Why is prediction error discrete in adabag? - r

I've got the table of 55 observations with 5 variables (F,H,R,T,U) and 1 classifier variable ("Group") in which I have two groups.
I'm doing data sampling by splitting the data into the training set (70%) and test set (30%). Then I run adaboosting and check how it works.
I want to get the adaboost error distribution for 100 samplings. But the distribution occurs to be discrete, outputting only five value variants: 0, 0.0588235294117647, 0.117647058823529 0.176470588235294 and 0.235294117647059.It doesn't change with mfinal argument. I guess there should be more! How it works?
I use the folowing code:
predictions<-list()
for (i in 1:100){
train.ind<-sample(nrow(df), nrow(df) * 0.7)
assign(paste0("ada",i), do.call(boosting,
c(formula=Group~F + H + R + T + U,
data=substitute(df[train.ind,]), mfinal=50, boos=FALSE,
coeflearn='Breiman'),envir = parent.frame()))
assign(paste0("pred",i), predict(ada,df[-train.ind,]))
predictions[[i]]<-get(paste0("pred",i))$error
}
hist(100*unlist(predictions),breaks=10,
main="Error probability [%] ntrees=10. 100 sampling operations", xlab="AdaBoost error")
dput(df)
structure(list(Group = structure(c(2L, 2L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L
), .Label = c("Canines", "Sled"), class = "factor"), F = c(0.263150566678734,
0.260347316635598, 0.26437277258488, 0.265710057607949, 0.254866055219663,
0.263294264681227, 0.261901194801303, 0.257318268395066, 0.26420207103455,
0.252093225560912, 0.255473253732324, 0.259067858940115, 0.259528043446917,
0.267331491048901, 0.260246447333382, 0.26035486437815, 0.254553215708594,
0.274074579975413, 0.262896904742862, 0.260504330262876, 0.258329960879536,
0.262664861154909, 0.256148832094211, 0.258509128895957, 0.256292083925698,
0.262358651734143, 0.254578103664353, 0.255386025800537, 0.264120912009577,
0.275232714712253, 0.265375720277527, 0.267601768121804, 0.262932226832642,
0.263633189245163, 0.262826186070212, 0.261058637786334, 0.262979366135887,
0.259232168979912, 0.252933156025384, 0.263963451214447, 0.258511197058683,
0.261957295373665, 0.253412282699461, 0.260748166588172, 0.263136039863289,
0.255317062006506, 0.258822015633545, 0.252757763183064, 0.260840486010478,
0.258620689655172, 0.263738813871524, 0.26241134751773, 0.26405425581719,
0.263685152057245, 0.262062787572784), H = c(0.242711147002311,
0.243850477245014, 0.245132979060713, 0.241794831140003, 0.235370262206577,
0.241392449436832, 0.236787894677703, 0.240434935369935, 0.234076675284456,
0.236978505926275, 0.23489414817613, 0.236461115627298, 0.241377100655228,
0.240778565421122, 0.238954656595734, 0.237237027626932, 0.23562891291975,
0.228247507171151, 0.235543469567304, 0.238348073568565, 0.237639956832591,
0.237993655975811, 0.23053394888479, 0.237553985998722, 0.238716430501961,
0.241044553515742, 0.23579805839771, 0.244646715997643, 0.245211405561299,
0.248463204730402, 0.237910443860818, 0.23772859908127, 0.242517289073306,
0.230376515634971, 0.239386381312522, 0.242971498213445, 0.248246377553633,
0.245227816034538, 0.237968589560153, 0.235998092571798, 0.235639593181493,
0.240320284697509, 0.239383587641388, 0.237939850635807, 0.240409493084614,
0.239705089012767, 0.235291279312896, 0.237725562711216, 0.251017166425148,
0.244410329082034, 0.247581475626206, 0.244082639531298, 0.248022977743474,
0.246127343801762, 0.246345535241663), R = c(0.23238005068085,
0.233913128793082, 0.232906768805408, 0.234580624702711, 0.23729616240706,
0.232552468336102, 0.23566425708828, 0.233370934038501, 0.23413197660754,
0.241255572873247, 0.240609653949119, 0.233790113420818, 0.239086204963073,
0.233644719452121, 0.23849468613068, 0.236846146329206, 0.239755264655663,
0.225925420024587, 0.239355887920232, 0.237429996633718, 0.23819641170916,
0.232039177131833, 0.223832380603256, 0.235838907338977, 0.236669843303285,
0.234916072348618, 0.238304558463179, 0.235904655883701, 0.232124394623714,
0.222879222527955, 0.233232723139038, 0.233871666714818, 0.235947441217151,
0.242585880964708, 0.234693056561268, 0.233941777691605, 0.229366135886539,
0.23539800906269, 0.239803390172875, 0.236505714593364, 0.24647853698133,
