Ignoring NA (missing values) - r
I want to calculate the mean of each fund in the dataset below, but I am not able to exclude the na's I put in in XL as an indication of missing values.
I have tried using na.rm and na.omit without getting it working as intended. Does anyone have any suggestions on how to perceed?
dput(funds[1:50,]) from dataset.
structure(c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, -0.0371203551212511, -0.0556553503130705,
0.114407946115376, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, -0.0307016857361987, -0.0325795717342283,
-0.0224503689467165, 0.0258370136198041, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
-0.0238208182014747, -0.0339683325366178, -0.0373842599362443,
-0.0617194981455106, 0.0898312482757637, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, -0.0090002245623988, 0.00232763847063611, 0.0666744669374286,
0.0541982646590207, 0.0357777115456177, 0.0112375620619904, 0.0517733147448458,
0.0553272554088993, 0.0964919466161833, -0.183504972082187, -0.080436535906959,
-0.0168779792120786, -0.0189163710105161, 0.0354464282302958,
0.0570771243180614, -0.0121806484943049, 0.00267147721028516,
0.0418138789866271, 0.0239014241737423, -0.0740578606461375,
0.0232587597231144, 0.0403098558643693, 0.0182343210815903, 0.0853516624777593,
0.143359321093154, 0.0311030232934453, 0.025811812769811, 0.0907165482493208,
0.0525623559303523, -0.0227902272359872, 0.0507802414104146,
0.0424427448435787, -0.00672761966958846, -0.10728921498628,
0.0656231227602588, 0.0935154527174278, 0.0441150328862905, 0.062605816978009,
0.0149006622516556, -0.0320388008910873, 0.0818012957006298,
-0.0454549261682008, 0.0451713668988998, -0.109575700589352,
-0.109309649073184, -0.0294151271748013, 0.00115280249886585,
-0.0641372706445755, -0.0362830848886829, 0.0658140759601307,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -0.055744910128889,
-0.0622543645374518, 0.0807062164274857, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0.593015631147388,
-0.0402998181019883, -0.07037351720532, 0.0716671060725897, 0.0593505268768708,
0.0710274224449907, 0.0181377296578442, -0.0767778231316664,
0.0453741580290961, -0.0324597471184895, 0.0261137296639806,
-0.053332098536766, -0.103195814566841, -0.047796283287009, -0.0174817964779793,
-0.0569324478107568, -0.0714571845404417, 0.0434074010950383,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -0.0924237534290786,
0.0595634973552028, 0.0541594999370727, 0.074140401146132, 0.00611314882738689,
-0.0323317130652527, 0.0573102975873354, -0.0462136481428159,
0.0359245283018867, -0.0885909951916072, -0.0811350919264587,
-0.0662461939973903, -0.0496110308846135, -0.041907656112146,
-0.0541259528316367, 0.0864297690518687, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, -0.0132758821474321, 0.0246370824973443, 0.0436835891381346,
0.0356472795497187, 0.000293052003410121, -0.0158201720510295,
0.0677617514139583, 0.0710647033479483, 0.0996190340976313, -0.26700522906759,
-0.0842262865866189, -0.0679297300762968, -0.00509028374892528,
0.0716631520724582, 0.0520645161290323, -0.00788005151162074,
-0.0376734555119449, 0.0126533496049843, 0.0154446276798172,
-0.0872294575096036, 0.00824608225552592, 0.0256218821054062,
0.05413275097611, 0.116046205034842, 0.16591196737449, 0.0344478216818642,
0.069096590644093, 0.103391863889192, 0.0443016704556687, -0.0454700336955287,
0.0390092019673172, 0.0412857170124639, 0.0527184074494995, -0.11276336409542,
0.0119519566667974, 0.0937881814479375, 0.0714197060231563, 0.0784583050623064,
0.031856125705868, -0.0805573731485338, 0.0872272631698126, -0.0448675989288904,
0.0577689863559903, -0.0924123510962555, -0.118970748089622,
-0.0605664407778432, -0.0344016465745368, -0.0786033292732441,
-0.0139023530448577, 0.0811940031726881, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, 0.0609178826615828, 0.0330911715918167,
0.0246199591154059, 0.0387559218497211, -0.0219724959665873,
0.00576292730999128, 0.0607497869923317, 0.0968700634555142,
0.118662582078258, -0.149187455335955, -0.194607764562562, 0.206793882798755,
-0.275725811239602, 0.101419046925095, -0.0118832022625222, 0.00690434345970381,
-0.0487221044757511, 0.0589849108367626, -0.00490907890828685,
-0.0687096319511811, -0.000240380335107981, 0.0333852798432699,
0.058925924649271, 0.149655767321495, 0.20001132566963, 0.0400818743806335,
