Im using ggstatsplot's ggscatterstats function to calculate correlation between various clinical parameters and then plotting them. For example
here my variables are age and WBC. This is taking all the data points irrespective of the class they belong. I would like to do the same with each FAB classification that is present in my data.
dat <- merge_clinical_class_TMB %>% select(FAB,AGE,Wbc,Platelet,HB,PB_Blasts,BM_Blasts,TMB_NONSYNONYMOUS)
df2 <- dat
library(ggstatsplot)
ggscatterstats(
df2,
x = AGE,
y = Wbc,
type = "np" # try the "robust" correlation too! It might be even better here
#, marginal.type = "boxplot"
)
My dataframe looks like this
head(df2)
FAB AGE Wbc Platelet HB PB_Blasts BM_Blasts TMB_NONSYNONYMOUS
1 M4 50 17 231 10 88 52 0.3000000
2 M3 61 1 90 10 44 0 0.4333333
3 M3 30 6 114 11 82 6 0.2333333
4 M0 77 92 105 9 67 56 0.4000000
5 M1 46 29 90 9 90 81 0.5666667
6 M1 68 3 63 8 91 55 0.9000000
My data
dput(df2)
structure(list(FAB = structure(c(5L, 4L, 4L, 1L, 2L, 2L, 3L,
3L, 3L, 5L, 3L, 5L, 1L, 5L, 5L, 3L, 3L, 3L, 1L, 2L, 1L, 4L, 6L,
6L, 5L, 3L, 5L, 7L, 5L, 1L, 6L, 5L, 5L, 6L, 5L, 6L, 3L, 3L, 4L,
4L, 5L, 7L, 3L, 3L, 5L, 2L, 5L, 1L, 3L, 6L, 2L, 5L, 2L, 5L, 7L,
3L, 3L, 8L, 6L, 4L, 2L, 2L, 2L, 2L, 3L, 8L, 3L, 2L, 2L, 4L, 6L,
3L, 3L, 3L, 2L, 3L, 2L, 2L, 2L, 3L, 6L, 2L, 1L, 3L, 2L, 5L, 5L,
1L, 2L, 5L, 6L, 6L, 2L, 6L, 4L, 2L, 5L, 2L, 2L, 2L, 1L, 4L, 4L,
1L, 3L, 9L, 6L, 5L, 5L, 1L, 3L, 3L, 5L, 1L, 2L, 2L, 3L, 5L, 1L,
5L, 5L, 6L, 2L, 2L, 2L, 1L, 3L, 3L, 6L, 5L, 2L, 5L, 1L, 2L, 8L,
2L, 3L, 9L, 5L, 2L, 1L, 5L, 3L, 5L, 5L, 1L, 3L, 2L, 5L, 3L, 6L,
5L, 1L, 2L, 2L, 5L, 3L, 5L, 5L, 6L, 5L, 5L, 3L, 5L, 6L, 3L, 2L,
3L, 3L, 2L, 4L, 6L, 4L, 1L, 2L, 6L, 3L, 6L, 2L, 3L, 2L, 4L, 2L,
2L, 4L, 3L, 3L, 4L, 4L, 4L, 3L, 4L, 3L, 6L, 2L, 4L, 2L, 5L, 2L,
4L), .Label = c("M0", "M1", "M2", "M3", "M4", "M5", "M6", "M7",
"nc"), class = "factor"), AGE = c(50L, 61L, 30L, 77L, 46L, 68L,
23L, 64L, 76L, 81L, 25L, 78L, 39L, 49L, 57L, 63L, 62L, 52L, 76L,
64L, 65L, 61L, 44L, 31L, 64L, 33L, 55L, 50L, 64L, 59L, 59L, 77L,
33L, 48L, 35L, 66L, 67L, 51L, 74L, 51L, 64L, 77L, 63L, 37L, 57L,
53L, 62L, 39L, 72L, 66L, 51L, 51L, 18L, 63L, 54L, 75L, 40L, 60L,
76L, 33L, 63L, 53L, 75L, 67L, 66L, 77L, 64L, 76L, 51L, 42L, 51L,
59L, 43L, 45L, 60L, 47L, 68L, 24L, 48L, 73L, 60L, 44L, 71L, 25L,
60L, 57L, 55L, 69L, 42L, 42L, 45L, 50L, 41L, 21L, 50L, 69L, 76L,
70L, 27L, 76L, 65L, 48L, 59L, 69L, 81L, 22L, 61L, 51L, 63L, 61L,
22L, 73L, 49L, 41L, 47L, 54L, 44L, 55L, 83L, 78L, 59L, 57L, 57L,
88L, 43L, 71L, 62L, 75L, 62L, 58L, 65L, 66L, 60L, 35L, 76L, 72L,
35L, 73L, 67L, 70L, 48L, 65L, 41L, 52L, 67L, 58L, 34L, 60L, 55L,
56L, 61L, 31L, 71L, 56L, 57L, 60L, 57L, 58L, 79L, 55L, 34L, 76L,
82L, 67L, 67L, 54L, 53L, 71L, 61L, 30L, 50L, 35L, 29L, 45L, 38L,
81L, 31L, 75L, 67L, 29L, 51L, 40L, 32L, 57L, 25L, 63L, 75L, 25L,
68L, 62L, 25L, 31L, 68L, 45L, 61L, 35L, 22L, 23L, 21L, 53L),
Wbc = c(17L, 1L, 6L, 92L, 29L, 3L, 32L, 117L, 62L, 91L, 34L,
10L, 2L, 57L, 88L, 77L, 75L, 4L, 15L, 1L, 3L, 86L, 9L, 137L,
132L, 3L, 22L, 6L, 3L, 1L, 12L, 40L, 26L, 116L, 53L, 112L,
2L, 42L, 32L, 4L, 2L, 3L, 17L, 19L, 14L, 3L, 119L, 5L, 3L,
79L, 104L, 3L, 35L, 77L, 2L, 8L, 8L, 1L, 4L, 1L, 46L, 2L,
6L, 31L, 3L, 2L, 3L, 34L, 2L, 2L, 15L, 12L, 4L, 29L, 12L,
12L, 60L, 224L, 33L, 2L, 7L, 14L, 5L, 11L, 47L, 5L, 31L,
6L, 11L, 38L, 5L, 7L, 134L, 93L, 3L, 10L, 3L, 48L, 90L, 297L,
1L, 1L, 1L, 2L, 2L, 115L, 35L, 50L, 18L, 62L, 52L, 15L, 12L,
48L, 81L, 13L, 35L, 28L, 78L, 17L, 30L, 99L, 20L, 3L, 172L,
6L, 28L, 98L, 59L, 101L, 68L, 2L, 2L, 43L, 4L, 38L, 34L,
59L, 37L, 1L, 111L, 49L, 43L, 298L, 26L, 47L, 14L, 16L, 114L,
203L, 8L, 133L, 1L, 31L, 3L, 68L, 3L, 20L, 19L, 73L, 20L,
5L, 1L, 15L, 45L, 68L, 88L, 36L, 10L, 23L, 1L, 72L, 1L, 2L,
40L, 12L, 13L, 7L, 46L, 2L, 64L, NA, 5L, 103L, 8L, 1L, 3L,
16L, 29L, 1L, 99L, 2L, 6L, 2L, 3L, 2L, 115L, 27L, 8L, 1L),
Platelet = c(231L, 90L, 114L, 105L, 90L, 63L, 38L, 100L,
32L, 32L, 23L, 98L, 215L, 14L, 56L, 19L, 110L, 22L, 85L,
42L, 16L, 22L, 50L, 42L, 15L, 61L, 65L, 50L, 134L, 102L,
57L, 29L, 111L, 50L, 44L, 34L, 28L, 232L, 42L, 58L, 27L,
86L, 23L, 38L, 76L, 108L, 52L, 175L, 52L, 132L, 23L, 143L,
30L, 41L, 9L, 21L, 95L, 59L, 79L, 38L, 11L, 68L, 22L, 141L,
168L, 70L, 41L, 21L, 25L, 35L, 14L, 20L, 67L, 116L, 45L,
57L, 8L, 34L, 32L, 60L, 93L, 145L, 48L, 33L, 50L, 129L, 9L,