0.235569395017794, 0.242526379716086, 0.236207360559779, 0.234180854122081,
0.240408036487878, 0.239601762794737, 0.245058343429191, 0.234449894103222,
0.237875925051173, 0.230698942666106, 0.233475177304965, 0.231384358432554,
0.233114688928642, 0.230655428424067), T = c(0.261758235638105,
0.261889077326307, 0.257587479549, 0.257914486549337, 0.272467520166701,
0.262760817545838, 0.265646653432713, 0.268875862196498, 0.267589277073454,
0.269672695639567, 0.269022944142428, 0.270680912011768, 0.260008650934782,
0.258245224077857, 0.262304209940204, 0.265561961665713, 0.270062606715993,
0.271752492828849, 0.262203737769602, 0.263717599534841, 0.265833670578713,
0.267302305737446, 0.289484838417743, 0.268097977766344, 0.268321642269056,
0.261680722401497, 0.271319279474757, 0.264062602318119, 0.258543287805409,
0.253424858029389, 0.263481112722616, 0.260797966082108, 0.258603042876902,
0.263404414155158, 0.263094376055998, 0.262028086308617, 0.259408120423941,
0.26014200592286, 0.269294864241588, 0.263532741620391, 0.259370672778494,
0.262153024911032, 0.264677749943065, 0.265104622216242, 0.262273612930016,
0.264569812492848, 0.266284942258822, 0.264458330676529, 0.253692453461153,
0.25909305621162, 0.257980767836164, 0.260030835646007, 0.256538408006782,
0.25707281521235, 0.260936248761486), U = c(0.276642254462421,
0.275750907536407, 0.274138521440258, 0.279385339041277, 0.283770344294126,
0.273124933319108, 0.276770665567999, 0.272796198013943, 0.273326789343435,
0.278824893979485, 0.282917535762971, 0.269035729493284, 0.276381346021371,
0.275681845488406, 0.280473043309851, 0.274957072857482, 0.279453614114969,
0.265400901516186, 0.284438401450319, 0.275270067631668, 0.277080803992985,
0.268341093323935, 0.26334299428362, 0.27494270078114, 0.277070411973316,
0.276364671746617, 0.277622940087166, 0.275489489882784, 0.275412200032649,
0.267636555236813, 0.275475938484053, 0.27914367434201, 0.281161825726141,
0.287341513046201, 0.274277898463271, 0.272041104617345, 0.268317034458041,
0.277054269097656, 0.276448903327891, 0.282483963758864, 0.288513266166897,
0.280409252669039, 0.283610415243301, 0.27874587902846, 0.274619094771137,
0.275604453090517, 0.286100299160421, 0.288513039597016, 0.270078586556683,
0.280480764184118, 0.274123602187187, 0.277940178846747, 0.273784368554907,
0.282369310276287, 0.277372857201026)), na.action = structure(c(`2` = 2L,
`4` = 4L, `19` = 18L, `24` = 20L, `28` = 24L, `29` = 25L, `30` = 26L,
`32` = 28L, `33` = 29L, `42` = 38L, `54` = 46L, `69` = 54L, `74` = 58L,
`77` = 59L, `79` = 60L, `80` = 61L, `83` = 62L), class = "omit"), row.names = c(5L,
6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 15L, 16L, 17L, 18L, 20L,
25L, 26L, 27L, 31L, 41L, 44L, 46L, 47L, 48L, 50L, 51L, 52L, 55L,
57L, 64L, 65L, 66L, 67L, 68L, 70L, 71L, 72L, 85L, 86L, 87L, 88L,
89L, 90L, 91L, 92L, 93L, 94L, 95L, 96L, 97L, 98L, 99L, 100L,
101L, 102L, 103L), class = "data.frame")

Related

Gtsummary output with mgcv gam

I have the following data set:
structure(list(Age = c(83L, 26L, 26L, 20L, 20L, 77L, 32L, 21L,
15L, 75L, 27L, 81L, 81L, 15L, 24L, 16L, 35L, 27L, 30L, 31L, 24L,
24L, 31L, 79L, 30L, 19L, 20L, 42L, 62L, 83L, 79L, 18L, 26L, 66L,
23L, 83L, 77L, 80L, 57L, 42L, 32L, 76L, 85L, 29L, 65L, 79L, 9L,
34L, 20L, 16L, 34L, 22L, 19L, 23L, 25L, 14L, 53L, 28L, 79L, 22L,
22L, 21L, 82L, 81L, 16L, 19L, 77L, 15L, 18L, 15L, 78L, 24L, 16L,
14L, 29L, 18L, 50L, 17L, 43L, 8L, 14L, 85L, 31L, 20L, 30L, 23L,
78L, 29L, 6L, 61L, 14L, 22L, 10L, 83L, 15L, 13L, 15L, 15L, 29L,
8L, 9L, 15L, 8L, 9L, 15L, 9L, 34L, 8L, 9L, 9L, 16L, 8L, 25L,
21L, 23L, 13L, 56L, 10L, 7L, 27L, 8L, 8L, 8L, 8L, 80L, 80L, 6L,
15L, 42L, 25L, 23L, 21L, 8L, 11L, 43L, 69L, 34L, 34L, 14L, 12L,
10L, 22L, 78L, 16L, 76L, 12L, 10L, 16L, 6L, 13L, 66L, 11L, 26L,
12L, 16L, 13L, 24L, 76L, 10L, 65L, 20L, 13L, 25L, 14L, 12L, 15L,
43L, 51L, 27L, 15L, 24L, 34L, 63L, 17L, 15L, 9L, 12L, 17L, 82L,
75L, 24L, 44L, 69L, 11L, 10L, 12L, 10L, 10L, 70L, 54L, 45L, 42L,
84L, 54L, 23L, 23L, 14L, 81L, 17L, 42L, 44L, 16L, 15L, 43L, 45L,
50L, 53L, 23L, 53L, 49L, 13L, 69L, 14L, 65L, 14L, 13L, 22L, 67L,