0.0749079813750899, 0.0813639985015644, 0.0824485733244857, -0.0513905792201937,
0.0555478999662626, 0.0118754473550344, 0.0698603504806987, -0.121082834331337,
-0.00800049204682018, 0.0857629333574981, 0.0529094718716645,
0.0464960074760741, 0.0294646452163305, -0.0652315341899207,
0.0801776385833655, -0.0474835374295762, 0.0597716236783405,
-0.0425178661661734, -0.148442956002793, -0.0503434200348546,
-0.0348720817263815, -0.0779735122906021, -0.0699996691626507,
0.122593574168608, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, -0.00338009126246408, 0.0625741902662371,
-0.0197095435684648, 0.0235653235653237, -0.0205574774344905,
0.0211513478402079, 0.0440504114817319, 0.0713605727123872, 0.122338724009241,
-0.193811951737024, -0.23541658482932, -0.0560521989313605, 0.0041909323463778,
0.0892682926829269, 0.0763298004677315, -0.0193703481115066,
-0.0609560626060721, 0.0787690145087605, 0.0327624720774384,
-0.0813356164383561, 0.0331583852454995, 0.0658500688410957,
0.0821826280623608, 0.134060506277012, 0.195049361207898, 0.034926805563992,
0.0763587275501818, 0.0808659141719832, 0.055796589647866, -0.0574827981651376,
0.0425095057034219, 0.019500571400783, 0.0867895728493404, -0.108760533707865,
0.0118930365409238, 0.0694001703370242, 0.0441213279632284, 0.0339101250926208,
0.0286665823531891, -0.0765747305438302, 0.0718739598357929,
-0.0335168930109307, 0.0607261433008459, -0.0744547657512117,
-0.136473719808871, -0.0317348021628175, -0.0269818902980012,
-0.0809375670456983, -0.0628246279544791, 0.107575427343774,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, 0.0182819486204802, 0.052568368712947,
0.0223478709564888, 0.0430931528662419, 0.00418444259680784,
0.0149102804245731, 0.0891504229496138, 0.101929676995524, 0.0713342508037151,
-0.184479046400599, -0.0538613608825967, -0.0555593000997546,
-0.0649010498069525, 0.0740915994413365, 0.0624862329910825,
0.00650709895739299, -0.0423449522265485, 0.044737700254633,
0.0252296167409365, -0.0954811628750583, 0.0179609842733965,
-0.000429142278253081, 0.0345924565218922, 0.132750105443612,
0.172954501777649, 0.0535453712284513, 0.103130209117992, 0.102176307326314,
0.0768477474488676, -0.0796743984053985, 0.070035975865518, 0.0698581653845138,
0.0996889125326326, -0.148626092862475, 0.0098176084772359, 0.0926008734665891,
0.0541087153741737, 0.0483966467251862, 0.0115390906369492, -0.0557620023919358,
0.0673137506421835, -0.027245976677444, 0.0564134642914937, -0.0897508035033038,
-0.0964286292214832, -0.0122604677817973, 0.0015012673742687,
-0.0554419022307834, -0.0730251582211762, 0.111314660965433,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA), .Dim = c(50L, 108L), .Dimnames = list(NULL,
c("AI.NORS2", "AI.AKSJN", "AB.AKSPR", "AI.AKTIV", "GA.KAPIT",
"GA.GAMB", "BF.HUMAN", "AB.NOPEN", "VL.AKNOR", "AI.NORGS",
"AI.NORG", "BF.NORGE", "AI.NORGI", "AI.VEKST", "AC.NWECA",
"AC.NEQCB", "AC.NWECD", "AC.NWECI", "NR.NORGE", "BF.NORG",
"CA.AKSJE", "CL.AKNOR", "FF.AKFOR", "FF.NOIII", "FF.NOAI2",
"FF.NORGE", "FF.NORII", "FF.VEKST", "DF.NORGE", "DF.VEKST",
"DK.PBNOR", "DK.NORGE", "DK.NORII", "DI.RINV", "DK.NORG3",
"DK.NORIV", "DK.NOIVR", "DK.NSEL1", "DK.NSEL2", "DK.NSEL3",
"DI.RVKST", "DI.SMB", "EK.NORGE", "NF.PLUSS", "FT.GNRTR",
"FT.NOFOK", "FF.BARNE", "FK.AKTI2", "FK.SPAR", "FV.NORGE",
"FV.TRNDR", "GA.OPPKJ", "GF.AKSJE", "GF.INVES", "SU.AKTIV",
"SU.GLNO", "SU.NORGE", "HF.NORGE", "HB.HNORG", "HO.NORGE",
"KF.IPA", "KL.AKSJE", "KL.AKSNO", "IS.NORGE", "IS.UTBYT",
"IS.UTBYI", "NF.AKSJE", "KF.AVKAS", "KF.BARNE", "KF.KAP",
"KF.KAPIT", "KF.KAIII", "KF.NOPLS", "KF.AKPEN", "KF.SMB",
"KF.SMBII", "KF.VEKST", "OD.NORGE", "OD.NORGA", "OD.NORGB",
"OD.NORGD", "OD.NORII", "OR.FIN30", "PO.AKTIV", "FO.AKSJE",
"FO.INDX", "PV.VEKST", "NF.RFAKS", "NF.RFPLU", "AI.SKAFS",
"SE.NORGE", "SK.HORIS", "SK.SMB", "SR.NORGA", "SR.NORGB",
"SP.INNLA", "SP.AKSJS", "SP.NORGE", "SP.NORGA", "SP.STNOP",
"SP.NORGI", "SP.NOINS", "SP.OPTIM", "SP.VEKST", "SP.VERDI",
"SP.STVEN", "TF.NORGE", "OD.VÅRAK")))
````
We can also use sapply with mean
sapply(funds, mean, na.rm = TRUE)
Or with apply
apply(funds, 1, mean, na.rm = TRUE)
This way you can get means for every column:
library(tidyverse)
means <- data %>% as_tibble() %>% mutate_all(as.numeric) %>% summarise_all(sum, na.rm = TRUE)
Maybe you can try colMeans with option na.rm = TRUE, e.g.,
res <- colMeans(funds,na.rm = TRUE)
Related
How can I coalesce this dataset in R?