61L, 176L, 12L, 53L, 136L, 40L, 73L, 27L, 12L, 166L, 30L,
87L, 40L, 94L, 52L, 23L, 127L, 39L, 57L, 35L, 21L, 148L,
25L, 149L, 64L, 351L, 71L, 53L, 22L, 35L, 31L, 46L, 85L,
18L, 80L, 62L, 156L, 32L, 50L, 69L, 31L, 20L, 57L, 142L,
37L, 79L, 66L, 21L, 31L, 88L, 11L, 15L, 82L, 53L, 76L, 51L,
68L, 64L, 55L, 40L, 90L, 37L, 45L, 36L, 52L, 86L, 88L, 35L,
174L, 28L, 121L, 131L, 17L, 152L, 52L, 30L, 79L, 79L, 87L,
30L, 44L, 140L, 59L, 58L, 19L, 29L, 156L, 19L, 61L, 36L,
11L, 71L, 13L, 45L, 34L, 39L, 82L, 18L, 43L, 118L, 32L, 73L,
15L, 60L, 208L, 96L, 257L, 61L, 12L, 32L, 23L, 52L, 46L),
HB = c(10L, 10L, 11L, 9L, 9L, 8L, 7L, 10L, 10L, 11L, 11L,
10L, 10L, 8L, 10L, 13L, 11L, 9L, 9L, 8L, 9L, 12L, 8L, 6L,
10L, 7L, 8L, 9L, 11L, 12L, 11L, 10L, 10L, 9L, 8L, 10L, 9L,
13L, 9L, 8L, 12L, 9L, 12L, 9L, 9L, 9L, 11L, 10L, 11L, 12L,
12L, 11L, 9L, 10L, 9L, 9L, 10L, 9L, 10L, 9L, 8L, 9L, 9L,
10L, 12L, 10L, 10L, 8L, 10L, 9L, 11L, 11L, 11L, 8L, 9L, 9L,
9L, 6L, 10L, 10L, 9L, 9L, 8L, 9L, 9L, 7L, 9L, 11L, 12L, 10L,
9L, 10L, 12L, NA, 10L, 7L, 11L, 10L, 9L, 11L, 10L, 9L, 8L,
8L, 10L, 9L, 12L, 11L, 8L, 13L, 11L, 9L, 9L, 12L, 10L, 9L,
10L, 8L, 9L, 9L, 9L, 10L, 9L, 10L, 10L, 9L, 10L, 8L, 7L,
9L, 9L, 8L, 9L, 9L, 8L, 10L, 8L, 9L, 9L, 8L, 9L, 9L, 9L,
9L, 9L, 10L, 9L, 8L, 9L, 10L, 7L, 11L, 11L, 10L, 6L, 8L,
9L, 9L, 10L, 8L, 11L, 10L, 11L, 8L, 9L, 8L, 9L, 8L, 10L,
10L, 10L, 9L, 9L, 12L, 9L, 9L, 11L, 9L, 13L, 9L, 10L, 8L,
9L, 10L, 10L, 11L, 9L, 9L, 10L, 9L, 9L, 11L, 7L, 13L, 14L,
12L, 8L, 12L, 8L, 9L), PB_Blasts = c(88L, 44L, 82L, 67L,
90L, 91L, 59L, 60L, 48L, 98L, 53L, 40L, 75L, 81L, 90L, 57L,
46L, 67L, 74L, 61L, 99L, 73L, 74L, 83L, 72L, 33L, 35L, 70L,
85L, 61L, 95L, 80L, 71L, 83L, 90L, 90L, 50L, 64L, 51L, 93L,
95L, 75L, 80L, 52L, 61L, 72L, 65L, 83L, 45L, 32L, 85L, 73L,
86L, 82L, 30L, 48L, 47L, 58L, 78L, 100L, 81L, 82L, 40L, 89L,
70L, 47L, 80L, 73L, 62L, 88L, 57L, 70L, 40L, 56L, 86L, 37L,
90L, 77L, 75L, 37L, 94L, 86L, 97L, 72L, 87L, 40L, 52L, 60L,
68L, 40L, 95L, 81L, 92L, 90L, 90L, 42L, 37L, 84L, 77L, 99L,
83L, 65L, 79L, 82L, 46L, 94L, 71L, 39L, 62L, 95L, 55L, 11L,
51L, 42L, 77L, 72L, 39L, 69L, 75L, 70L, 75L, 52L, 91L, 33L,
87L, 55L, 72L, 76L, 85L, 79L, 79L, 81L, 50L, 81L, 33L, 88L,
34L, 90L, 69L, 32L, 92L, 90L, 47L, 75L, 30L, 59L, 57L, 62L,
54L, 60L, 89L, 82L, 90L, 90L, 64L, 89L, 43L, 58L, 58L, 97L,
71L, 91L, 53L, 75L, 85L, 67L, 86L, 70L, 43L, 86L, 74L, 87L,
0L, 0L, 86L, 53L, 63L, 41L, 76L, 45L, 85L, 0L, 94L, 6L, 91L,
0L, 2L, 93L, 85L, 82L, 56L, 40L, 48L, 0L, 14L, 90L, 71L,
51L, 91L, 42L), BM_Blasts = c(52L, 0L, 6L, 56L, 81L, 55L,
0L, 0L, 88L, 37L, 87L, 6L, 4L, 48L, 84L, 70L, 53L, 18L, 82L,
5L, 34L, 68L, 5L, 6L, 90L, 0L, 67L, 0L, 22L, 12L, 0L, 2L,
14L, 3L, 18L, 7L, 17L, 79L, 0L, 40L, 0L, 8L, 71L, 33L, 17L,
41L, 65L, 53L, 0L, 11L, 85L, 2L, 90L, 39L, 0L, 54L, 23L,
0L, 0L, 0L, 97L, 42L, 48L, 61L, 6L, 0L, 46L, 55L, 10L, 2L,
0L, 48L, 39L, 37L, 43L, 0L, 91L, 76L, 41L, 16L, 30L, 17L,
54L, 50L, 65L, 0L, 59L, 22L, 51L, 16L, 6L, 10L, 90L, 72L,
0L, 32L, 0L, 49L, 88L, 98L, 0L, 0L, 15L, 0L, 0L, 94L, 55L,
39L, 9L, 86L, 70L, 11L, 5L, 74L, 79L, 90L, 83L, 57L, 74L,
28L, 17L, 4L, 91L, 0L, 91L, 50L, 49L, 80L, 22L, 64L, 84L,
12L, 14L, 86L, 6L, 18L, 40L, 0L, 61L, 6L, 87L, 0L, 62L, 51L,
6L, 72L, 59L, 29L, 24L, 96L, 0L, 53L, 13L, 45L, 61L, 56L,
35L, 10L, 0L, 8L, 58L, 16L, 25L, 10L, 3L, 71L, 52L, 67L,
32L, 88L, 10L, 8L, 0L, 0L, 97L, 7L, 45L, 0L, 49L, 9L, 85L,
0L, 70L, 91L, 7L, 0L, 2L, 0L, 32L, 11L, 71L, 0L, 48L, 0L,
14L, 7L, 90L, 63L, 83L, 29L), TMB_NONSYNONYMOUS = c(0.3,
0.433333333333, 0.233333333333, 0.4, 0.566666666667, 0.9,
0.3, 0.133333333333, 0.4, 0.3, 0.233333333333, 0.5, 0.266666666667,
0, 0.2, 0.4, 0.266666666667, 0.333333333333, 0.4, 0.4, 0.566666666667,
0.0333333333333, 0.166666666667, 0.1, 0.166666666667, 0.266666666667,
0.3, 0.3, 0.466666666667, 0.0666666666667, 0.266666666667,
0.266666666667, 0.0333333333333, 0.1, 0.133333333333, 0.0333333333333,
0.5, 0.6, 0.0333333333333, 0.1, 0.0333333333333, 0.333333333333,
0.433333333333, 0.2, 0.466666666667, 0.2, 0.0333333333333,
0.733333333333, 0.2, 0.233333333333, 0.233333333333, 0.3,
0.133333333333, 0, 0.3, 0.333333333333, 0.333333333333, 0.266666666667,
0.533333333333, 0.2, 0.533333333333, 0.466666666667, 0.533333333333,
0.0333333333333, 0.3, 0.5, 0.333333333333, 0.266666666667,
0.5, 0.333333333333, 0.0666666666667, 0.466666666667, 0.333333333333,