59L, 52L, 54L, 44L, 78L, 62L, 69L, 10L, 63L, 57L, 22L, 12L, 62L,
9L, 82L, 53L, 54L, 66L, 49L, 63L, 51L, 9L, 45L, 49L, 77L, 49L,
61L, 62L, 57L, 67L, 16L, 65L, 75L, 45L, 16L, 55L, 17L, 64L, 67L,
56L, 52L, 63L, 10L, 62L, 14L, 66L, 68L, 15L, 13L, 43L, 47L, 55L,
69L, 21L, 67L, 34L, 52L, 15L, 31L, 64L, 55L, 13L, 48L, 71L, 64L,
13L, 25L, 34L, 50L, 61L, 70L, 33L, 57L, 51L, 46L, 57L, 69L, 46L,
8L, 11L, 46L, 71L, 33L, 38L, 56L, 17L, 29L, 28L, 6L, 8L), Sex = structure(c(1L,
1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L,
1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L,
2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L,
2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L,
2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L,
2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L,
2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L,
2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L,
2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L,
2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L,
2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L,
2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L,
1L, 2L, 2L), .Label = c("Male", "Female"), class = "factor"),
mean_AD_scaled = c(3.15891332561581, -0.0551328105526693,
0.582747640515478, 1.94179165777054, 1.7064645993306, 2.37250948563045,
1.015775832203, 1.36189033704266, -1.05640048650493, 0.184814975542474,
-0.143366705302007, 1.81560178585347, 2.06325078470728, -0.473088628698217,
0.414641167726219, 0.199887349084444, -0.60620959209809,
-0.17879228399189, -1.03483709078065, -1.43497010225613,
-0.958595084469815, 1.0203965598582, -1.44731404613503, -1.17191867788498,
-2.02547709312595, -1.22395687266857, -1.09952727795348,
-1.0830246791849, 1.21072653232248, 1.69997357714829, 1.53648783201423,
0.208688735094353, 0.0862394522314924, 1.08662698958276,
-0.731299290763917, 2.29307697689102, -0.660008064083659,
-1.21425334459264, 1.10191939777498, -2.0957781638801, -1.14947514355972,
0.248845058764562, 2.6526135953958, 0.197907037232212, -0.222469162066061,
1.92880961340592, 1.23328008397287, -1.17288683034607, -0.308282675662673,
-1.02603570477074, -1.32647101621898, -1.58316343919798,
-0.0440210607151585, -0.388375288352846, -0.935491446193807,
-0.63789458173376, 0.454577456746182, -1.77391147749773,
0.709267564407921, 0.125735671950958, -0.821073428064989,
-0.126534054558056, 0.519597695894384, 0.188005477971066,
0.212319306823438, -1.45807374053215, 1.5856655763446, -1.25641198358011,
-0.910847565366061, -1.1191763722206, 0.25300371365424, -0.750772357310844,
0.37932560636146, -0.871791414947088, -1.92771569802088,
-1.1752191976387, 0.210449012296334, -0.347778895382139,
-0.132254955464496, 0.953616043508016, -0.0862677135627232,
0.838977990728951, -1.8993092246739, -0.0254281327692267,
0.298022803094927, -1.21559555595915, 0.0134079829994995,
-0.763094297724715, 0.334768589686298, -1.12568939786794,
-2.11786964276497, -0.0434709740895377, 0.388237009696492,
1.30050066962355, -0.260645173884043, -0.60620959209809,
1.05945271027717, -0.275717547426008, -0.0238878902174922,
0.496604074943496, 0.534009965485611, -0.692903244295693,
-0.566933407028871, 0.125625654625835, -0.518305749324122,
1.79381835547894, -0.790708646330802, -0.227860010997131,
0.347420582075538, 0.784189362817269, -0.660118081408782,
1.29962053102256, -0.561652575422924, -0.710395998990384,
-1.29315777017148, -0.457356151205503, -1.01756437073621,
0.146528946399368, -1.07136284272178, -1.42968927065019,
0.798601632408495, -0.799730066990963, -0.431348055546223,
0.569545561500617, 2.32168148142323, 0.472070211440872, 1.65145593676866,
-0.814142336582189, -0.544489872703603, -0.315433801795725,
0.382626126115175, -0.623812364117908, 0.216279930527897,
-0.606099574772967, -0.367207954999011, 0.719829227619811,
-0.749122097433987, 0.934693063586709, -0.79026857703031,
-0.371872689584264, 0.0769979969210905, -0.793899148759394,
1.50414273842782, 0.730280873506577, -0.290569886317732,
0.303743704001367, 0.390877425499463, -1.00359217044547,
-0.534918365417827, 0.325967203676389, 0.129036191704673,
0.34434009697207, -0.141386393449775, -0.363401355549725,