I am an ICU physician conducting research which involves taking lots of patient-related data from the ICU computer system (all ethically approved, etc). As is often the case, getting data out then requires cleaning and wrangling before it can be used properly. I have obtained a set of data, and have wrangled it as best I can. Of course, my data science skills are pretty rudimentary and despite being an enthusiastic R user, I am at a complete blockage, and am hoping some of you might be able to shed some light on my problem and how to solve it. I absolutely cannot get round this, but suspect it is a commonly encountered issue in time-series work. At present, my dataset now includes multiple rows for each time point. So, at time X there is an individual row for heart rate, blood pressure, etc. There are 46 observations, and this repeats for every time point (344 in total for this patient). All observations are not recorded at each time point. I have provided a link to screenshots of the way this data is arranged here. A sample of the data is here, is that helps. The best progress I've made is with the following nested for-loop structure. It works for the first set of observations. I have tried a strange while-loop arrangement that fell flat on its face. # First, add a group to the entire table specifying each time point that # observations were conducted. Patient_full$Verification_group <- as.numeric(as.factor(Patient_full$Time)) # Get the number of these groups observation_times <- max(Patient_full$Verification_group) # Create the bare bones of an overall table. This is the first row of the table. patient_obs_final <- Patient_full[1,] # Next I need to create a loop within loop. The master loop will coerce rows # that have been created by the sub-loop. for (i in 1 : observation_times) { # Isolate the overall observation group you are dealing with veri_group <- filter(Patient_full, Verification_group == i) # Start by getting some numbers to run the sub-loop lowest_obs_time_row <- min(veri_group$Row) highest_obs_time_row <- max(veri_group$Row) rows_in_obs_time <- (highest_obs_time_row - lowest_obs_time_row) # We can run the sub-loop now obs_at_timepoint <- Patient_full[lowest_obs_time_row, ] for (j in 1 : (rows_in_obs_time - 1)) { obs_at_timepoint <- coalesce(obs_at_timepoint, Patient_full[j + 1,]) } patient_obs_final <- rbind(patient_obs_final, obs_at_timepoint) } patient_obs_final As soon as j goes to 2 the thing seems to fall apart. So, in the end my goal is to have a separate row for each time point, and for that row to have whatever was recorded/observed at that time. I am at a loss, and can't even tell why my solution isn't working. Any advice would be greatly appreciated.
Try this dplyr solution: library(dplyr) dat %>% group_by(Time) %>% mutate( Cardiac.Rhythm = if_else(nzchar(Cardiac.Rhythm), Cardiac.Rhythm, NA_character_), across(-Row, ~ .[order(is.na(.))]) ) %>% ungroup() %>% filter(rowSums(!is.na(.)) > 2) %>% as.data.frame() # Row Time Base.excess..vt. Glucose.ABG Lactate.ABG PaCO2 PaO2 PH..ABG. Potassium.ABG Sodium.ABG Cardiac.Rhythm Arterial.Pressure.Diastolic Arterial.Pressure.Mean Arterial.Pressure.Systolic Heart.Rate # 1 1 2017-09-04 17:00:00 -11.4 11.8 10.7 4.42 31.5 7.25 3.9 3.9 ST NA NA NA NA # 2 10 2017-09-04 17:55:00 NA NA NA NA NA NA NA NA <NA> 54 68 92 123 # 3 14 2017-09-04 18:00:00 NA NA NA NA NA NA NA NA ST 60 71 86 123 # 4 23 2017-09-04 19:00:00 -9.3 10.1 9.7 4.22 15.0 7.30 3.9 3.9 ST 58 70 92 122 # 5 36 2017-09-04 20:00:00 -8.4 8.1 7.2 5.07 16.9 7.27 3.9 3.9 ST 62 80 117 NA (I truncated the columns pasted here ...) Walk-through: For some reason, Cardiac.Rhythm has empty strings instead of NA, the first mutate converts empty strings "" to NA so that later filtering works; .[order(is.na(.))] orders the non-NA data first within each column; rowSums(.) ensures that we have at least one non-NA datum on a row (the > 2 takes into account that Row and Time are not NA). Notes: I assume that data is one "person" per frame; if you have a patient id in the data, make sure to add it within the group_by(.) as well. Within a particular Time (and Patient_ID, if present), I assume that the order of rows is not important (ergo the per-column reordering of values). I do not assume that each column can have only one value per Time; while logically it makes sense that this would be the case, there could also be an error in the data-scraping/aggregation before this point, so I intentionally do not assume that x[!is.na(x)] (when grouped by Time) will always return length 1. This will evidence as two (or more) rows in a specific Time. I thought about using pivot_longer for this, and it still might be possible, but ... you have both numeric and character data here, so it's a little problematic to sort that out well. Data dat <- structure(list(Row = 1:47, Time = c("2017-09-04 17:00:00", "2017-09-04 17:00:00", "2017-09-04 17:00:00", "2017-09-04 17:00:00", "2017-09-04 17:00:00", "2017-09-04 17:00:00", "2017-09-04 17:00:00", "2017-09-04 17:00:00", "2017-09-04 17:00:00", "2017-09-04 17:55:00", "2017-09-04 17:55:00", "2017-09-04 17:55:00", "2017-09-04 17:55:00", "2017-09-04 18:00:00", "2017-09-04 18:00:00", "2017-09-04 18:00:00", "2017-09-04 18:00:00", "2017-09-04 18:00:00", "2017-09-04 18:00:00", "2017-09-04 18:00:00", "2017-09-04 18:00:00", "2017-09-04 18:00:00", "2017-09-04 19:00:00", "2017-09-04 19:00:00", "2017-09-04 19:00:00", "2017-09-04 19:00:00", "2017-09-04 19:00:00", "2017-09-04 19:00:00", "2017-09-04 19:00:00", "2017-09-04 19:00:00", "2017-09-04 19:00:00", "2017-09-04 19:00:00", "2017-09-04 19:00:00", "2017-09-04 19:00:00", "2017-09-04 19:00:00", "2017-09-04 20:00:00", "2017-09-04 20:00:00", "2017-09-04 20:00:00", "2017-09-04 20:00:00", "2017-09-04 20:00:00", "2017-09-04 20:00:00", "2017-09-04 20:00:00", "2017-09-04 20:00:00", "2017-09-04 20:00:00", "2017-09-04 20:00:00", "2017-09-04 20:00:00", "2017-09-04 20:00:00" ), Base.excess..vt. = c(-11.4, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -9.3, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -8.4, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Glucose.ABG = c(NA, 11.8, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 10.1, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 8.1, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Lactate.ABG = c(NA, NA, 10.7, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 9.7, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 