0.266666666667, 0.7, 0.433333333333, 0.166666666667, 0.0666666666667,
0.233333333333, 0.5, 0.0333333333333, 0.2, 0.433333333333,
0.433333333333, 0.4, 0.233333333333, 0.0666666666667, 0.233333333333,
0.466666666667, 0.0666666666667, 0, 0.1, 0.4, 0.1, 0.2, 0.4,
0.433333333333, 0.566666666667, 0.2, 0.0333333333333, 0.533333333333,
0.566666666667, 0.3, 0.466666666667, 0.566666666667, 0.0333333333333,
0.4, 0.0666666666667, 0.633333333333, 0.4, 0.466666666667,
0.466666666667, 0.3, 0.5, 0.0333333333333, 0.333333333333,
0.333333333333, 0.266666666667, 0.366666666667, 0.666666666667,
0.333333333333, 0.533333333333, 0.466666666667, 0.6, 0.333333333333,
0.4, 0.266666666667, 0.366666666667, 0.2, 0.0333333333333,
0.266666666667, 0.3, 0.166666666667, 0.4, 0.566666666667,
0.4, 0.1, 0.1, 0.0666666666667, 0.366666666667, 0, 0.4, 0.0333333333333,
0.1, 0.0666666666667, 0.5, 0.3, 0.466666666667, 0.0333333333333,
0.4, 0.1, 0.0666666666667, 0.766666666667, 0.5, 0.466666666667,
0.333333333333, 0.4, 0.333333333333, 0.4, 0.266666666667,
0.2, 0.3, 0.7, 0.166666666667, 0.2, 0, 0.5, 0.166666666667,
0.533333333333, 0.233333333333, 0.166666666667, 0.133333333333,
0.0666666666667, 0.4, 0.333333333333, 0.133333333333, 0.4,
0.233333333333, 0.466666666667, 0.366666666667, 0.266666666667,
0.266666666667, 0.266666666667, 0.4, 0.2, 0.166666666667,
0.4, 0.333333333333, 0.166666666667, 0.266666666667, 0.1,
0.333333333333, 0.733333333333, 0.466666666667, 0.466666666667,
0.2, 0.1, 1.13333333333, 0.2, 0.3)), class = "data.frame", row.names = c(NA,
-200L))
Objective I would like to do the same with various FABI have FAB label from M0 to M7 I would like to ignore nc
So for each FAB label I would like to see the correlation for example if I have to take the M0 class then I would like to see their Age vs Wbc correlation and similarly for other FAB class as well. Is it possible to do these in ggstataplot as I don't see for correlation any such functionality there .
Simple way is I can subset them and do the same like M0 ,M1, M2 etc etc but that is a long process can I split the FAB column and pass it to the library?
I would like to know other ways to do the above and plot the same
Any help or suggestion would be appreciated
Update: We could also use the built in function see comments:
Many thanks to #Indrajeet Patil: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html#grouped-analysis-with-grouped_ggscatterstats
To subset FAB we use filter:
## for reproducibility
set.seed(123)
## plot
grouped_ggscatterstats(
## arguments relevant for ggscatterstats
data = df2 %>% filter(as.integer(FAB)<5),
x = AGE,
y = Wbc,
grouping.var = FAB,
type = "r",
# ggtheme = ggthemes::theme_tufte(),
## arguments relevant for combine_plots
annotation.args = list(
title = "Relationship between Wbc and Age",
caption = "Source: stackoverflow"
),
plotgrid.args = list(nrow = 2, ncol = 2)
)
First answer:
We could do something like this:
write a function and pass the data frame + the column FAB value:
library(ggstatsplot)
my_function <- function(df, x){
ggscatterstats(
df %>% filter(FAB == x),
x = AGE,
y = Wbc,
type = "np" # try the "robust" correlation too! It might be even better here
#, marginal.type = "boxplot"
)
}
M0 <- my_function(df2, "M0")
M1 <- my_function(df2, "M1")
M2 <- my_function(df2, "M2")
M3 <- my_function(df2, "M3")
.
.
.
library(patchwork)
(M0 / M1 | M2 / M3)
I have a dataset with phosphorus concentrations for 17 separate days (concentrations are cumulative, so increase from Day1 to Day102 in all cases). There are 22 different treatments (column = Trmt). Each Trmt has 3 Levels (Level = X, Y, Z). 2 measurements per Level for a total of 6 per Trmt.
My goal is to plot a 3-line graph of Days (x-axis; numeric) by Concentration (y-axis) using ggplot2. Data should be grouped by Trmt, Level and day for a total of 51 measurements (3 lines x 17 days).
My data looks as follows:
structure(list(Trmt = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 4L, 4L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 6L, 6L, 6L, 6L, 6L, 6L, 5L, 5L, 5L, 5L, 5L, 5L, 8L, 8L, 8L, 8L, 8L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 10L, 10L, 10L, 10L, 10L, 10L, 9L, 9L, 9L, 9L, 9L, 9L, 12L, 12L, 12L, 12L, 12L, 12L, 11L, 11L, 11L, 11L, 11L, 11L, 14L, 14L, 14L, 14L, 14L, 14L, 13L, 13L, 13L, 13L, 13L, 13L, 16L, 16L, 16L, 16L, 16L, 16L, 15L, 15L, 15L, 15L, 15L, 15L, 18L, 18L, 18L, 18L, 18L, 18L, 17L, 17L, 17L, 17L, 17L, 17L, 20L, 20L, 20L, 20L, 20L, 20L, 19L, 19L, 19L, 19L, 19L, 19L, 22L, 22L, 22L, 22L, 22L, 22L, 21L, 21L, 21L, 21L, 21L, 21L), .Label = c("A01nF", "A01yT", "A02nF", "A02yT", "A03nF", "A03yT", "A04nF", "A04yT", "A05nF", "A05yT", "A06nF", "A06yT", "A07nF", "A07yT", "A08nF", "A08yT", "A10nF", "A10yT", "A11nF", "A11yT", "A13nF", "A13yT"), class = "factor"), Level = structure(c(1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L), .Label = c("X", "Y", "Z"), class = "factor"), Day1 = c(3L, 1L, 4L, 2L, 4L, 2L, 5L, 4L, 1L, 2L, 5L, 1L, 5L, 2L, 5L, 5L, 3L, 5L, 3L, 3L, 1L, 4L, 1L, 1L, 5L, 4L, 1L, 5L, 4L, 5L, 3L, 5L, 3L, 5L, 3L, 4L, 2L, 4L, 2L, 4L, 3L, 1L, 1L, 3L, 1L, 3L, 1L, 5L, 2L, 4L, 4L, 3L, 1L, 4L, 4L, 1L, 4L, 1L, 2L, 5L, 1L, 5L, 1L, 2L, 4L, 4L, 4L, 4L, 2L, 4L, 5L, 5L, 4L, 1L, 3L, 2L, 3L, 5L, 4L, 3L, 2L, 3L, 5L, 4L, 1L, 3L, 4L, 3L, 3L, 5L, 3L, 1L, 1L, 4L, 4L, 5L, 1L, 4L, 4L, 4L, 1L, 4L, 5L, 5L, 1L, 5L, 3L, 1L, 4L, 1L, 4L, 5L, 5L, 3L, 3L, 2L, 4L, 5L, 3L, 2L, 1L, 5L, 5L, 2L, 2L, 3L, 4L, 3L, 4L, 2L, 2L, 4L), Day2 = c(10L, 9L, 7L, 7L, 6L, 7L, 10L, 9L, 10L, 6L, 10L, 7L, 8L, 9L, 8L, 9L, 7L, 10L, 7L, 10L, 6L, 8L, 6L, 8L, 8L, 8L, 10L, 6L, 8L, 8L, 6L, 10L, 7L, 10L, 7L, 10L, 6L, 6L, 7L, 9L, 8L, 10L, 8L, 7L, 9L, 8L, 6L, 9L, 7L, 9L, 8L, 6L, 6L, 8L, 10L, 7L, 8L, 6L, 8L, 8L, 6L, 9L, 10L, 6L, 8L, 7L, 9L, 7L, 8L, 10L, 10L, 6L, 7L, 10L, 9L, 9L, 8L, 9L, 6L, 8L, 6L, 8L, 6L, 9L, 10L, 7L, 7L, 7L, 8L, 7L, 8L, 10L, 7L, 8L, 9L, 6L, 8L, 9L, 8L, 9L, 6L, 7L, 10L, 9L, 10L, 7L, 6L, 9L, 9L, 9L, 6L, 10L, 9L, 8L, 9L, 7L, 10L, 7L, 10L, 9L, 6L, 8L, 9L, 8L, 9L, 6L, 6L, 10L, 9L, 8L, 8L, 7L), Day4 = c(11L, 12L, 14L, 11L, 15L, 15L, 12L, 11L, 15L, 12L, 15L, 12L, 12L, 11L, 15L, 15L, 13L, 11L, 13L, 14L, 12L, 11L, 13L, 12L, 15L, 15L, 14L, 11L, 15L, 11L, 12L, 11L, 13L, 11L, 12L, 13L, 13L, 14L, 13L, 15L, 14L, 15L, 12L, 14L, 11L, 13L, 15L, 11L, 12L, 13L, 11L, 15L, 11L, 13L, 11L, 11L, 14L, 12L, 14L, 15L, 11L, 12L, 15L, 12L, 13L, 12L, 14L, 12L, 11L, 13L, 12L, 12L, 11L, 15L, 13L, 12L, 11L, 12L, 13L, 14L, 14L, 14L, 13L, 12L, 15L, 12L, 15L, 15L, 12L, 13L, 12L, 12L, 12L, 14L, 13L, 13L, 14L, 11L, 12L, 11L, 15L, 11L, 11L, 11L, 14L, 11L, 12L, 15L, 15L, 11L, 12L, 14L, 15L, 14L, 14L, 12L, 14L, 13L, 15L, 15L, 14L, 13L, 12L, 15L, 15L, 11L, 13L, 12L, 11L, 13L, 12L, 14L), Day7 = c(19L, 17L, 17L, 20L, 17L, 19L, 18L, 19L, 17L, 20L, 16L, 20L, 19L, 18L, 20L, 19L, 17L, 16L, 18L, 18L, 17L, 18L, 19L, 18L, 17L, 19L, 17L, 20L, 19L, 20L, 19L, 20L, 17L, 18L, 20L, 19L, 20L, 18L, 18L, 20L, 18L, 20L, 17L, 19L, 17L, 19L, 17L, 17L, 20L, 18L, 18L, 17L, 16L, 18L, 20L, 16L, 17L, 19L, 16L, 19L, 16L, 17L, 16L, 20L, 16L, 19L, 19L, 17L, 17L, 17L, 20L, 19L, 18L, 16L, 20L, 17L, 19L, 16L, 18L, 19L, 16L, 19L, 20L, 20L, 16L, 16L, 18L, 17L, 16L, 18L, 16L, 17L, 16L, 18L, 20L, 16L, 16L, 20L, 20L, 16L, 20L, 18L, 17L, 19L, 18L, 18L, 19L, 19L, 16L, 18L, 19L, 19L, 17L, 17L, 18L, 18L, 20L, 18L, 20L, 20L, 18L, 19L, 19L, 16L, 16L, 17L, 20L, 16L, 17L, 18L, 16L, 20L), Day10 = c(24L, 23L, 23L, 21L, 21L, 23L, 21L, 21L, 22L, 25L, 21L, 23L, 21L, 25L, 25L, 25L, 24L, 22L, 25L, 24L, 21L, 23L, 24L, 23L, 23L, 22L, 23L, 22L, 22L, 25L, 25L, 22L, 21L, 24L, 25L, 23L, 23L, 23L, 24L, 23L, 25L, 23L, 21L, 23L, 22L, 24L, 22L, 23L, 24L, 22L, 25L, 23L, 23L, 21L, 25L, 24L, 24L, 25L, 25L, 25L, 22L, 23L, 21L, 22L, 24L, 22L, 23L, 22L, 24L, 22L, 21L, 22L, 23L, 21L, 25L, 25L, 22L, 21L, 25L, 24L, 22L, 21L, 25L, 24L, 21L, 24L, 25L, 22L, 23L, 22L, 24L, 23L, 25L, 25L, 23L, 25L, 22L, 23L, 23L, 23L, 22L, 25L, 22L, 23L, 24L, 25L, 22L, 21L, 21L, 22L, 23L, 24L, 21L, 24L, 23L, 23L, 25L, 24L, 25L, 23L, 22L, 25L, 25L, 25L, 21L, 22L, 23L, 21L, 24L, 24L, 25L, 21L), Day13 = c(29L, 29L, 26L, 27L, 30L, 30L, 30L, 26L, 30L, 29L, 30L, 27L, 26L, 29L, 28L, 26L, 30L, 28L, 29L, 27L, 28L, 26L, 29L, 28L, 30L, 26L, 27L, 30L, 26L, 29L, 26L, 28L, 29L, 28L, 29L, 28L, 27L, 27L, 28L, 26L, 26L, 27L, 27L, 29L, 27L, 29L, 27L, 30L, 26L, 27L, 30L, 26L, 29L, 29L, 27L, 29L, 26L, 29L, 28L, 28L, 29L, 30L, 28L, 30L, 30L, 30L, 28L, 29L, 28L, 27L, 28L, 27L, 27L, 28L, 27L, 30L, 27L, 30L, 27L, 28L, 29L, 27L, 30L, 29L, 30L, 30L, 26L, 30L, 29L, 30L, 27L, 26L, 27L, 27L, 28L, 26L, 30L, 28L, 30L, 30L, 30L, 30L, 26L, 28L, 27L, 26L, 29L, 26L, 29L, 26L, 30L, 29L, 30L, 26L, 27L, 