ggplot2 geom_points won't colour or dodge - r

So I'm using ggplot2 to plot both a bar graph and points. I'm currently getting this:
As you can see the bars are nicely separated and colored in the desired colors. However my points are all uncolored and stacked ontop of eachother. I would like the points to be above their designated bar and in the same color.
#Add bars
A <- A + geom_col(aes(y = w1, fill = factor(Species1)),
position = position_dodge(preserve = 'single'))
#Add colors
A <- A + scale_fill_manual(values = c("A. pelagicus"= "skyblue1","A. superciliosus"="dodgerblue","A. vulpinus"="midnightblue","Alopias sp."="black"))
#Add points
A <- A + geom_point(aes(y = f1/2.5),
shape= 24,
size = 3,
fill = factor(Species1),
position = position_dodge(preserve = 'single'))
#change x and y axis range
A <- A + scale_x_continuous(breaks = c(2000:2020), limits = c(2016,2019))
A <- A + expand_limits(y=c(0,150))
# now adding the secondary axis, following the example in the help file ?scale_y_continuous
# and, very important, reverting the above transformation
A <- A + scale_y_continuous(sec.axis = sec_axis(~.*2.5, name = " "))
# modifying axis and title
A <- A + labs(y = " ",
x = " ")
A <- A + theme(plot.title = element_text(size = rel(4)))
A <- A + theme(axis.text.x = element_text(face="bold", size=14, angle=45),
axis.text.y = element_text(face="bold", size=14))
#A <- A + theme(legend.title = element_blank(),legend.position = "none")
#Print plot
A
When I run this code I get the following error:
Error: Unknown colour name: A. pelagicus
In addition: Warning messages:
1: Width not defined. Set with position_dodge(width = ?)
2: In max(table(panel$xmin)) : no non-missing arguments to max; returning -Inf
I've tried a couple of things but I can't figure out it does work for geom_col and not for geom_points.
Thanks in advance

The two basic problems you have are dealing with your color error and not dodging, and they can be solved by formatting your scale_...(values= argument using a list instead of a vector, and applying the group= aesthetic, respectively.
You'll see the answer to these two question using an example:
# dummy dataset
year <- c(rep(2017, 4), rep(2018, 4))
species <- rep(c('things', 'things1', 'wee beasties', 'ew'), 2)
values <- c(10, 5, 5, 4, 60, 10, 25, 7)
pt.value <- c(8, 7, 10, 2, 43, 12, 20, 10)
df <-data.frame(year, species, values, pt.value)
I made the "values" set for my column heights and I wanted to use a different y aesthetic for points for illustrative purposes, called "pt.value". Otherwise, the data setup is similar to your own. Note that df$year will be set as numeric, so it's best to change that into either Date format (kinda more trouble than it's worth here), or just as a factor, since "2017.5" isn't gonna make too much sense here :). The point is, I need "year" to be discrete, not continuous.
Solve the color error
For the plot, I'll try to create it similar to you. Here note that in the scale_fill_manual object, you have to set the values= argument using a list. In your example code, you are using a vector (c()) to specify the colors and naming. If you have name1=color1, name2=color2,..., this represents a list structure.
ggplot(df, aes(x=as.factor(year), y=values)) +
geom_col(aes(fill=species), position=position_dodge(width=0.62), width=0.6) +
scale_fill_manual(values=
list('ew' = 'skyblue1', 'things' = 'dodgerblue',
'things1'='midnightblue', 'wee beasties' = 'gray')) +
geom_point(aes(y=pt.value), shape=24, position=position_dodge(width=0.62)) +
theme_bw() + labs(x='Year')
So the colors are applied correctly and my axis is discrete, and the y values of the points are mapped to pt.value like I wanted, but why don't the points dodge?!
Solve the dodging issue
Dodging is a funny thing in ggplot2. The best reasoning here I can give you is that for columns and barplots, dodging is sort of "built-in" to the geom, since the default position is "stack" and "dodge" represents an alternative method to draw the geom. For points, text, labels, and others, the default position is "identity" and you have to be more explicit in how they are going to dodge or they just don't dodge at all.
Basically, we need to let the points know what they are dodging based on. Is it "species"? With geom_col, it's assumed to be, but with geom_point, you need to specify. We do that by using a group= aesthetic, which let's the geom_point know what to use as criteria for dodging. When you add that, it works!
ggplot(df, aes(x=as.factor(year), y=values, group=species)) +
geom_col(aes(fill=species), position=position_dodge(width=0.62), width=0.6) +
scale_fill_manual(values=
list('ew' = 'skyblue1', 'things' = 'dodgerblue',
'things1'='midnightblue', 'wee beasties' = 'gray')) +
geom_point(aes(y=pt.value), shape=24, position=position_dodge(width=0.62)) +
theme_bw() + labs(x='Year')