-0.395416397160769, -0.0235578382421178, -1.13583299524436,
1.16781977552417, -1.31890182425046, 0.139377820266317, 0.0160483988024708,
0.481311666751279, -1.05475022662807, 0.839858129329941,
0.652498624644007, -0.350199276534864, -0.262075399110649,
0.178543988010412, -1.13198238886502, -0.05117218684821,
-1.29678834190056, 0.429603523943066, 1.05098137624263, -0.956504755292464,
0.502765045150433, -0.81678275238516, -1.50263075720731,
-0.826684311646306, 2.40100397283753, 2.06633126981075, -0.470558230220369,
0.484942238480364, 0.822035322659877, 0.143888530596397,
0.384056351341786, -0.63580425255641, 0.358422314587926,
-0.372422776209885, 0.0607154328027556, -0.113221958218067,
1.02710761669075, -0.349649189909243, 2.27195365046724, -0.507634068787109,
-0.326105482332738, -1.0396778530861, 1.06484355920824, 1.32151397872221,
-0.185173288849074, -0.651888785489516, -0.171311105883464,
-0.104200537557911, -0.693673365571561, -1.26609350819101,
0.411230630647381, -0.929770545287362, -0.481009876107135,
0.386146680519137, 0.0482834750637615, -0.198265350538812,
0.790020281048832, 0.926001694901924, -1.08918564939184,
0.50298507980068, -0.0694350628187722, 1.04966116834114,
0.00878725534429612, 1.48742010500899, 0.750194009353997,
0.423772605711498, -0.596418050162068, -0.652636903300361,
-0.308942779613417, 0.314437388003408, 0.679562886624478,
-1.24312189070515, -0.432712270377761, 0.00427654501421597,
-0.197935298563442, 0.228821905592019, 1.06957430418856,
-1.61612462980509, 1.9499329398297, -0.263285589687014, 0.156430505660519,
-0.322254875953402, -0.451085163673446, -0.35526007349056,
0.10780284795577, 0.408700232169533, -0.957604928543701,
-1.05662052115517, 1.00345389178912, -0.238751726184391,
0.300003114947154, -0.397946795638617, -0.0802167606809086,
0.943714484246865, 1.10973062785877, 1.76279346979401, 1.62087112038423,
0.25533608094687, 0.226841593739787, 0.869672824438507, -1.44960240649761,
-0.450315042397579, -0.199629565370345, 0.29813282042005,
0.760425620590513, 1.87391096816911, -0.454275666102039,
-0.0559029318285365, -0.343048150401812, -1.01371376435687,
0.68880434193488, -0.29222014619459, 1.16132875334186, -1.95715633422403,
-0.534368278792206, -0.560112332871189, 1.84508642898666,
-1.19150176175703, -0.772203732244971, -0.3443683583033,
-1.45684154649076, -0.633823940704178, -1.77454957798344,
0.279539892474118, -0.875532004001301, 1.26001429397797,
-0.536590628759707, 2.1869102581465, 0.211109116247078, 0.130246382281038,
-0.355810160116181, -0.898085555651692, -0.429741802599415,
1.13360438741065, 1.61338994227581, 0.588688576072169, 0.454137387445685,
0.747113524250528, 0.460848444278238, -0.38177424884541,
-0.169990897981981, -0.747361820232001, -0.760123829946369,
0.208028631143609, -1.28748087619509, 2.33950428809329, -0.973029357526068,
-1.06091119683501, 0.917530360867389, -0.35041931118511,
-1.90613029883158, -1.15057531681095, 0.65348878057012, 0.43147381847017
)), row.names = c(NA, -308L), class = c("tbl_df", "tbl",
"data.frame"))
I am using this gam model:
m1 <- gam(mean_AD_scaled ~ s(Age, bs = 'ad', k = -1) + Sex + ti(Age, by = Sex, bs ='fs'),
data = DF,
method = 'REML',
family = gaussian)
Output:
Family: gaussian
Link function: identity
Formula:
mean_AD_scaled ~ s(Age, bs = "ad", k = -1) + Sex + ti(Age,
by = Sex, bs = "fs")
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.04691 0.06976 0.672 0.502
SexFemale -0.12950 0.09428 -1.374 0.171
Approximate significance of smooth terms:
edf Ref.df F p-value
s(Age) 2.980 3.959 8.72 2.24e-06 ***
ti(Age):SexMale 2.391 2.873 23.47 < 2e-16 ***
ti(Age):SexFemale 1.000 1.000 43.40 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Rank: 48/49
R-sq.(adj) = 0.34 Deviance explained = 35.6%
-REML = 375.4 Scale est. = 0.63867 n = 308
But when I use gtsummary, I get a repeated value for each gender 'interaction':
tbl_regression(m1, tidy_fun = tidy_gam)
I see the following in a publication, which I am trying to replicate with gender and age:
I am not sure how to fix this. My goal is to print a table for a manuscript so any other gam-related information that can be added like edf and R^2.
