testdf <- data.frame(t(apply(df[1:2], 1, sort)), df[i])
df2 <- aggregate(i~., testdf, FUN=sum)
}
I get the following error:
Error in model.frame.default(formula = i ~ ., data = testdf) :
variable lengths differ (found for 'X1')
Thank you!
You can use dplyr::summarise and across after group_by.
library(dplyr)
df %>%
group_by(Locations, seasons) %>%
summarise(across(starts_with("ani"), ~sum(.x, na.rm = TRUE))) %>%
ungroup()
Another option is to reshape the data to long format using functions from the tidyr package. This avoids the issue of having to select columns 3 onwards.
library(dplyr)
library(tidyr)
df %>%
pivot_longer(cols = -c(Locations, seasons)) %>%
group_by(Locations, seasons, name) %>%
summarise(Sum = sum(value, na.rm = TRUE)) %>%
ungroup() %>%
pivot_wider(names_from = "name", values_from = "Sum")
Result:
# A tibble: 9 x 4
Locations seasons ani1 ani2
<chr> <int> <int> <int>
1 A 2 2 0
2 A 3 1 1
3 A 4 1 1
4 B 2 0 1
5 B 3 1 1
6 C 1 1 0
7 C 2 1 1
8 D 2 0 0
9 D 4 1 2

Extracting group dependent results from a dataframe

I have a dataframe made from different groups, and for each group real and predicted values. I want to extract values of tests on these values :
library(dplyr)
d = data.frame(group = c(rep(5,x="a"),rep(5,x="b")), real = c(rep(2, x=1:5)), pred = c(2,1,3,4,5,1,2,4,3,5))
group real pred
1 a 1 2
2 a 2 1
3 a 3 3
4 a 4 4
5 a 5 5
6 b 1 1
7 b 2 2
8 b 3 4
9 b 4 3
10 b 5 5
d <- d %>% group_by(group) %>% mutate( sg = ifelse(real == 1 & real == pred, 1, 0))
d <- d %>% group_by(group) %>% mutate( sp = ifelse(real <= 3 & pred <= 3, 1, 0))
d %>% distinct(sg, sp)
sg sp group
1 0 1 a
2 0 0 a
3 1 1 b
4 0 1 b
5 0 0 b
But I want something like this (only 1 result per group)
sg sp group
1 0 1 a
3 1 1 b
I am pretty sure dplyr, data.table or tidyr can do something but I cannot find how.
If it is always the first row of each group that you want to extract, you could use the do function:
d %>% do(.[1,])
Another option is to use the filter function like this:
d %>% filter(seq_along(sp) == 1)

How to Index subjects using R [duplicate]

This question already has answers here:
Numbering rows within groups in a data frame
(10 answers)
Closed 7 years ago.
I am working in R and I have a Data set that has multiple entries for each subject. I want to create an index variable that indexes by subject. For example:
Subject Index
1 A 1
2 A 2
3 B 1
4 C 1
5 C 2
6 C 3
7 D 1
8 D 2
9 E 1
The first A entry is indexed as 1, while the second A entry is indexed as 2. The first B entry is indexed as 1, etc.
Any help would be excellent!
Here.s a quick data.table aproach
library(data.table)
setDT(df)[, Index := seq_len(.N), by = Subject][]
# Subject Index
# 1: A 1
# 2: A 2
# 3: B 1
# 4: C 1
# 5: C 2
# 6: C 3
# 7: D 1
# 8: D 2
# 9: E 1
Or with base R
with(df, ave(as.numeric(Subject), Subject, FUN = seq_along))
## [1] 1 2 1 1 2 3 1 2 1
Or with dplyr (don't run this on a data.table class)
library(dplyr)
df %>%
group_by(Subject) %>%
mutate(Index = row_number())
Using dplyr
library(dplyr)
df %>% group_by(Subject) %>% mutate(Index = 1:n())
You get:
#Source: local data frame [9 x 2]
#Groups: Subject
#
# Subject Index
#1 A 1
#2 A 2
#3 B 1
#4 C 1
#5 C 2
#6 C 3
#7 D 1
#8 D 2
#9 E 1