Related

How to show selected legend but show all the colors in stacked geom_bar

I'm creating a stacked bar plot of relative abundance data, but I only want to display selected few interesting taxa in the legend. I have tried using scale_fill_manual(values = sample(col_vector), breaks = legend_list). The result only shows selected legend in my legend_list as I wish, but all other factors shows no color. How do I show all the colors as stacked bar plot, but only show legend for factors in legend_list?
My code:
ggplot(df, aes_string(x = x, y = y, fill = fill)) +
geom_bar(stat="identity", position="stack") +
scale_fill_manual(values = sample(col_vector),
breaks = legend_list) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
The reason for your issue is most likely that you are using an unnamed vector of colors. Under the hood, when you pass a vector to the breaks argument this vector is used as names for the color vector passed to the values argument. However, when the number of breaks is smaller than the number of colors only some colors get named while the names for all other colors are set to NA. As a consequence only the categories specified via the breaks argument are assigned a fill color while all other categories are assigned the na.value which by default is "grey50".
As your provided no minimal reproducible example I use a basic example based on the ggplot2::mpg dataset to first try to reproduce you issue before offering a fix:
library(ggplot2)
library(dplyr)
base <- ggplot(mpg, aes(class, fill = manufacturer)) +
geom_bar()
legend_list <- c("audi", "volkswagen")
col_vector <- scales::hue_pal()(n_distinct(mpg$manufacturer))
base + scale_fill_manual(values = sample(col_vector), breaks = legend_list)
One option to fix the issue is to use a named vector of colors. Doing so all categories are assigned a color but only the categories specified via the breaks argument will show up in the legend:
names(col_vector) <- sample(unique(mpg$manufacturer))
base + scale_fill_manual(values = col_vector, breaks = legend_list)