7.2, NA, NA, NA, NA, NA, NA, NA, NA, NA), PaCO2 = c(NA, NA, NA, 4.42, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 4.22, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 5.07, NA, NA, NA, NA, NA, NA, NA, NA), PaO2 = c(NA, NA, NA, NA, 31.5, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 15, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 16.9, NA, NA, NA, NA, NA, NA, NA), PH..ABG. = c(NA, NA, NA, NA, NA, 7.25, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 7.3, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 7.27, NA, NA, NA, NA, NA, NA), Potassium.ABG = c(NA, NA, NA, NA, NA, NA, 3.9, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 3.9, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 3.9, NA, NA, NA, NA, NA), Sodium.ABG = c(NA, NA, NA, NA, NA, NA, 3.9, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 3.9, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 3.9, NA, NA, NA, NA, NA), Cardiac.Rhythm = c("", "", "", "", "", "", "", "", "ST", "", "", "", "", "", "", "", "ST", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "ST", "", "", "", "", "", "", "", "", "", "", "", "", "ST"), Arterial.Pressure.Diastolic = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, 54L, NA, NA, NA, 60L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 58L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 62L, NA, NA, NA), Arterial.Pressure.Mean = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 68L, NA, NA, NA, 71L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 70L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 80L, NA, NA), Arterial.Pressure.Systolic = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 92L, NA, NA, NA, 86L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 92L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 117L, NA ), Heart.Rate = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 123L, NA, NA, NA, NA, 123L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 122L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Non.Invasive.Arterial.Pressure.Diastolic = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 58L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Non.Invasive.Arterial.Pressure.Mean = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 71L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Non.Invasive.Arterial.Pressure.Systolic = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 108L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Tympanic.Temperature = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 37.6, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Patient.Positioning.ABG = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Central.Venous.Pressure = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Delivered.Percent.O2 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Mean.Airway.Pressure.S = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Minute.Volume.expired..S. = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Peak.Inspiratory.Pressure.measured..S = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Positive.End.Expiratory.pressure = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), S.Expired.Tidal.vol...breath. = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), S.Tidal.Volume.Inspired = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Servo.i.Modes = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Set.FiO2 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Set.Flow.Trigger.S = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA ), Set.Pause.time.. = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Set.PEEP.Servo = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA ), Set.rate..CMV.or.SIMV. = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Set.Tidal.Volume..servo. = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Set.Upper.Pressure.Limit = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Spontaneous.Rate..S = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Cardiac.output..Vigileo. = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), DO2.Vigileo. = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), DO2I.Vigileo. = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Stroke.Volume.Index.Vigileo. = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Stroke.Volume.Vigileo. = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Systemic.Vascular.Resistance.Index.Vigileo. = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Systemic.Vascular.Resistance.Vigileo. = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Ionised.Calcium.ABG = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Set.Pressure.Control.level.above.PEEP.S. = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA)), class = "data.frame", row.names = c(NA, -47L))
Don't do it in a loop. Only one summarise_at is enough !! library(tidyverse) Patient_01_sample <- read.csv("E:/R/StackOverflow/Patient_01_sample.xlsx - Sheet 1.csv", row.names=1) f = function(x) ifelse(length(x[!is.na(x)])==0,NA,x[!is.na(x)][1]) Patient = read_csv("Patient_01_sample.xlsx - Sheet 1.csv") Patient %>% group_by(Time) %>% summarise_at(vars(3:45), f) output # A tibble: 5 x 44 Time `Glucose ABG` `Lactate ABG` PaCO2 PaO2 `PH (ABG)` `Potassium ABG` `Sodium ABG` `Cardiac Rhythm` `Arterial Pressure Di~ <dttm> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> 1 2017-09-04 17:00:00 11.8 10.7 4.42 31.5 7.25 3.9 3.9 ST NA 2 2017-09-04 17:55:00 NA NA NA NA NA NA NA NA 54 3 2017-09-04 18:00:00 NA NA NA NA NA NA NA ST 60 4 2017-09-04 19:00:00 10.1 9.7 4.22 15 7.3 3.9 3.9 ST 58 5 2017-09-04 20:00:00 8.1 7.2 5.07 16.9 7.27 3.9 3.9 ST 62 # ... with 34 more variables: Arterial Pressure Mean <dbl>, Arterial Pressure Systolic <dbl>, Heart Rate <dbl>, # Non Invasive Arterial Pressure Diastolic <dbl>, Non Invasive Arterial Pressure Mean <dbl>, # Non Invasive Arterial Pressure Systolic <dbl>, Tympanic Temperature <dbl>, Patient Positioning ABG <lgl>, Central Venous Pressure <lgl>, # Delivered Percent O2 <lgl>, Mean Airway Pressure S <lgl>, Minute Volume expired (S) <lgl>, Peak Inspiratory Pressure measured S <lgl>, # Positive End Expiratory pressure <lgl>, S Expired Tidal vol. (breath) <lgl>, S Tidal Volume Inspired <lgl>, Servo i Modes <lgl>, # Set FiO2 <lgl>, Set Flow Trigger S <lgl>, Set Pause time % <lgl>, Set PEEP Servo <lgl>, Set rate (CMV or SIMV) <lgl>, # Set Tidal Volume (servo) <lgl>, Set Upper Pressure Limit <lgl>, Spontaneous Rate S <lgl>, Cardiac output (Vigileo) <lgl>, ...