I think you've found a bug in the handling of these types of interactions. While we work on a fix to the bug, this code should get you what you need. Thanks
library(gtsummary)
#> #BlackLivesMatter
library(mgcv)
packageVersion("gtsummary")
#> [1] ‘1.5.2’
m1 <- gam(marker ~ s(age, bs = 'ad', k = -1) + grade + ti(age, by = grade, bs ='fs'),
data = gtsummary::trial,
method = 'REML',
family = gaussian)
tbl_regression(m1, tidy_fun = gtsummary::tidy_gam) %>%
modify_table_body(
~ .x %>%
dplyr::select(-n_obs) %>%
dplyr::distinct()
) %>%
as_kable() # convert to kable to display on SO
Characteristic
Beta
95% CI
p-value
Grade
I
—
—
II
-0.39
-0.70, -0.08
0.014
III
-0.13
-0.43, 0.18
0.4
s(age)
>0.9
ti(age):gradeI
0.6
ti(age):gradeII
>0.9
ti(age):gradeIII
0.6
Created on 2022-02-21 by the reprex package (v2.0.1)

Speeding up a loop (extracting specific values from a data frame)

My task is to extract all values in a column "2" after sorting by factor level in another column "3" (for the interested, i am sorting fasta sequences by organism). I am using this very simple code to get what i need.
df <- read.table("outfile.txt", fill=T) # the original output file includes many empty cells
# df is availabe at the bottom of this post
# splitting by factors
list1 <- split(df, df$V3)
# extract all values in column 2
list2 <- lapply(list1, function(x) as.data.frame(x$V2))
# writing results to file
for (x in names(list2))
write.table(list2[[x]], file=paste(x,".txt"), quote=F, row.names = F, col.names=F)
The works well on a small df. However, the output file contains several gigabytes of data. I tried a subset (500,000 rows on my local machine with 8GB RAM), but the second command is extremely slow (or R just hangs).
So i wondered and am asking the community, if there is a better way to solve this. Thank you.
Here is df:
dput(df)
structure(list(V1 = structure(c(1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L,
2L, 1L, 1L, 1L, 1L, 1L), .Label = c("C", "U"), class = "factor"),
V2 = structure(c(10L, 2L, 27L, 29L, 25L, 32L, 28L, 39L, 40L,
22L, 8L, 7L, 19L, 38L, 15L, 3L, 16L, 26L, 34L, 13L, 17L,
18L, 14L, 41L, 44L, 12L, 45L, 46L, 5L, 1L, 31L, 4L, 37L,
11L, 43L, 20L, 21L, 30L, 23L, 35L, 24L, 42L, 9L, 33L, 36L,
6L), .Label = c("M02978:20:000000000-B8C4P:1:1101:11008:4137",
"M02978:20:000000000-B8C4P:1:1101:14389:3444", "M02978:20:000000000-B8C4P:1:1101:14986:3769",
"M02978:20:000000000-B8C4P:1:1101:15333:4161", "M02978:20:000000000-B8C4P:1:1101:15438:4092",
"M02978:20:000000000-B8C4P:1:1101:15516:4514", "M02978:20:000000000-B8C4P:1:1101:16313:3660",
"M02978:20:000000000-B8C4P:1:1101:16433:3650", "M02978:20:000000000-B8C4P:1:1101:16663:4462",
"M02978:20:000000000-B8C4P:1:1101:17179:3407", "M02978:20:000000000-B8C4P:1:1101:17779:4225",
"M02978:20:000000000-B8C4P:1:1101:18008:3981", "M02978:20:000000000-B8C4P:1:1101:18047:3851",
"M02978:20:000000000-B8C4P:1:1101:18920:3936", "M02978:20:000000000-B8C4P:1:1101:19086:3737",
"M02978:20:000000000-B8C4P:1:1101:19203:3783", "M02978:20:000000000-B8C4P:1:1101:19335:3908",
"M02978:20:000000000-B8C4P:1:1101:19520:3921", "M02978:20:000000000-B8C4P:1:1101:19612:3701",
"M02978:20:000000000-B8C4P:1:1101:19655:4289", "M02978:20:000000000-B8C4P:1:1101:19918:4313",
"M02978:20:000000000-B8C4P:1:1101:20321:3602", "M02978:20:000000000-B8C4P:1:1101:21089:4350",
"M02978:20:000000000-B8C4P:1:1101:22293:4406", "M02978:20:000000000-B8C4P:1:1101:22453:3490",
"M02978:20:000000000-B8C4P:1:1101:23026:3811", "M02978:20:000000000-B8C4P:1:1101:23065:3472",
"M02978:20:000000000-B8C4P:1:1101:23770:3507", "M02978:20:000000000-B8C4P:1:1101:23991:3472",
"M02978:20:000000000-B8C4P:1:1101:24290:4332", "M02978:20:000000000-B8C4P:1:1101:24415:4142",
"M02978:20:000000000-B8C4P:1:1101:25066:3498", "M02978:20:000000000-B8C4P:1:1101:25678:4466",
"M02978:20:000000000-B8C4P:1:1101:25992:3830", "M02978:20:000000000-B8C4P:1:1101:26431:4388",
"M02978:20:000000000-B8C4P:1:1101:26573:4479", "M02978:20:000000000-B8C4P:1:1101:5567:4179",
"M02978:20:000000000-B8C4P:1:1101:6323:3723", "M02978:20:000000000-B8C4P:1:1101:6675:3536",
"M02978:20:000000000-B8C4P:1:1101:6868:3559", "M02978:20:000000000-B8C4P:1:1101:7078:3965",
"M02978:20:000000000-B8C4P:1:1101:8145:4431", "M02978:20:000000000-B8C4P:1:1101:8449:4257",
"M02978:20:000000000-B8C4P:1:1101:8592:3966", "M02978:20:000000000-B8C4P:1:1101:9468:4026",
"M02978:20:000000000-B8C4P:1:1101:9970:4051"), class = "factor"),
V3 = c(926550L, 0L, 1121396L, 406818L, 1265505L, 1167006L,