Plotting with secondary axis

I am trying to overlay a bar graph (primary axis) and line (secondary axis), but I keep getting an error that I don't understand how to fix. I have tried to follow multiple examples from other questions, but I'm still not getting the result I need.
Here's my code:
ggplot(data = MRIP, aes(x = Length_mm)) +
geom_bar(aes(y = Perc.of.Fish), stat="identity", width = 10, fill = "black") +
geom_line(aes(y = Landings), stat = "identity", size = 2, color = "red") +
scale_y_continuous(name = "Percentage", sec.axis = sec_axis (~./Landings, name = "Landings"))
How do I fix this error: "Error in f(...) : object 'Landings' not found"?
Try this:
coef <- 4000
MRIP %>%
mutate(LandingsPlot=Landings/coef) %>%
ggplot(aes(x = Length_mm)) +
geom_col(aes(y = Perc.of.Fish), width = 10, fill = "black") +
geom_line(aes(y = LandingsPlot), size = 2, color = "red") +
scale_y_continuous(
name = "Percentage",
sec.axis = sec_axis (trans= ~.*coef, name = "Landings")
)
Giving
Why does this work? The scale factor used to define the secondary axis cannot be part of the input data.frame - because if it were, it could potentially vary across rows (as it does here). That would mean you had a separate scale for each row of the input data.frame. That doesn't make sense. So, you scale the secondary variable to take a similar range to that of the primary variable. I chose coef <- 4000 by eye. The exact value doesn't matter, so long as it's sensible.
Having divided by the scale factor to obtain the plotted values, you need to multiply by the scale factor in the transformation in order to get the correct labels on the secondary axis.
Thank you for providing a good MWE. But next time, for extra marks, please post the results of dput() in your question rather than in the comments...
Update
To answer OP's follow up question in the comments: legends are linked to aesthetics. So to get a legend, move the attribute that you want to label inside aes(). You can then define and customise the legend using the appropriate scale_<aesthetic>_<type>. However it's worth noting that if you write, say, aes(colour="black") then "black" is just a character string. It doesn't define a colour. (Using the standard defaults, it will in fact appear as a slightly pinkish red, labelled "black"!) This can be confusing, so it might be a good idea to use arbitrary strings like "a", "b" and "c" (or "Landings" and "Percentage") in the aesthetics. Anyway...
coef <- 4000
#Note fill and color have moved inside aes()
MRIP %>%
mutate(LandingsPlot=Landings/coef) %>%
ggplot(aes(x = Length_mm)) +
geom_col(aes(y = Perc.of.Fish, fill = "black"), width = 10,) +
geom_line(aes(y = LandingsPlot, color = "red"), size = 2) +
scale_y_continuous(
name = "Percentage",
sec.axis = sec_axis (trans= ~.*coef, name = "Landings")
) +
scale_color_manual(values=c("red"), labels=c("Landings"), name=" ") +
scale_fill_manual(values=c("black"), labels=c("Percentage"), name=" ")
Gives

Manipulating the legend of scale_fill_gradient2

I have data which comes from a statistical test (gene set enrichment analysis, but that's not important), so I obtain p-values for statistics that are normally distributed, i.e., both positive and negative values:
The test is run on several categories:
set.seed(1)
df <- data.frame(col = rep(1,7),
category = LETTERS[1:7],
stat.sign = sign(rnorm(7)),
p.value = runif(7, 0, 1),
stringsAsFactors = TRUE)
I want to present these data in a geom_tile ggplot such that I color code the df$category by their df$p.value multiplied by their df$stat.sign (i.e, the sign of the statistic)
For that I first take the log10 of df$p.value:
df$sig <- df$stat.sign*(-1*log10(df$p.value))
Then I order the df by df$sig for each sign of df$sig:
library(dplyr)
df <- rbind(dplyr::filter(df, sig < 0)[order(dplyr::filter(df, sig < 0)$sig), ],
dplyr::filter(df, sig > 0)[order(dplyr::filter(df, sig > 0)$sig), ])
And then I ggplot it:
library(ggplot2)
df$category <- factor(df$category, levels=df$category)
ggplot(data = df,
aes(x = col, y = category)) +
geom_tile(aes(fill=sig)) +
scale_fill_gradient2(low='darkblue', mid='white', high='darkred') +
theme_minimal() +
xlab("") + ylab("") + labs(fill="-log10(P-Value)") +
theme(axis.text.y = element_text(size=12, face="bold"),
axis.text.x = element_blank())
which gives me:
Is there a way to manipulate the legend such that the values of df$sig are represented by their absolute value but everything else remains unchanged? That way I still get both red and blue shades and maintain the order I want.
If you check ggplot's documentation, scale_fill_gradient2, like other continuous scales, accepts one of the following for its labels argument:
NULL for no labels
waiver() for the default labels computed for the transofrmation object
a character vector giving labels (must be same length as breaks)
a function that takes the breaks as input and returns labels as output
Since you only want the legend values to be absolute, I assume you're satisfied with the default breaks in the legend colour bar (-0.1 to 0.4 with increments in 0.1), so all you really need is to add a function that manipulates the labels.
I.e. instead of this:
scale_fill_gradient2(low = 'darkblue', mid = 'white', high = 'darkred') +
Use this:
scale_fill_gradient2(low = 'darkblue', mid = 'white', high = 'darkred',
labels = abs) +
I'm not sure I did understood what you're looking for. Do you meant that you wan't to change the labels within legends? If you want to change labels manipulating breaks and labels given by scale_fill_gradient2() shall do it.
ggplot(data=df,aes(x=col,y=category)) +
geom_tile(aes(fill=sig)) +
scale_fill_gradient2(low='darkblue',mid='white',high='darkred',
breaks = order(unique(df$sig)),
labels = abs(order(unique(df$sig)))) +
theme_minimal()+xlab("")+ylab("")+labs(fill="-log10(P-Value)") +
theme(axis.text.y=element_text(size=12,face="bold"),axis.text.x=element_blank())
For what you're looking for maybe you could display texts inside the figure to show the values, try stacking stat_bin_2d() like this:
ggplot(data=df,aes(x=col,y=category)) +
geom_tile(aes(fill=sig)) +
scale_fill_gradient2(low='darkblue',mid='white',high='darkred',
breaks = order(unique(df$sig)),
labels = abs(order(unique(df$sig)))) +
theme_minimal()+xlab("")+ylab("")+labs(fill="-log10(P-Value)") +
stat_bin_2d(geom = 'text', aes(label = sig), colour = 'black', size = 16) +
theme(axis.text.y=element_text(size=12,face="bold"),axis.text.x=element_blank())
You might want to give the size and colour arguments some tries.