As #r2evans pointed out, this cal also be done with dplyr::pivot_wider. As he suggested, we need a little hack, that is, to transform all columns to character, then back to their original classes after changing back to wide with pivot_wider library(readxl) library(dplyr) df<-read.xlsx("Patient_01_sample.xlsx") df %>% mutate(`Cardiac Rhythm`=replace(`Cardiac Rhythm`, `Cardiac Rhythm`=='', NA)) %>% select(-1) %>% mutate(across(-1, as.character)) %>% pivot_longer(-1)%>% group_by(name) %>% filter(!is.na(value)) %>% ungroup%>% pivot_wider(id_cols=Time) %>% mutate(across(-c(1, `Cardiac Rhythm`), as.numeric)) # A tibble: 5 x 18 Time `Base excess (vt)` `Glucose ABG` `Lactate ABG` PaCO2 PaO2 `PH (ABG)` `Potassium ABG` <dttm> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 1 2017-09-04 17:00:00 -11.4 11.8 10.7 4.42 31.5 7.25 3.9 2 2017-09-04 17:55:00 NA NA NA NA NA NA NA 3 2017-09-04 18:00:00 NA NA NA NA NA NA NA 4 2017-09-04 19:00:00 -9.3 10.1 9.7 4.22 15 7.3 3.9 5 2017-09-04 20:00:00 -8.4 8.1 7.2 5.07 16.9 7.27 3.9 # … with 10 more variables: Sodium ABG <dbl>, Cardiac Rhythm <chr>, Arterial Pressure Diastolic <dbl>, # Arterial Pressure Mean <dbl>, Arterial Pressure Systolic <dbl>, Heart Rate <dbl>, # Non Invasive Arterial Pressure Diastolic <dbl>, Non Invasive Arterial Pressure Mean <dbl>, # Non Invasive Arterial Pressure Systolic <dbl>, Tympanic Temperature <dbl>
UpsetR - choosing intersections to visualize
I would like to use Upset plot instead of venn diagram to show overlap between specific groups (20 in total). However, one of the group (number 10) is the most important for me and I would like to present how many unique values is in that specific fraction. I would like to present ~25-30 intersections in total on the graph but uniqueness of group 10 has to be also shown. I know existence of sets function but I would like to present around 25-30 intersections as mentioned and this 1 group additionally. Any ideas ? EDIT: Added reproducible example: dput(rep_exp) structure(list(Gr_4 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 24.4310955935393, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Gr_5 = c(NA, NA, NA, 21.8310535918369, NA, NA, NA, NA, NA, 20.7254228450715, NA, 27.1619253143803, NA, NA, NA, NA, NA, NA, NA, 26.6027203831498, NA, NA, NA, NA, NA, NA, 30.8729830402671, NA, NA, NA), Gr_6 = c(28.8390902059829, 24.67734371881, 22.683139406727, 29.1546773298581, NA, NA, 21.9107159172821, NA, 22.9230495998744, 26.9880437180908, NA, 32.391666051163, NA, NA, NA, 21.6001415858001, 23.0239282537894, NA, 21.055168555216, 30.7121903523751, NA, NA, NA, NA, 22.0963548474675, NA, 32.513357598066, NA, NA, 23.7976852708585), Gr_7 = c(21.4265985064224, NA, NA, 23.0695638371137, NA, NA, NA, NA, NA, 20.7903453146324, NA, 28.2499758022535, NA, NA, NA, NA, NA, NA, NA, 25.9613085520105, NA, NA, NA, NA, NA, NA, 29.355377815192, NA, NA, 21.1302512982254), Gr_8 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 21.8730880931062, NA, NA, NA, NA, NA, NA, NA, 22.4189005564519, NA, NA, NA, NA, NA, NA, 30.2275670312356, NA, NA, NA), Gr_9 = c(22.195894810917, 25.9203441316619, NA, 23.5317193622031, NA, NA, NA, 20.4526193062251, NA, 22.357699113594, 19.9767319209274, 29.0184743803346, NA, NA, NA, NA, 22.1010446624755, NA, NA, 26.3118997535445, NA, NA, NA, NA, NA, NA, 29.9658173049532, NA, NA, 22.7388204380555), Gr_10 = c(24.9716280984187, 26.6702013159945, NA, 26.0197313721615, NA, NA, NA, 22.1233522815746, NA, 24.0516716332837, 22.4063679987568, 30.256761573029, NA, NA, NA, NA, 26.4434318913431, NA, NA, 27.9654320211905, NA, NA, NA, NA, NA, NA, 29.8212398361126, NA, NA, 24.1442935303143), Gr_11 = c(22.9856008507804, 25.1691705265075, NA, 26.0689081411402, NA, NA, NA, 21.1400234004731, NA, 24.5711480491199, 23.5402595534611, 29.329649538014, NA, NA, NA, NA, 28.6076666902364, NA, NA, 26.5597151498881, NA, NA, 25.8334491330428, NA, NA, NA, 29.7854239060885, NA, NA, 21.751849665826), Gr_12 = c(28.2942576160509, 28.4109042369708, NA, 30.2938411874268, 28.1159976488766, 26.6893919055319, NA, 20.2236435193017, NA, 31.1236147481775, 27.1394614209655, 33.7497512742728, NA, NA, NA, 22.1620175455317, 32.740995072413, NA, 23.2685659859292, 31.9204662366898, NA, NA, 30.7601811119423, NA, NA, 22.8704941623247, 31.3416488641037, NA, NA, 28.6773773257387), Gr_13 = c(27.9415091276483, 27.0299165363222, NA, 30.7110417097659, 28.7379570773404, 25.5882365428802, NA, NA, NA, 32.2667076588073, 27.2933369287433, 34.7079501935325, NA, 22.8206916170467, NA, NA, 32.5779472688676, NA, NA, 32.6317048040664, NA, NA, 30.1389490092958, 23.8308408919424, 23.0679896658325, 26.164689687244, 30.2006952484736, NA, 24.447772868487, 29.5606883639626 ), Gr_14 = c(27.4616237005853, 26.7750499947566, NA, 30.3932526396929, 31.1062446290124, 27.2595253359549, NA, NA, NA, 33.6656430607522, 27.734214173453, 35.0800848727354, NA, NA, NA, 23.151279208873, 33.2366327906614, NA, NA, 33.4932145181405, 22.9608977649923, NA, 31.8193222893087, 24.7850652730265, NA, 24.9920915833786, 29.0239557410047, 25.2744788247811, 26.6821750741598, 29.7891764054099 ), Gr_15 = c(27.2029382158867, 25.3112934881725, NA, 29.1103329989503, 29.514275096105, NA, NA, NA, NA, 31.6854120776358, 28.5249970429603, 35.9001903675862, 22.4465240056921, NA, NA, NA, 31.8450938083269, 25.5788830788713, NA, 34.7663358707296, 