R, dplyr: cumulative version of n_distinct

I have a dataframe as follows. It is ordered by column time.
Input -
df = data.frame(time = 1:20,
grp = sort(rep(1:5,4)),
var1 = rep(c('A','B'),10)
)
head(df,10)
time grp var1
1 1 1 A
2 2 1 B
3 3 1 A
4 4 1 B
5 5 2 A
6 6 2 B
7 7 2 A
8 8 2 B
9 9 3 A
10 10 3 B
I want to create another variable var2 which computes no of distinct var1 values so far i.e. until that point in time for each group grp . This is a little different from what I'd get if I were to use n_distinct.
Expected output -
time grp var1 var2
1 1 1 A 1
2 2 1 B 2
3 3 1 A 2
4 4 1 B 2
5 5 2 A 1
6 6 2 B 2
7 7 2 A 2
8 8 2 B 2
9 9 3 A 1
10 10 3 B 2
I want to create a function say cum_n_distinct for this and use it as -
d_out = df %>%
arrange(time) %>%
group_by(grp) %>%
mutate(var2 = cum_n_distinct(var1))
A dplyr solution inspired from #akrun's answer -
Ths logic is basically to set 1st occurrence of each unique values of var1 to 1 and rest to 0 for each group grp and then apply cumsum on it -
df = df %>%
arrange(time) %>%
group_by(grp,var1) %>%
mutate(var_temp = ifelse(row_number()==1,1,0)) %>%
group_by(grp) %>%
mutate(var2 = cumsum(var_temp)) %>%
select(-var_temp)
head(df,10)
Source: local data frame [10 x 4]
Groups: grp
time grp var1 var2
1 1 1 A 1
2 2 1 B 2
3 3 1 A 2
4 4 1 B 2
5 5 2 A 1
6 6 2 B 2
7 7 2 A 2
8 8 2 B 2
9 9 3 A 1
10 10 3 B 2
Assuming stuff is ordered by time already, first define a cumulative distinct function:
dist_cum <- function(var)
sapply(seq_along(var), function(x) length(unique(head(var, x))))
Then a base solution that uses ave to create groups (note, assumes var1 is factor), and then applies our function to each group:
transform(df, var2=ave(as.integer(var1), grp, FUN=dist_cum))
A data.table solution, basically doing the same thing:
library(data.table)
(data.table(df)[, var2:=dist_cum(var1), by=grp])
And dplyr, again, same thing:
library(dplyr)
df %>% group_by(grp) %>% mutate(var2=dist_cum(var1))
Try:
Update
With your new dataset, an approach in base R
df$var2 <- unlist(lapply(split(df, df$grp),
function(x) {x$var2 <-0
indx <- match(unique(x$var1), x$var1)
x$var2[indx] <- 1
cumsum(x$var2) }))
head(df,7)
# time grp var1 var2
# 1 1 1 A 1
# 2 2 1 B 2
# 3 3 1 A 2
# 4 4 1 B 2
# 5 5 2 A 1
# 6 6 2 B 2
# 7 7 2 A 2
Here's another solution using data.table that's pretty quick.
Generic Function
cum_n_distinct <- function(x, na.include = TRUE){
# Given a vector x, returns a corresponding vector y
# where the ith element of y gives the number of unique
# elements observed up to and including index i
# if na.include = TRUE (default) NA is counted as an
# additional unique element, otherwise it's essentially ignored
temp <- data.table(x, idx = seq_along(x))
firsts <- temp[temp[, .I[1L], by = x]$V1]
if(na.include == FALSE) firsts <- firsts[!is.na(x)]
y <- rep(0, times = length(x))
y[firsts$idx] <- 1
y <- cumsum(y)
return(y)
}
Example Use
cum_n_distinct(c(5,10,10,15,5)) # 1 2 2 3 3
cum_n_distinct(c(5,NA,10,15,5)) # 1 2 3 4 4
cum_n_distinct(c(5,NA,10,15,5), na.include = FALSE) # 1 1 2 3 3
Solution To Your Question
d_out = df %>%
arrange(time) %>%
group_by(grp) %>%
mutate(var2 = cum_n_distinct(var1))

Resources