Add a box for the NA values to the ggplot legend for a continuous map

I have got a map with a legend gradient and I would like to add a box for the NA values. My question is really similar to this one and this one. Also I have read this topic, but I can't find a "nice" solution somewhere or maybe there isn't any?
Here is an reproducible example:
library(ggplot2)
map <- map_data("world")
map$value <- setNames(sample(-50:50, length(unique(map$region)), TRUE),
unique(map$region))[map$region]
map[map$region == "Russia", "value"] <- NA
ggplot() +
geom_polygon(data = map,
aes(long, lat, group = group, fill = value)) +
scale_fill_gradient2(low = "brown3", mid = "cornsilk1", high = "turquoise4",
limits = c(-50, 50),
na.value = "black")
So I would like to add a black box for the NA value for Russia. I know, I can replace the NA's by a number, so it will appear in the gradient and I think, I can write a workaround like the following, but all this workarounds do not seem like a pretty solution for me and also I would like to avoid "senseless" warnings:
ggplot() +
geom_polygon(data = map,
aes(long, lat, group = group, fill = value)) +
scale_fill_gradient2(low = "brown3", mid = "cornsilk1", high = "turquoise4",
limits = c(-50, 50),
na.value = "black") +
geom_point(aes(x = -100, y = -50, size = "NA"), shape = NA, colour = "black") +
guides(size = guide_legend("NA", override.aes = list(shape = 15, size = 10)))
Warning messages:
1: Using size for a discrete variable is not advised.
2: Removed 1 rows containing missing values (geom_point).
One approach is to split your value variable into a discrete scale. I have done this using cut(). You can then use a discrete color scale where "NA" is one of the distinct colors labels. I have used scale_fill_brewer(), but there are other ways to do this.
map$discrete_value = cut(map$value, breaks=seq(from=-50, to=50, length.out=8))
p = ggplot() +
geom_polygon(data=map, aes(long, lat, group=group, fill=discrete_value)) +
scale_fill_brewer(palette="RdYlBu", na.value="black") +
coord_quickmap()
ggsave("map.png", plot=p, width=10, height=5, dpi=150)
Another solution
Because the original poster said they need to retain the color gradient scale and the colorbar-style legend, I am posting another possible solution. It has 3 components:
We need to trick ggplot into drawing a separate color scale by using aes() to map something to color. I mapped a column of empty strings using aes(colour="").
To ensure that we do not draw a colored boundary around each polygon, I specified a manual color scale with a single possible value, NA.
Finally, guides() along with override.aes is used to ensure the new color legend is drawn as the correct color.
p2 = ggplot() +
geom_polygon(data=map, aes(long, lat, group=group, fill=value, colour="")) +
scale_fill_gradient2(low="brown3", mid="cornsilk1", high="turquoise4",
limits=c(-50, 50), na.value="black") +
scale_colour_manual(values=NA) +
guides(colour=guide_legend("No data", override.aes=list(colour="black")))
ggsave("map2.png", plot=p2, width=10, height=5, dpi=150)
It's possible, but I did it years ago. You can't use guides. You have to set individually the continuous scale for the values as well as the discrete scale for the NAs. This is what the error is telling you and this is how ggplot2 works. Did you try using both scale_continuous and scale_discrete since your set up is rather awkward, instead of simply using guides which is basically used for simple plot designs?