25.6549086895753, 26.2291635318221, 31.9466351025545, 26.715548983008, NA, 25.6752720211283, 28.4457302899793, 27.2647239196348, 25.0412216502086, 31.6489022687779), Gr_16 = c(25.1843096821522, NA, NA, 26.444459119903, 23.8302606418847, NA, NA, NA, NA, 27.987230611469, 27.8591095189136, 32.8816869988268, NA, NA, 24.8165571469754, NA, 28.7689442058935, 25.2395434664377, NA, 32.829999906694, 23.6787411063596, NA, 27.8325560998723, 25.9582137297807, NA, NA, 25.6769403745901, 25.3048339598422, 23.7070405817542, 29.8423911570548), Gr_17 = c(23.2209751780558, NA, NA, 24.6434488773652, 22.5225058653221, NA, NA, NA, NA, 27.0216809889885, 26.6607134339159, 31.099676534797, NA, NA, 26.93077937966, NA, 27.8090060912948, 26.7795654758791, NA, 32.3731900255852, 24.9494014193233, NA, 24.5609834789349, 26.086325932043, NA, NA, 25.5082418618407, 23.6504233402429, 23.8014399755019, 28.7791270904749), Gr_18 = c(NA, NA, NA, NA, NA, NA, 26.0401348427439, NA, NA, 24.3341543275568, 24.7556235529872, 30.4889365348298, NA, NA, 26.9888022043666, NA, 25.7387173773674, 27.1316334308385, NA, 31.571451882524, NA, NA, NA, 25.745888266175, NA, NA, 23.2997781674234, NA, NA, 23.2402643606836), Gr_19 = c(NA, NA, NA, NA, NA, NA, 24.3940790216008, NA, NA, NA, 21.4222413790374, 25.7991932672173, NA, NA, 25.9372380266141, NA, 22.9217973627502, 20.5334552143032, NA, 28.7776543930148, NA, NA, NA, 23.9298543509444, NA, NA, 24.3614522942989, NA, NA, NA), Gr_20 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 25.6961748124338, NA, NA, NA, NA, NA, NA, NA, 26.4582321196234, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Gr_21 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 22.8258042878256, NA, NA, NA, NA, NA, NA, NA, 25.1317511650203, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA)), row.names = c(NA, 30L), class = "data.frame") It is a code which has been used to generate a plot: for (i in 1:nrow(rep_exp)) { rep_exp[i, ][is.na(rep_exp[i, ]) == F] = rownames(rep_exp)[i]} n_sizescale=nrow(rep_exp)*1.2 p1 <- { upset( fromList(rep_exp), nsets = ncol(rep_exp), nintersects = 35, order.by = "freq", #degree, freq empty.intersections = "on", number.angles = 0, mb.ratio = c(0.55, 0.45), point.size = 2.5, line.size = 0.8, text.scale = c(1.3, 1.3, 1, 1, 1, 1), mainbar.y.label = "Number of groups", sets.x.label = "Groups", show.numbers = "yes", keep.order = TRUE, set_size.show = TRUE, set_size.scale_max = n_sizescale) } If I understood correctly the idea of dots below barplot they indicate how many groups can be found in specific intersections and a single dot gives a number for that specific Gr ? Am I right ? How to force and algorithm to show couple of "interesting" groups as a single dot (show uniqueness of this group) and other as intersections. Can you (#krassowski) rewrite a code for the package you mentioned ?
Counting observations and adding them to data frame in R
I have the return og 108 mutual funds and over from 1987 to 2019. I want to count the number of observations in total (excluding NA) over the existence of the funds. I have been able to get the kurtosis, skewness, etc using the following codes: kurt <- apply(funds, 2, kurtosis, na.rm = TRUE) skew <- apply(funds, 2, skewness, na.rm = TRUE) max <- apply(funds, 2, max, na.rm = TRUE) min <- apply(funds, 2, min, na.rm = TRUE) sd <- apply(funds, 2, sd, na.rm = TRUE) m <- apply(funds, 2, mean, na.rm = TRUE) Then trying to the same with the number of observations and not succeeding: obs <- apply(funds, 2, count, na.rm = TRUE) Getting this error: Error in UseMethod("group_by_") : no applicable method for 'group_by_' applied to an object of class "c('double', 'numeric')" The first 10 lines from the data set is here (funds). It is much longer but this should be sufficiently illustrative. As you can see there are a lot of NA in the first lines. Number of observations here would result in 0, and if one looks at the fund "DK.NORGE" the number of observations in the first 10 lines would be 10. structure(c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -0.0090002245623988, 0.00232763847063611, 0.0666744669374286, 0.0541982646590207, 0.0357777115456177, 0.0112375620619904, 0.0517733147448458, 0.0553272554088993, 0.0964919466161833, -0.183504972082187, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -0.0132758821474321, 0.0246370824973443, 0.0436835891381346, 0.0356472795497187, 0.000293052003410121, -0.0158201720510295, 0.0677617514139583, 0.0710647033479483, 0.0996190340976313, -0.26700522906759, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0.0609178826615828, 0.0330911715918167, 0.0246199591154059, 0.0387559218497211, -0.0219724959665873, 0.00576292730999128, 0.0607497869923317, 0.0968700634555142, 0.118662582078258, -0.149187455335955, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -0.00338009126246408, 0.0625741902662371, -0.0197095435684648, 0.0235653235653237, -0.0205574774344905, 0.0211513478402079, 0.0440504114817319, 0.0713605727123872, 0.122338724009241, -0.193811951737024, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0.0182819486204802, 0.052568368712947, 0.0223478709564888, 0.0430931528662419, 0.00418444259680784, 0.0149102804245731, 0.0891504229496138, 0.101929676995524, 0.0713342508037151, -0.184479046400599, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), .Dim = c(10L, 