1121399L, 0L, 177437L, 0L, 1536652L, 0L, 1196029L, 0L, 1178540L,
138119L, 0L, 1536652L, 186802L, 0L, 1322246L, 1232437L, 1196029L,
1121396L, 452637L, 0L, 0L, 0L, 1541959L, 1121403L, 96561L,
1167006L, 767528L, 0L, 0L, 653733L, 1423815L, 857293L, 0L,
0L, 0L, 468059L, 1167006L, 1232437L, 880073L, 761193L), V4 = c(171L,
NA, 264L, 88L, 356L, 257L, 128L, NA, 97L, NA, 243L, NA, 96L,
NA, 80L, 93L, NA, 138L, 155L, NA, 243L, 262L, 77L, 470L,
135L, NA, NA, NA, 124L, 161L, 211L, 202L, 91L, NA, NA, 146L,
98L, 93L, NA, NA, NA, 107L, 382L, 247L, 130L, 157L), V5 = structure(c(25L,
1L, 2L, 17L, 9L, 5L, 3L, 1L, 16L, 1L, 14L, 1L, 7L, 1L, 6L,
11L, 1L, 14L, 24L, 1L, 10L, 8L, 7L, 2L, 18L, 1L, 1L, 1L,
15L, 4L, 26L, 5L, 13L, 1L, 1L, 20L, 12L, 22L, 1L, 1L, 1L,
19L, 5L, 8L, 23L, 21L), .Label = c("", "1121396,", "1121399,",
"1121403,", "1167006,", "1178540,", "1196029,", "1232437,",
"1265505,", "1322246,", "138119,", "1423815,", "1460634,1460635,",
"1536652,", "1541959,", "177437,", "406818,", "452637,",
"468059,", "653733,", "761193,", "857293,", "880073,", "883109,888727,1161902,1230734,1392487,",
"926550,", "96561,"), class = "factor")), .Names = c("V1",
"V2", "V3", "V4", "V5"), class = "data.frame", row.names = c(NA,
-46L))
using data.table package combined with write.table.
order by V3 and then write the V2 columns separately for each group in V3.
library('data.table')
setDT(df)[ order(V3), write.table(V2, file = paste0( V3, ".txt")), by = V3]
This worked for me but I cannot speak for how fast it would be on your machine.
lapply(unique(df$V3), function(x) write.table(df[which(df$V3 == x),]$V2, file = paste(x, ".txt", sep = ""), quote = FALSE, row.names = FALSE, col.names = FALSE))

Broom::tidy error with dataframe of nnet::multinom models

I am generating multinom models using nnet, with a model fitted for each city in the dataset. When I attempt to use tidy with these models, I get the following error:
Error in probs[i, -1, drop = FALSE] : subscript out of bounds
However, if I produce a model for each City separately, and then use tidy I do not receive an error for any of the models. I am also able to use glace without an error.
What might be causing this error?
library(broom)
library(dplyr)
library(nnet)
dfstack <- structure(list(Var1 = c(73L, 71L, 66L, 75L, 96L, 98L, 98L, 65L,
75L, 74L, 71L, 98L, 100L, 87L, 78L, 50L, 73L, 82L, 70L, 70L,
31L, 34L, 32L, 100L, 100L, 100L, 54L, 51L, 36L, 48L, 66L, 60L,
59L, 72L, 76L, 90L, 85L, 76L, 55L, 53L, 42L, 54L, 54L, 10L, 34L,
18L, 6L, 16L, 63L, 41L, 68L, 55L, 52L, 57L, 64L, 61L, 68L, 44L,
33L, 19L, 38L, 54L, 44L, 87L, 100L, 100L, 63L, 75L, 76L, 100L,
100L, 64L, 95L, 90L, 99L, 98L, 87L, 62L, 62L, 88L, 79L, 85L),
Status = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("A",
"B", "C"), class = "factor"), City = structure(c(3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L,
3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L), .Label = c("Denver", "Miami", "NYC"), class = "factor"),
ID = structure(c(52L, 63L, 74L, 77L, 78L, 79L, 80L, 81L,
82L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 64L,
31L, 42L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 32L, 1L, 12L,
23L, 25L, 26L, 27L, 28L, 29L, 30L, 2L, 3L, 4L, 5L, 65L, 66L,
67L, 68L, 69L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 6L,
7L, 8L, 9L, 10L, 11L, 13L, 70L, 71L, 72L, 73L, 75L, 76L,
41L, 43L, 44L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L,
24L), .Label = c("Denver1", "Denver10", "Denver11", "Denver12",
"Denver13", "Denver14", "Denver15", "Denver16", "Denver17",
"Denver18", "Denver19", "Denver2", "Denver20", "Denver21",
"Denver22", "Denver23", "Denver24", "Denver25", "Denver26",
"Denver27", "Denver28", "Denver29", "Denver3", "Denver30",
"Denver4", "Denver5", "Denver6", "Denver7", "Denver8", "Denver9",
"Miami1", "Miami10", "Miami11", "Miami12", "Miami13", "Miami14",
"Miami15", "Miami16", "Miami17", "Miami18", "Miami19", "Miami2",
"Miami20", "Miami21", "Miami3", "Miami4", "Miami5", "Miami6",
"Miami7", "Miami8", "Miami9", "NYC1", "NYC10", "NYC11", "NYC12",
"NYC13", "NYC14", "NYC15", "NYC16", "NYC17", "NYC18", "NYC19",
"NYC2", "NYC20", "NYC21", "NYC22", "NYC23", "NYC24", "NYC25",
"NYC26", "NYC27", "NYC28", "NYC29", "NYC3", "NYC30", "NYC31",
"NYC4", "NYC5", "NYC6", "NYC7", "NYC8", "NYC9"), class = "factor")), class = "data.frame", row.names = c(NA, -82L), .Names = c("Var1", "Status", "City", "ID"))
Model.List <- dfstack %>% group_by(City) %>% do(modfits = multinom(Status~Var1, data=.))