Creating a density histogram in ggplot2?

I want to create the next histogram density plot with ggplot2. In the "normal" way (base packages) is really easy:
set.seed(46)
vector <- rnorm(500)
breaks <- quantile(vector,seq(0,1,by=0.1))
labels = 1:(length(breaks)-1)
den = density(vector)
hist(df$vector,
breaks=breaks,
col=rainbow(length(breaks)),
probability=TRUE)
lines(den)
With ggplot I have reached this so far:
seg <- cut(vector,breaks,
labels=labels,
include.lowest = TRUE, right = TRUE)
df = data.frame(vector=vector,seg=seg)
ggplot(df) +
geom_histogram(breaks=breaks,
aes(x=vector,
y=..density..,
fill=seg)) +
geom_density(aes(x=vector,
y=..density..))
But the "y" scale has the wrong dimension. I have noted that the next run gets the "y" scale right.
ggplot(df) +
geom_histogram(breaks=breaks,
aes(x=vector,
y=..density..,
fill=seg)) +
geom_density(aes(x=vector,
y=..density..))
I just do not understand it. y=..density.. is there, that should be the height. So why on earth my scale gets modified when I try to fill it?
I do need the colours. I just want a histogram where the breaks and the colours of each block are directionally set according to the default ggplot fill colours.
Manually, I added colors to your percentile bars. See if this works for you.
library(ggplot2)
ggplot(df, aes(x=vector)) +
geom_histogram(breaks=breaks,aes(y=..density..),colour="black",fill=c("red","orange","yellow","lightgreen","green","darkgreen","blue","darkblue","purple","pink")) +
geom_density(aes(y=..density..)) +
scale_x_continuous(breaks=c(-3,-2,-1,0,1,2,3)) +
ylab("Density") + xlab("df$vector") + ggtitle("Histogram of df$vector") +
theme_bw() + theme(plot.title=element_text(size=20),
axis.title.y=element_text(size = 16, vjust=+0.2),
axis.title.x=element_text(size = 16, vjust=-0.2),
axis.text.y=element_text(size = 14),
axis.text.x=element_text(size = 14),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank())
fill=seg results in grouping. You are actually getting a different histogram for each value of seg. If you don't need the colours, you could use this:
ggplot(df) +
geom_histogram(breaks=breaks,aes(x=vector,y=..density..), position="identity") +
geom_density(aes(x=vector,y=..density..))
If you need the colours, it might be easiest to calculate the density values outside of ggplot2.
Or an option with ggpubr
library(ggpubr)
gghistogram(df, x = "vector", add = "mean", rug = TRUE, fill = "seg",
palette = c("#00AFBB", "#E7B800", "#E5A800", "#00BFAB", "#01ADFA",
"#00FABA", "#00BEAF", "#01AEBF", "#00EABA", "#00EABB"), add_density = TRUE)
The confusion regarding interpreting the y-axis might be due to density is plotted rather than count. So, the values on the y-axis are proportions of the total sample, where the sum of the bars is equal to 1.

Resources