108L), .Dimnames = list( NULL, c("AI.NORS2", "AI.AKSJN", "AB.AKSPR", "AI.AKTIV", "GA.KAPIT", "GA.GAMB", "BF.HUMAN", "AB.NOPEN", "VL.AKNOR", "AI.NORGS", "AI.NORG", "BF.NORGE", "AI.NORGI", "AI.VEKST", "AC.NWECA", "AC.NEQCB", "AC.NWECD", "AC.NWECI", "NR.NORGE", "BF.NORG", "CA.AKSJE", "CL.AKNOR", "FF.AKFOR", "FF.NOIII", "FF.NOAI2", "FF.NORGE", "FF.NORII", "FF.VEKST", "DF.NORGE", "DF.VEKST", "DK.PBNOR", "DK.NORGE", "DK.NORII", "DI.RINV", "DK.NORG3", "DK.NORIV", "DK.NOIVR", "DK.NSEL1", "DK.NSEL2", "DK.NSEL3", "DI.RVKST", "DI.SMB", "EK.NORGE", "NF.PLUSS", "FT.GNRTR", "FT.NOFOK", "FF.BARNE", "FK.AKTI2", "FK.SPAR", "FV.NORGE", "FV.TRNDR", "GA.OPPKJ", "GF.AKSJE", "GF.INVES", "SU.AKTIV", "SU.GLNO", "SU.NORGE", "HF.NORGE", "HB.HNORG", "HO.NORGE", "KF.IPA", "KL.AKSJE", "KL.AKSNO", "IS.NORGE", "IS.UTBYT", "IS.UTBYI", "NF.AKSJE", "KF.AVKAS", "KF.BARNE", "KF.KAP", "KF.KAPIT", "KF.KAIII", "KF.NOPLS", "KF.AKPEN", "KF.SMB", "KF.SMBII", "KF.VEKST", "OD.NORGE", "OD.NORGA", "OD.NORGB", "OD.NORGD", "OD.NORII", "OR.FIN30", "PO.AKTIV", "FO.AKSJE", "FO.INDX", "PV.VEKST", "NF.RFAKS", "NF.RFPLU", "AI.SKAFS", "SE.NORGE", "SK.HORIS", "SK.SMB", "SR.NORGA", "SR.NORGB", "SP.INNLA", "SP.AKSJS", "SP.NORGE", "SP.NORGA", "SP.STNOP", "SP.NORGI", "SP.NOINS", "SP.OPTIM", "SP.VEKST", "SP.VERDI", "SP.STVEN", "TF.NORGE", "OD.VÅRAK"))) Any feedback is appreciated. Thank you.
count is not the right function here. To count number of non-NA value in each column use is.na with sum. obs <- apply(funds, 2, function(x) sum(!is.na(x))) However, a better option is colSums which can take input as complete dataframe or matrix. colSums(!is.na(funds))
Boxplot/ Box & Whisker help in ggplot2 (R) Need to remove duplicates while also plotting on one plot
So I would like to create a plot of 6 different boxplots (so all in one graphic). I am however running into some trouble. First, there are many NA's and they are randomly admist the dataset so I am unsure how to plot all the variables on one plot with this issue. Secondly, ggplot requires a y variable.... I am fairly new to the tidyverse but am unsure how to create a y variable that will allow for each plot to be represented. Here is the code I have thus far as well as some sample data, just getting some nonsense...: library(readr) library(ggplot2) library(tidyr) Box_Whiskers_Plot <- read_delim("C:/Users/johnt/Downloads/Box & Whiskers Plot.txt", "\t", escape_double = FALSE, trim_ws = TRUE) box_tidy <- gather(data = Box_Whiskers_Plot, key = Concern, value = Value) ggplot(data = box_tidy, mapping = aes(x = Concern, y = Value)) + geom_boxplot() Sample data: structure(list(`1 concern` = c(NA, NA, NA, NA, "4.7051072361071977E-2", "0.19811079686050914", "0.15241809445883892", "9.3784616216209704E-2", NA, NA, "0.12902642667986841", NA, NA, NA, "-2.7995766112836051E-3", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "0.16257072914439274", NA, NA, NA, NA, NA, NA, NA, "-0.32189822523240785", NA, NA, "8.8779492146409344E-2", NA, NA, NA, NA, "0.25876167614411516", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "0.12140341771652063", NA, NA, NA, NA, NA, NA, NA, "7.8315099203373872E-2", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "-2.4887790087301243E-2", NA, NA, "0.17817816702345479", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "-0.45715764794257374", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "0.1727380710391988", NA, NA, NA, NA, NA, "-", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "0.11810158539718096", NA, NA, NA, "0.27340288238873622", NA, NA, "0.31222498045287939", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "1 concern", "8.3059150913641758E-2" ), `2 concerns` = c(NA, "0.30750786698302712", NA, NA, NA, NA, NA, NA, "0.19491094633578943", "0.14347068243793348", NA, NA, NA, NA, NA, "9.4003202704330935E-2", NA, NA, NA, NA, NA, NA, "5.8682039323707746E-2", NA, NA, NA, NA, NA, NA, "0.38837474884084", NA, NA, "9.9772158663856914E-2", NA, NA, NA, NA, "0.15369966808838376", NA, "-9.7591933707396827E-2", "7.5799891559719335E-2", NA, "0.74069094176638783", "0.18455079764897997", "0.35878241180217119", NA, NA, "9.7671065222774578E-2", NA, "-1", "1.9762661406333537E-2", NA, NA, NA, NA, NA, NA, "0.12110279127050561", "-8.8073972864920469E-2", NA, NA, "-5.3063552654085022E-2", "-0.19524178703281547", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "0.19324044960582598", NA, NA, NA, NA, NA, "0.19558769095890249", "9.8480653359761305E-2", "-2.7258845509566809E-2", NA, NA, "4.2377241471322602E-2", NA, NA, NA, "-0.31089100169922018", NA, NA, "9.4259642624681561E-2", NA, NA, NA, NA, NA, NA, NA, NA, "2.9465956237787916E-2", "0.36028868638565514", "0.28696166852692623", "0.16026874768911181", NA, NA, NA, NA, NA, NA, NA, "0.17495242646710829", NA, NA, NA, "8.0174590835183634E-2", NA, NA, NA, NA, NA, "0.3741514609038552", NA, NA, NA, NA, NA, NA, NA, NA, NA, "0.18203421025448296", NA, NA, NA, "0.18032116561517086", NA, NA, "-0.24673024063961035", "8.3759133449436751E-2", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "-0.12597421585178167", NA, NA, NA, "0.19902495793991903", NA, NA, NA, NA, "-9.2408051470944635E-2", NA, NA, NA, NA, NA, "1.3515493037121162E-2", NA, NA, "-2.2110562098653141E-2", NA, NA, NA, NA, "3.5029098159769845E-2", NA, NA, NA, NA, NA, NA, NA, "-0.38542680544884389", "0.2673937214255111", NA, NA, NA, NA, NA, NA, "0.1514695655588354", NA, "-0.19290183848262321", "0.19830470195985717", "0.25974088161209186", "0", "0.12635072134014091", "4.3529572197642308E-2", NA, "-2.811733193779542E-2", "5.2999441490886978E-2", "-1.5294438792050502E-2", "-0.1092036064257218", NA, NA, NA, NA, NA, NA, NA, "-8.4682877918448418E-2", NA, NA, NA, NA, NA, NA, "0.33060935555613358", "-0.26950721703104663", NA, NA, NA, NA, NA, NA, NA, NA, NA, "2 