30L, 29L, 30L, 27L, 30L, 28L, 26L, 30L, 27L, 30L, 26L, 28L, 29L, 26L, 28L, 28L, 26L), Day18 = c(32L, 31L, 32L, 31L, 31L, 34L, 32L, 34L, 32L, 33L, 31L, 34L, 35L, 34L, 34L, 32L, 33L, 35L, 32L, 35L, 31L, 31L, 33L, 33L, 32L, 31L, 32L, 31L, 32L, 34L, 33L, 33L, 34L, 31L, 35L, 35L, 31L, 34L, 32L, 32L, 34L, 33L, 34L, 33L, 33L, 35L, 35L, 31L, 35L, 31L, 33L, 34L, 31L, 33L, 34L, 32L, 32L, 33L, 31L, 32L, 35L, 34L, 31L, 32L, 34L, 35L, 34L, 31L, 34L, 33L, 35L, 35L, 31L, 32L, 35L, 34L, 31L, 32L, 32L, 33L, 32L, 35L, 32L, 32L, 35L, 33L, 34L, 32L, 34L, 35L, 34L, 33L, 33L, 31L, 31L, 31L, 35L, 34L, 33L, 32L, 33L, 33L, 33L, 35L, 34L, 33L, 31L, 34L, 34L, 34L, 34L, 33L, 33L, 31L, 31L, 31L, 33L, 33L, 35L, 32L, 32L, 31L, 31L, 32L, 33L, 32L, 34L, 34L, 31L, 35L, 31L, 35L), Day23 = c(39L, 40L, 38L, 37L, 37L, 38L, 37L, 36L, 37L, 36L, 36L, 38L, 40L, 38L, 37L, 36L, 36L, 40L, 40L, 40L, 40L, 39L, 40L, 36L, 38L, 36L, 36L, 37L, 38L, 37L, 36L, 37L, 39L, 39L, 38L, 38L, 37L, 40L, 36L, 38L, 37L, 40L, 36L, 37L, 39L, 38L, 38L, 38L, 40L, 38L, 37L, 36L, 38L, 36L, 36L, 36L, 39L, 40L, 39L, 37L, 39L, 39L, 37L, 36L, 37L, 39L, 39L, 37L, 36L, 37L, 40L, 36L, 39L, 40L, 39L, 40L, 39L, 38L, 39L, 40L, 37L, 40L, 38L, 38L, 38L, 40L, 40L, 36L, 39L, 39L, 39L, 39L, 38L, 37L, 37L, 36L, 37L, 39L, 37L, 40L, 40L, 40L, 38L, 38L, 39L, 38L, 36L, 37L, 36L, 36L, 40L, 39L, 39L, 39L, 36L, 39L, 38L, 40L, 36L, 37L, 38L, 38L, 36L, 37L, 39L, 36L, 40L, 40L, 39L, 38L, 37L, 38L), Day28 = c(42L, 43L, 43L, 44L, 44L, 44L, 42L, 42L, 43L, 42L, 45L, 43L, 43L, 43L, 42L, 44L, 42L, 44L, 45L, 44L, 44L, 45L, 44L, 41L, 41L, 42L, 44L, 44L, 44L, 45L, 43L, 42L, 43L, 42L, 41L, 44L, 43L, 43L, 42L, 42L, 44L, 42L, 42L, 42L, 45L, 44L, 45L, 42L, 43L, 45L, 45L, 44L, 41L, 42L, 42L, 41L, 44L, 44L, 44L, 44L, 42L, 45L, 41L, 42L, 45L, 43L, 44L, 45L, 44L, 42L, 41L, 43L, 41L, 44L, 43L, 41L, 45L, 42L, 45L, 41L, 45L, 41L, 45L, 42L, 45L, 42L, 45L, 45L, 41L, 41L, 43L, 41L, 41L, 42L, 43L, 41L, 42L, 44L, 43L, 45L, 41L, 41L, 44L, 41L, 44L, 43L, 43L, 45L, 44L, 41L, 44L, 43L, 42L, 45L, 45L, 41L, 45L, 42L, 41L, 44L, 41L, 41L, 41L, 43L, 41L, 41L, 45L, 41L, 42L, 45L, 41L, 44L), Day35 = c(50L, 50L, 50L, 50L, 48L, 46L, 50L, 46L, 48L, 50L, 50L, 50L, 46L, 49L, 46L, 47L, 49L, 49L, 48L, 49L, 46L, 47L, 49L, 46L, 49L, 50L, 49L, 46L, 49L, 50L, 46L, 48L, 50L, 46L, 50L, 48L, 46L, 48L, 50L, 50L, 47L, 47L, 47L, 47L, 47L, 49L, 48L, 46L, 46L, 48L, 50L, 46L, 49L, 48L, 46L, 49L, 50L, 49L, 48L, 48L, 48L, 50L, 49L, 47L, 48L, 50L, 50L, 46L, 47L, 46L, 48L, 48L, 48L, 47L, 49L, 48L, 49L, 46L, 47L, 50L, 47L, 50L, 47L, 47L, 46L, 46L, 47L, 50L, 49L, 49L, 48L, 47L, 46L, 50L, 46L, 50L, 50L, 46L, 47L, 47L, 49L, 50L, 50L, 46L, 47L, 50L, 47L, 48L, 46L, 50L, 49L, 46L, 46L, 50L, 50L, 49L, 46L, 49L, 46L, 46L, 46L, 48L, 47L, 47L, 50L, 47L, 46L, 48L, 50L, 48L, 46L, 46L), Day42 = c(52L, 51L, 53L, 53L, 54L, 55L, 55L, 54L, 52L, 51L, 55L, 51L, 54L, 53L, 53L, 55L, 54L, 55L, 51L, 51L, 55L, 54L, 54L, 53L, 55L, 53L, 52L, 53L, 53L, 51L, 54L, 54L, 55L, 53L, 54L, 55L, 51L, 51L, 54L, 52L, 51L, 51L, 55L, 54L, 54L, 52L, 52L, 55L, 55L, 51L, 55L, 52L, 55L, 51L, 53L, 52L, 53L, 54L, 51L, 54L, 54L, 55L, 52L, 54L, 52L, 52L, 51L, 52L, 55L, 52L, 54L, 51L, 52L, 55L, 51L, 52L, 55L, 54L, 52L, 53L, 53L, 52L, 55L, 51L, 51L, 55L, 52L, 55L, 55L, 55L, 53L, 52L, 53L, 54L, 52L, 52L, 52L, 52L, 53L, 51L, 54L, 54L, 51L, 53L, 55L, 51L, 54L, 54L, 54L, 53L, 53L, 54L, 54L, 55L, 52L, 52L, 54L, 51L, 52L, 51L, 51L, 55L, 52L, 51L, 51L, 53L, 54L, 51L, 51L, 54L, 55L, 52L), Day52 = c(59L, 57L, 56L, 58L, 59L, 59L, 57L, 59L, 57L, 56L, 58L, 58L, 60L, 59L, 56L, 56L, 60L, 57L, 60L, 57L, 59L, 56L, 60L, 59L, 59L, 56L, 60L, 58L, 60L, 57L, 57L, 60L, 56L, 57L, 59L, 60L, 56L, 58L, 57L, 57L, 58L, 58L, 59L, 56L, 58L, 56L, 57L, 60L, 58L, 59L, 58L, 56L, 56L, 57L, 60L, 59L, 60L, 58L, 59L, 60L, 57L, 60L, 59L, 57L, 60L, 56L, 57L, 56L, 58L, 60L, 56L, 58L, 56L, 60L, 57L, 57L, 57L, 60L, 58L, 59L, 58L, 60L, 59L, 58L, 56L, 56L, 58L, 57L, 60L, 56L, 58L, 56L, 57L, 58L, 58L, 60L, 59L, 60L, 59L, 59L, 59L, 57L, 57L, 60L, 59L, 57L, 57L, 58L, 59L, 57L, 59L, 58L, 60L, 59L, 56L, 57L, 57L, 56L, 57L, 60L, 58L, 57L, 56L, 59L, 59L, 59L, 57L, 57L, 58L, 56L, 58L, 60L), Day62 = c(67L, 65L, 68L, 65L, 69L, 70L, 69L, 66L, 65L, 70L, 70L, 65L, 67L, 68L, 65L, 67L, 65L, 66L, 66L, 68L, 68L, 66L, 65L, 67L, 66L, 69L, 69L, 69L, 68L, 67L, 66L, 69L, 65L, 65L, 69L, 66L, 