tidy(Model.List, modfits) # produces error
glance(Model.List, modfits) # no error
# no error when each city on its own
df1 <- dfstack %>% filter(City == "NYC") %>% do(modfit1 = multinom(Status~Var1, data=.))
tidy(df1, modfit1)
df2 <- dfstack %>% filter(City == "Miami") %>% do(modfit1 = multinom(Status~Var1, data=.))
tidy(df2, modfit1)
df3 <- dfstack %>% filter(City == "Denver") %>% do(modfit1 = multinom(Status~Var1, data=.))
tidy(df3, modfit1)
Don't ask me to explain why, but I figured it out.
tidy.multinom calls summary.multinom which calls vcov.multinom which calls multinomHess. The error was being generated down in multinomHess, which is only run when the Hessian matrix is not generated in the original call to multinom. That is to say, you don't necessarily need to spend the time calculating the Hessian matrix if you don't intend to use the summary object.
For some reason, when the multinom objects are formed within the do call, summary.multinom is unable to calculate the Hessian matrix. This can be circumvented by calling multinom with Hess = TRUE. See below:
Model.List <-
dfstack %>%
group_by(City) %>%
do(modfits = multinom(Status~Var1,
data=.,
Hess = TRUE))
tidy(Model.List, modfits)
glance(Model.List, modfits)
In your original code, glance did not cast an error because glance.multinom does not rely on summary.multinom.

ggplot2: Inconsistent color from alpha

I am making several plots that have different x-axis limits, and I want to highlight a region of interest by adding a grey box. Even though I use the same geom_rect() command with the same alpha value in ggplot2, I get results with very different grey colors. I have looked here and here but so far have not figured out how to make these boxes the same level of transparency. Below is a reproducible example (with fake data) and the figures that it produces. Notice the different color of the grey rectangles. I want the grey to be the same across plots.
Data<-structure(list(X = c(34L, 27L, 28L, 47L, 26L, 3L, 13L, 31L, 39L,
16L, 45L, 5L, 49L, 17L, 29L, 43L, 1L, 35L, 41L, 10L, 48L, 24L,
12L, 11L, 30L, 40L, 8L, 4L, 20L, 25L, 50L, 22L, 9L, 21L, 18L,
7L, 15L, 44L, 6L, 36L, 46L, 33L, 2L, 37L, 23L, 14L, 42L, 38L,
19L, 32L, 34L, 27L, 28L, 47L, 26L, 3L, 13L, 31L, 39L, 16L, 45L,
5L, 49L, 17L, 29L, 43L, 1L, 35L, 41L, 10L, 48L, 24L, 12L, 11L,
30L, 40L, 8L, 4L, 20L, 25L, 50L, 22L, 9L, 21L, 18L, 7L, 15L,
44L, 6L, 36L, 46L, 33L, 2L, 37L, 23L, 14L, 42L, 38L, 19L, 32L
), Y = c(130L, 146L, 58L, 110L, 117L, 135L, 133L, 108L, 97L,
61L, 71L, 64L, 103L, 142L, 125L, 104L, 100L, 147L, 111L, 78L,
56L, 145L, 62L, 69L, 70L, 116L, 137L, 79L, 150L, 94L, 91L, 81L,
65L, 118L, 129L, 83L, 98L, 84L, 85L, 148L, 93L, 73L, 59L, 87L,
134L, 88L, 136L, 90L, 140L, 55L, 89L, 115L, 123L, 51L, 132L,
126L, 66L, 80L, 60L, 120L, 109L, 76L, 74L, 57L, 149L, 121L, 138L,
128L, 114L, 127L, 68L, 107L, 67L, 112L, 144L, 119L, 53L, 52L,
54L, 96L, 131L, 106L, 113L, 72L, 95L, 63L, 92L, 86L, 75L, 105L,
82L, 101L, 139L, 143L, 122L, 77L, 99L, 141L, 124L, 102L), B = structure(c(2L,
2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L,
1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L,
1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L,
2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L,
2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L,
1L, 1L, 1L), class = "factor", .Label = c("no", "yes"))), .Names = c("X",
"Y", "B"), row.names = c(NA, -100L), class = "data.frame")
Data2<-structure(list(variable = c(2.49676547444708, 0.67359598601097,
0.674751772966082, 0.0317590441796792, 0.485143583939748, 1.08231639527806,