69L, 68L, 69L, 67L, 65L, 69L, 69L, 69L, 70L, 67L, 65L, 65L, 65L, 66L, 66L, 69L, 68L, 66L, 67L, 66L, 70L, 70L, 70L, 69L, 70L, 70L, 67L, 66L, 65L, 69L, 67L, 66L, 70L, 70L, 70L, 65L, 66L, 67L, 66L, 66L, 67L, 68L, 70L, 67L, 69L, 66L, 67L, 65L, 70L, 65L, 70L, 66L, 66L, 69L, 68L, 65L, 65L, 67L, 68L, 67L, 69L, 68L, 69L, 66L, 68L, 70L, 69L, 68L, 70L, 66L, 69L, 66L, 66L, 67L, 65L, 69L, 69L, 67L, 70L, 65L, 70L, 69L, 66L, 68L, 67L, 68L, 66L, 65L, 67L, 70L, 66L, 67L, 66L, 67L, 67L, 70L), Day72 = c(74L, 74L, 71L, 75L, 74L, 71L, 75L, 71L, 75L, 71L, 72L, 72L, 75L, 73L, 75L, 74L, 74L, 74L, 71L, 74L, 72L, 71L, 71L, 74L, 74L, 73L, 72L, 73L, 71L, 71L, 75L, 72L, 73L, 74L, 75L, 73L, 71L, 71L, 74L, 71L, 73L, 75L, 75L, 74L, 71L, 75L, 74L, 72L, 72L, 71L, 72L, 75L, 73L, 74L, 71L, 75L, 75L, 73L, 72L, 73L, 73L, 72L, 75L, 72L, 71L, 72L, 73L, 72L, 72L, 74L, 72L, 72L, 73L, 75L, 74L, 75L, 73L, 74L, 75L, 72L, 75L, 73L, 71L, 71L, 72L, 74L, 72L, 75L, 71L, 71L, 71L, 73L, 72L, 71L, 75L, 75L, 74L, 73L, 71L, 71L, 72L, 71L, 71L, 74L, 72L, 73L, 71L, 75L, 74L, 75L, 74L, 73L, 73L, 73L, 72L, 75L, 73L, 71L, 71L, 72L, 72L, 71L, 71L, 71L, 72L, 73L, 75L, 75L, 72L, 73L, 75L, 75L), Day82 = c(76L, 78L, 78L, 78L, 79L, 77L, 78L, 77L, 80L, 79L, 80L, 76L, 76L, 80L, 80L, 80L, 78L, 78L, 78L, 78L, 80L, 78L, 76L, 79L, 76L, 77L, 76L, 79L, 78L, 76L, 76L, 79L, 79L, 77L, 77L, 77L, 78L, 78L, 80L, 77L, 77L, 76L, 77L, 79L, 78L, 78L, 78L, 80L, 79L, 76L, 79L, 77L, 76L, 80L, 78L, 77L, 79L, 80L, 77L, 80L, 78L, 79L, 78L, 76L, 76L, 79L, 77L, 77L, 78L, 78L, 79L, 78L, 78L, 78L, 80L, 79L, 78L, 77L, 78L, 78L, 78L, 79L, 80L, 77L, 77L, 80L, 77L, 80L, 77L, 76L, 77L, 76L, 77L, 77L, 80L, 79L, 77L, 78L, 80L, 80L, 79L, 80L, 79L, 79L, 78L, 76L, 76L, 79L, 79L, 80L, 79L, 78L, 76L, 79L, 77L, 77L, 76L, 76L, 78L, 78L, 79L, 78L, 76L, 78L, 79L, 76L, 77L, 78L, 76L, 79L, 78L, 77L), Day92 = c(85L, 84L, 85L, 85L, 83L, 82L, 83L, 82L, 85L, 85L, 82L, 85L, 85L, 85L, 81L, 81L, 84L, 81L, 85L, 82L, 85L, 84L, 81L, 82L, 83L, 82L, 84L, 84L, 81L, 85L, 83L, 85L, 82L, 81L, 83L, 83L, 85L, 83L, 81L, 83L, 82L, 84L, 83L, 83L, 82L, 85L, 85L, 82L, 82L, 82L, 85L, 81L, 81L, 82L, 82L, 84L, 81L, 85L, 81L, 82L, 81L, 81L, 85L, 83L, 81L, 83L, 83L, 84L, 83L, 85L, 85L, 83L, 81L, 85L, 81L, 84L, 83L, 83L, 85L, 83L, 82L, 82L, 82L, 83L, 82L, 83L, 81L, 84L, 83L, 84L, 82L, 83L, 81L, 83L, 81L, 82L, 82L, 82L, 85L, 85L, 84L, 81L, 81L, 81L, 84L, 81L, 84L, 81L, 81L, 84L, 84L, 83L, 83L, 82L, 82L, 81L, 85L, 85L, 82L, 83L, 81L, 83L, 82L, 84L, 83L, 82L, 84L, 81L, 83L, 82L, 84L, 85L), Day102 = c(89L, 88L, 88L, 90L, 88L, 90L, 87L, 88L, 89L, 87L, 90L, 86L, 86L, 89L, 86L, 89L, 90L, 88L, 87L, 88L, 88L, 87L, 90L, 86L, 90L, 87L, 88L, 89L, 88L, 90L, 88L, 87L, 89L, 90L, 88L, 87L, 89L, 88L, 87L, 86L, 90L, 86L, 89L, 89L, 90L, 88L, 90L, 86L, 88L, 88L, 90L, 89L, 88L, 88L, 90L, 87L, 88L, 88L, 87L, 90L, 89L, 87L, 90L, 90L, 86L, 87L, 86L, 90L, 88L, 87L, 86L, 88L, 90L, 86L, 89L, 90L, 87L, 87L, 88L, 86L, 86L, 89L, 89L, 86L, 87L, 86L, 86L, 88L, 88L, 88L, 89L, 90L, 88L, 86L, 88L, 88L, 87L, 88L, 90L, 89L, 89L, 86L, 90L, 89L, 89L, 88L, 90L, 88L, 86L, 90L, 90L, 87L, 89L, 90L, 90L, 88L, 88L, 89L, 90L, 88L, 90L, 90L, 87L, 89L, 90L, 90L, 90L, 89L, 86L, 88L, 89L, 88L)), class = "data.frame", row.names = c(NA, -132L))
Required libraries:
tidyr, plyr, ggplot2
The steps that I have taken so far are to:
Convert the data to long format (df = name of dataset):
Fig1 <- gather(df, day, phosphorus, Day1:Day102, factor_key=TRUE)
Change the factor day to numeric
df$day2 <-revalue(df$day, c("Day1"="1", "Day2"="2", "Day4"="4", "Day7"="7", "Day10"="10", "Day13"="13", "Day18"="18", "Day23" = "23","Day28" = "28", "Day35" = "35", "Day42" = "42", "Day52" = "52", "Day62" = "62", "Day72" = "72", "Day82" = "82", Day92" = "92", "Day102" = "102"))
and
df$day3 <- as.numeric(as.character(df$day2))
Group by Trmt, Level and day3
GroupedDF <- df %>% group_by(Trmt, Level, day3)
GroupedCO2M <- GroupedDF %>% summarise(disp = mean(phosphorus))
I would now like to subtract values by accounting for Trmt and Level, thus reducing the number of rows from 102 to 51. I would like to subtract 'yT' Trmt cases from respective 'nF' cases, uniquely for each Level (X, Y and Z). For example, subtract A01yT_X from A01nf_X, A01yT_Y from A01nf_Y, A01yT_Z from A01nf_Z etc. This should give a total of 51 points, 17 for each Level.