0.0732344181040914, 1.62357048819912, 0.146833215667032, 0.823157103468943,
0.240761579418538, 1.37540376416553), DOY_mid_month = c(15, 46,
75, 106, 136, 167, 197, 228, 259, 289, 320, 350)), .Names = c("variable",
"DOY_mid_month"), row.names = c(NA, -12L), class = "data.frame")
test<-ggplot(data=Data) +
geom_rect(aes(xmin=5, xmax=30, ymin=1, ymax=40), alpha = 0.02) +
geom_point(aes(x = X, y = X, colour= B), data =Data, size=2) +
theme_bw()
test2 <-ggplot(data=Data2) +
geom_rect(aes(xmin=5, xmax=30, ymin=-Inf, ymax=Inf), alpha = 0.02) +
geom_point(aes(x = DOY_mid_month, y = variable), color="black", size=4) +
scale_x_continuous("Day of Year", limits = c(0, 366)) + # Use this to add back X-axis label for the bottom plot in panel
scale_y_continuous(expression(paste("Variable", sep=""))) +
theme_bw()
Plot result from first example:
Plot result from second example:
You are currently drawing one rectangle for each row of the dataset. The more rectangles you overlap, the darker they get, which is why the longer dataset has a darker rectangle. Use annotate instead of geom_rect to draw a single rectangle.
annotate(geom = "rect", xmin=5, xmax=30, ymin=-Inf, ymax=Inf, alpha = 0.2)
If you want to stick with geom_rect you can give a one row data.frame to that layer so that each rectangle is only drawn one time. Here I use a fake dataset, although you could put your rectangle limits in the data.frame, as well.
geom_rect(data = data.frame(fake = 1),
aes(xmin = 5, xmax= 30, ymin = -Inf, ymax = Inf), alpha = 0.2)

dplyr n_distinct() in filter takes forever where as base length(unique()) works like charm

I have a data frame such as this:
structure(list(x = c(1L, 1L, 2L, 2L, 3L, 3L, 4L, 4L, 5L, 5L,
6L, 6L, 7L, 7L, 8L, 8L, 9L, 9L, 10L, 10L, 11L, 11L, 12L, 12L,
13L, 13L, 14L, 14L, 15L, 15L, 16L, 16L, 17L, 17L, 18L, 18L, 19L,
19L, 20L, 20L, 21L, 21L, 22L, 22L, 23L, 23L, 24L, 24L, 25L, 25L,
26L, 26L, 27L, 27L, 28L, 28L, 29L, 29L, 30L, 30L, 31L, 31L, 32L,
32L, 33L, 33L, 34L, 34L, 35L, 35L, 36L, 36L, 37L, 37L, 38L, 38L,
39L, 39L, 40L, 40L, 41L, 41L, 42L, 42L, 43L, 43L, 44L, 44L, 45L,
45L, 46L, 46L, 47L, 47L, 48L, 48L, 49L, 49L, 50L, 50L, 51L, 51L,
52L, 52L, 53L, 53L, 54L, 54L, 55L, 55L, 56L, 56L, 57L, 57L, 58L,
58L, 59L, 59L, 60L, 60L, 61L, 61L, 62L, 62L, 63L, 63L, 64L, 64L,
65L, 65L, 66L, 66L, 67L, 67L, 68L, 68L, 69L, 69L, 70L, 70L, 71L,
71L, 72L, 72L, 73L, 73L, 74L, 74L, 75L, 75L, 76L, 76L, 77L, 77L,
78L, 78L, 79L, 79L, 80L, 80L, 81L, 81L, 82L, 82L, 83L, 83L, 84L,
84L, 85L, 85L, 86L, 86L, 87L, 87L, 88L, 88L, 89L, 89L, 90L, 90L,
91L, 91L, 92L, 92L, 93L, 93L, 94L, 94L, 95L, 95L, 96L, 96L, 97L,
97L, 98L, 98L, 99L, 99L, 100L, 100L), y = structure(c(1L, 2L,
2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L,
2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L,
2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L,
2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L,
1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L,
1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L,
1L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 2L), .Label = c("one", "two"), class = "factor")), class = "data.frame", row.names = c(NA,
-200L), .Names = c("x", "y"))
I am trying to filter groups of x that have two distinct y values using:
library(dplyr)
df %>% group_by(x) %>% filter(n_distinct(y) > 1)
On a large data set, this almost never finishes.
Changing to this works reasonably fast for the full data set:
library(dplyr)
df %>% group_by(x) %>% filter(length(unique(y)) > 1)
Any idea why n_distinct() is super slow to never finishing?

Resources