Here is a figure of what I have in mind:
Many thanks for any advice.
thanks for sharing the data. The data you have posted is a bit long, hence might not be able to totally copy and paste
Your data is in the wide format, and you need to find the average for each measurement between similar groups (defined by Day, Level, Treatment). So we can work on this in the wide format:
tmp <- Data %>% group_by(Trmt,Level) %>% summarise_all(mean)
> head(tmp)
# A tibble: 6 x 19
# Groups: Trmt [2]
Trmt Level Day1 Day2 Day4 Day7 Day10 Day13 Day18 Day23 Day28 Day35 Day42
<fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 A01nF X 3.5 8 12 19 23 29.5 32.5 36.5 42 50 53
2 A01nF Y 4.5 9.5 13 17.5 21 28 32.5 36 43.5 48 54.5
3 A01nF Z 1 8.5 13.5 18.5 22.5 28.5 33 37.5 43 49 51.5
4 A01yT X 2.5 8.5 11 19.5 22.5 28 31.5 38 43 50 52.5
5 A01yT Y 2.5 7.5 13.5 17 22 29.5 31 38.5 43.5 49 52.5
6 A01yT Z 3 7 14.5 18 23 28 33 38 43.5 48 54
This gives you the average for each Trmt,Level, and each column (Day) is average separately. Next step is to define the 2 subgroups under Trmt (nF and yT for A01,A02..), and for this we can introduce a subgroup called "site", which is Trmt without the nF,yT. Once you group your data.frame with this "site" and level, the first row will always be nF, and 2nd row yT, so taking the diff for all your Day columns within this grouping, will give you the difference. So we do it like this:
# need to ungroup Trmt to remove it later
tmp <- tmp%>% ungroup(Trmt) %>%
mutate(site = sub("[yn][TF]","",Trmt)) %>%
select(-Trmt) %>%
group_by(site,Level) %>%
summarize_all(diff)
Now you have the nF - yT values for each treatment, each level and each day
> head(tmp)
# A tibble: 6 x 19
# Groups: site [2]
site Level Day1 Day2 Day4 Day7 Day10 Day13 Day18 Day23 Day28 Day35 Day42
<chr> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 A01 X -1 0.5 -1 0.5 -0.5 -1.5 -1 1.5 1 0 -0.5
2 A01 Y -2 -2 0.5 -0.5 1 1.5 -1.5 2.5 0 1 -2
3 A01 Z 2 -1.5 1 -0.5 0.5 -0.5 0 0.5 0.5 -1 2.5
4 A02 X 1.5 1 1.5 1 -1 -1.5 2 -1.5 -1.5 -1 2
5 A02 Y 0.5 0 -1.5 -1 0.5 1.5 -0.5 -3 -1.5 0 1
6 A02 Z 4 2 1 0.5 1.5 0 2.5 0.5 0.5 1.5 0
Come the last part, which is to plot. We convert it to long and also make "Day", a numeric form of day.
plotdf <- gather(tmp, day, Diff, Day1:Day102, factor_key=TRUE) %>%
mutate(Day=as.numeric(sub("Day","",day)))
# and plot
ggplot(plotdf,aes(x=Day,y=Diff,col=Level,shape=Level)) + geom_line() + geom_point() + facet_wrap(~site) + scale_color_manual(values=c("grey10","grey40","grey80"))
Plot above shows the difference for each site. For diff that is the average across all sites:
meandf <- plotdf %>% group_by(Level,Day) %>% summarize(Diff=mean(Diff))
ggplot(meandf,aes(x=Day,y=Diff,col=Level,shape=Level)) + geom_line() + geom_point() + scale_color_manual(values=c("grey10","grey40","grey80"))
example dataset, subsetted for Day1, Day2 and Day4
Data <- structure(list(Trmt = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 4L, 4L, 4L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L,
3L, 6L, 6L, 6L, 6L, 6L, 6L, 5L, 5L, 5L, 5L, 5L, 5L, 8L, 8L, 8L,
8L, 8L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 10L, 10L, 10L, 10L, 10L,
10L, 9L, 9L, 9L, 9L, 9L, 9L, 12L, 12L, 12L, 12L, 12L, 12L, 11L,
11L, 11L, 11L, 11L, 11L, 14L, 14L, 14L, 14L, 14L, 14L, 13L, 13L,
13L, 13L, 13L, 13L, 16L, 16L, 16L, 16L, 16L, 16L, 15L, 15L, 15L,
15L, 15L, 15L, 18L, 18L, 18L, 18L, 18L, 18L, 17L, 17L, 17L, 17L,
17L, 17L, 20L, 20L, 20L, 20L, 20L, 20L, 19L, 19L, 19L, 19L, 19L,
19L, 22L, 22L, 22L, 22L, 22L, 22L, 21L, 21L, 21L, 21L, 21L, 21L
), .Label = c("A01nF", "A01yT", "A02nF", "A02yT", "A03nF", "A03yT",
"A04nF", "A04yT", "A05nF", "A05yT", "A06nF", "A06yT", "A07nF",
"A07yT", "A08nF", "A08yT", "A10nF", "A10yT", "A11nF", "A11yT",
"A13nF", "A13yT"), class = "factor"), Level = structure(c(1L,
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L,
3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L,
1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L,
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L,
3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L,
1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L,
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L,
3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L,
1L, 2L, 3L), .Label = c("X", "Y", "Z"), class = "factor"), Day1 = c(3L,
1L, 4L, 2L, 4L, 2L, 5L, 4L, 1L, 2L, 5L, 1L, 5L, 2L, 5L, 5L, 3L,
5L, 3L, 3L, 1L, 4L, 1L, 1L, 5L, 4L, 1L, 5L, 4L, 5L, 3L, 5L, 3L,
5L, 3L, 4L, 2L, 4L, 2L, 4L, 3L, 1L, 1L, 3L, 1L, 3L, 1L, 5L, 2L,
4L, 4L, 3L, 1L, 4L, 4L, 1L, 4L, 1L, 2L, 5L, 1L, 5L, 1L, 2L, 4L,
4L, 4L, 4L, 2L, 4L, 5L, 5L, 4L, 1L, 3L, 2L, 3L, 5L, 4L, 3L, 2L,
3L, 5L, 4L, 1L, 3L, 4L, 3L, 3L, 5L, 3L, 1L, 1L, 4L, 4L, 5L, 1L,
4L, 4L, 4L, 1L, 4L, 5L, 5L, 1L, 5L, 3L, 1L, 4L, 1L, 4L, 5L, 5L,
3L, 3L, 2L, 4L, 5L, 3L, 2L, 1L, 5L, 5L, 2L, 2L, 3L, 4L, 3L, 4L,
2L, 2L, 4L), Day2 = c(10L, 9L, 7L, 7L, 6L, 7L, 10L, 9L, 10L,
6L, 10L, 7L, 8L, 9L, 8L, 9L, 7L, 10L, 7L, 10L, 6L, 8L, 6L, 8L,
8L, 8L, 10L, 6L, 8L, 8L, 6L, 10L, 7L, 10L, 7L, 10L, 6L, 6L, 7L,
9L, 8L, 10L, 8L, 7L, 9L, 8L, 6L, 9L, 7L, 9L, 8L, 6L, 6L, 8L,
10L, 7L, 8L, 6L, 8L, 8L, 6L, 9L, 10L, 6L, 8L, 7L, 9L, 7L, 8L,
10L, 10L, 6L, 7L, 10L, 9L, 9L, 8L, 9L, 6L, 8L, 6L, 8L, 6L, 9L,
10L, 7L, 7L, 7L, 8L, 7L, 8L, 10L, 7L, 8L, 9L, 6L, 8L, 9L, 8L,
9L, 6L, 7L, 10L, 9L, 10L, 7L, 6L, 9L, 9L, 9L, 6L, 10L, 9L, 8L,
9L, 7L, 10L, 7L, 10L, 9L, 6L, 8L, 9L, 8L, 9L, 6L, 6L, 10L, 9L,
8L, 8L, 7L), Day4 = c(11L, 12L, 14L, 11L, 15L, 15L, 12L, 11L,
15L, 12L, 15L, 12L, 12L, 11L, 15L, 15L, 13L, 11L, 13L, 14L, 12L,
11L, 13L, 12L, 15L, 15L, 14L, 11L, 15L, 11L, 12L, 11L, 13L, 11L,
12L, 13L, 13L, 14L, 13L, 15L, 14L, 15L, 12L, 14L, 11L, 13L, 15L,
11L, 12L, 13L, 11L, 15L, 11L, 13L, 11L, 11L, 14L, 12L, 14L, 15L,
11L, 12L, 15L, 12L, 13L, 12L, 14L, 12L, 11L, 13L, 12L, 12L, 11L,
15L, 13L, 12L, 11L, 12L, 13L, 14L, 14L, 14L, 13L, 12L, 15L, 12L,
15L, 15L, 12L, 13L, 12L, 12L, 12L, 14L, 13L, 13L, 14L, 11L, 12L,
11L, 15L, 11L, 11L, 11L, 14L, 11L, 12L, 15L, 15L, 11L, 12L, 14L,
15L, 14L, 14L, 12L, 14L, 13L, 15L, 15L, 14L, 13L, 12L, 15L, 15L,
11L, 13L, 12L, 11L, 13L, 12L, 14L)), class = "data.frame", row.names = c(NA,
-132L))
I am trying to find orthogonal polynomials of degree 3 for my data. The purpose of this is that i would like to visualise different polynomials fittings on my data: degree 3 and degree 7. I am using the same code as our profesor in class, however I cannot obtain nice results.
orthpoly <- poly(Air_reduced$Temp, order=3)
Air_reduced$xo1 <- orthpoly[,1]
Air_reduced$xo2 <- orthpoly[,2]
Air_reduced$xo3 <- orthpoly[,3]
polymodel1 <- lm(Ozone ~ xo1 + xo2 + xo3, data=Air_reduced)
Air_reduced$fitted1 <- fitted(polymodel1)
?plot
plot(Air_reduced$Temp,Air_reduced$Ozone,xlab="x",ylab="f(x)",
cex.lab=1.5,cex.axis=1.3,col="red",cex=1.3,
main="Polynomial of degree 3", xlim = c(50,97), ylim = c(0,100))
lines(Air_reduced$Temp, Air_reduced$fitted1,col="blue",lwd=3)
however this produces an ugly graph. There seem to be numerous regression lines.
What am i doing wrong?
Data:
structure(list(Ozone = c(41L, 36L, 12L, 18L, 23L, 19L, 8L, 16L,
11L, 14L, 18L, 14L, 34L, 6L, 30L, 11L, 1L, 11L, 4L, 32L, 23L,
45L, 37L, 29L, 71L, 39L, 23L, 21L, 37L, 20L, 12L, 13L, 49L, 32L,
64L, 40L, 77L, 97L, 97L, 85L, 10L, 27L, 7L, 48L, 35L, 61L, 79L,
63L, 16L, 80L, 108L, 20L, 52L, 82L, 50L, 64L, 59L, 39L, 9L, 16L,
122L, 89L, 110L, 44L, 28L, 65L, 22L, 59L, 23L, 31L, 44L, 21L,
9L, 45L, 73L, 76L, 118L, 84L, 85L, 96L, 78L, 73L, 91L, 47L, 32L,
20L, 23L, 21L, 24L, 44L, 21L, 28L, 9L, 13L, 46L, 18L, 13L, 24L,
16L, 13L, 23L, 36L, 7L, 14L, 30L, 14L, 18L, 20L), Solar.R = c(190L,
118L, 149L, 313L, 299L, 99L, 19L, 256L, 290L, 274L, 65L, 334L,
307L, 78L, 322L, 44L, 8L, 320L, 25L, 92L, 13L, 252L, 279L, 127L,
291L, 323L, 148L, 191L, 284L, 37L, 120L, 137L, 248L, 236L, 175L,
314L, 276L, 267L, 272L, 175L, 264L, 175L, 48L, 260L, 274L, 285L,
187L, 220L, 7L, 294L, 223L, 81L, 82L, 213L, 275L, 253L, 254L,
83L, 24L, 77L, 255L, 229L, 207L, 192L, 273L, 157L, 71L, 51L,
115L, 244L, 190L, 259L, 36L, 212L, 215L, 203L, 225L, 237L, 188L,
167L, 197L, 183L, 189L, 95L, 92L, 252L, 220L, 230L, 259L, 236L,
259L, 238L, 24L, 112L, 237L, 224L, 27L, 238L, 201L, 238L, 14L,
139L, 49L, 20L, 193L, 191L, 131L, 223L), Wind = c(7.4, 8, 12.6,
11.5, 8.6, 13.8, 20.1, 9.7, 9.2, 10.9, 13.2, 11.5, 12, 18.4,
11.5, 9.7, 9.7, 16.6, 9.7, 12, 12, 14.9, 7.4, 9.7, 13.8, 11.5,
8, 14.9, 20.7, 9.2, 11.5, 10.3, 9.2, 9.2, 4.6, 10.9, 5.1, 6.3,
5.7, 7.4, 14.3, 14.9, 14.3, 6.9, 10.3, 6.3, 5.1, 11.5, 6.9, 8.6,
8, 8.6, 12, 7.4, 7.4, 7.4, 9.2, 6.9, 13.8, 7.4, 4, 10.3, 8, 11.5,
11.5, 9.7, 10.3, 6.3, 7.4, 10.9, 10.3, 15.5, 14.3, 9.7, 8, 9.7,
2.3, 6.3, 6.3, 6.9, 5.1, 2.8, 4.6, 7.4, 15.5, 10.9, 10.3, 10.9,
9.7, 14.9, 15.5, 6.3, 10.9, 11.5, 6.9, 13.8, 10.3, 10.3, 8, 12.6,
9.2, 10.3, 10.3, 16.6, 6.9, 14.3, 8, 11.5), Temp = c(67L, 72L,
74L, 62L, 65L, 59L, 61L, 69L, 66L, 68L, 58L, 64L, 66L, 57L, 68L,
62L, 59L, 73L, 61L, 61L, 67L, 81L, 76L, 82L, 90L, 87L, 82L, 77L,
72L, 65L, 73L, 76L, 85L, 81L, 83L, 83L, 88L, 92L, 92L, 89L, 73L,
81L, 80L, 81L, 82L, 84L, 87L, 85L, 74L, 86L, 85L, 82L, 86L, 88L,
86L, 83L, 81L, 81L, 81L, 82L, 89L, 90L, 90L, 86L, 82L, 80L, 77L,
79L, 76L, 78L, 78L, 77L, 72L, 79L, 86L, 97L, 94L, 96L, 94L, 91L,
92L, 93L, 93L, 87L, 84L, 80L, 78L, 75L, 73L, 81L, 76L, 77L, 71L,
71L, 78L, 67L, 76L, 68L, 82L, 64L, 71L, 81L, 69L, 63L, 70L, 75L,
76L, 68L), Month = c(5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L), Day = c(1L, 2L, 3L, 4L, 7L, 8L, 9L, 12L, 13L, 14L, 15L,
16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 28L, 29L, 31L, 7L,
9L, 10L, 13L, 16L, 17L, 18L, 19L, 20L, 2L, 3L, 5L, 6L, 7L, 8L,
9L, 10L, 12L, 13L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 24L, 25L,
26L, 27L, 28L, 29L, 30L, 31L, 1L, 2L, 3L, 7L, 8L, 9L, 12L, 13L,
14L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 24L, 26L, 28L, 29L, 30L,
31L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L,
14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L,
28L, 29L, 30L), ID = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 35L, 36L, 37L, 38L,
39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L,
52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L,
65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 78L,
79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L, 90L, 91L,
92L, 93L, 94L, 95L, 96L, 97L, 98L, 99L, 100L, 101L, 102L, 103L,
104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L)), .Names = c("Ozone",
"Solar.R", "Wind", "Temp", "Month", "Day", "ID"), row.names = c(NA,
-108L), class = c("tbl_df", "tbl", "data.frame"))
Order your data by your x-axis before plotting, and your plot will be pretty:
Air_reduced = Air_reduced[order(Air_reduced$Temp), ]
As a side note, I'd encourage you to try out ggplot2 for plotting. It can fit simple models and plot all at once, and it's smart about defaults (default labels, default ordering the points when plotting a line...). In this case, if you just want a plot with both polynomials, it takes just a few lines of code:
library(ggplot2)
ggplot(Air_reduced, aes(x = Temp, y = Ozone)) +
geom_point(color = "red") +
stat_smooth(method = "lm",
formula = y ~ poly(x, 3),
aes(color = "3rd")) +
stat_smooth(method = "lm",
formula = y ~ poly(x, 7),
aes(color = "7th")) +
scale_color_manual(
name = "Polynomial Degree",
breaks = c("3rd", "7th"),
values = c("blue", "green4")
)