concerns", "6.5143247152538983E-2" ), `3 concerns` = c(NA, NA, NA, "-6.2005384615384615E-2", NA, NA, NA, NA, NA, NA, NA, NA, "0.16466373149154445", "0.14529429748819767", NA, NA, "3.3101080910433733E-3", NA, NA, "-0.14716333286324612", NA, NA, NA, "0.101855405108354", NA, NA, NA, "1.5624661137794593E-2", "4.089776650666388E-2", NA, "-", "0.14868399697158718", NA, NA, "8.4936940656134663E-2", "-7.3275278911856751E-5", NA, NA, "0.16209406140402915", NA, NA, NA, NA, NA, NA, "7.5733790938149026E-2", "7.7802906849214093E-2", NA, "0.29092905402715896", NA, NA, NA, "0.2433591777340911", NA, NA, "0.16878584978409417", "0.23450765393402495", NA, NA, NA, NA, NA, NA, "1.4972641033242029E-2", NA, NA, "0.15914858376902719", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "0.23167642917280462", "-0.12014200114033269", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "0.23296355648900113", "9.2737675544091028E-2", "-1.135676252608786E-2", "-2.5231545331790839E-3", "-1.831276418414618E-2", NA, "3.700270212564627E-2", NA, NA, NA, NA, NA, NA, NA, "0.12864133565206637", NA, "0.2713309994071611", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "0.33081997450170131", NA, NA, NA, NA, NA, NA, "0.10916148370698719", NA, NA, NA, NA, NA, NA, NA, NA, "-1", "-0.10648202245319915", NA, NA, NA, NA, NA, NA, "7.6583001375218229E-2", "0.11923826063359644", "0.1382325704168097", "4.411629139778972E-2", NA, NA, "-2.7571494462436785E-2", "-8.1186210791162505E-2", "0.36815766123347382", "0.21997253864625099", "9.5269593575127098E-2", NA, "0.40386694165317971", "0.1317061317077115", "8.4533840305895946E-2", NA, NA, NA, "7.064976326243011E-2", "8.2533081202996961E-2", NA, NA, NA, NA, "-6.5935523766861404E-2", "0.15935278497831473", NA, "0.1159060020401923", NA, NA, "0.11817005685670501", "6.1029901139001863E-2", "0.12692362698225845", "3.4415424790262605E-2", NA, NA, "0.23155179134453707", "0.14332216947092591", "7.4795242229677816E-2", "0", NA, NA, NA, NA, NA, NA, "0.14534924839754271", "0.27815354547396853", "0.19493428600637031", "0.1283055485269069", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "-2.3773331360783301E-2", NA, "0.20660830748524073", NA, "0.23154616465669209", NA, "-0.80937062468163068", NA, NA, "0.41853447897377194", NA, NA, NA, "9.4089917760579844E-2", NA, NA, "6.3552512454774224E-3", "-0.43971479670164443", "0.15974143122420936", "-0.16029537031373786", NA, "3 concerns", "7.198593957320798E-2" ), `4 concerns` = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "6.4352691220779912E-2", NA, NA, "0.21279729530946834", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "-9.3690492677869663E-2", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "-7.1185121289991993E-2", NA, NA, "6.569732863463229E-2", NA, NA, "9.7222332805540157E-2", NA, NA, NA, NA, NA, NA, NA, "8.5074456366478923E-2", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "1.7663351832379881E-3", NA, NA, NA, "0.20859715043286409", "-4.0588246304824382E-2", NA, NA, NA, NA, NA, NA, NA, NA, "3.1799587621662351E-2", NA, "8.6166092731043253E-2", NA, NA, NA, NA, NA, NA, NA, "4.869038187032948E-2", "0.18071545075957585", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "4.2986578596766911E-2", NA, NA, NA, NA, "9.4277092317434086E-3", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "3.5496813684543493E-2", "-8.1501862554191895E-2", NA, NA, "9.9940934380241986E-2", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "4 concerns", "5.1777127158001604E-2"), `5 concerns` = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "8.9612836579635591E-2", "8.1063923186028175E-2", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "8.4668999169687842E-2", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "6.0739595493825904E-2", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "9.0340384993987888E-2", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "6.1693228854984072E-2", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "-0.20631919750140182", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "5 concerns", "3.7399967253821095E-2"), `6 concerns` = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "0.32874505543754307", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "0.15408216010209475", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "-4.8467807432570065E-2", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "6 concerns", "0.14478646936902259" )), row.names = c(NA, -238L), class = c("tbl_df", "tbl", "data.frame" ))
ggplot requires your data to be "tidy" (see here for details https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html). In your case just use the gather function from tidyr package. As your numeric values are actually character and not numeric you also ned to convert them to numeric before plotting them. ggplot will drop NA values (with a warning) so you don't need to worry about them. So the code is as follows: library(tidyverse) Box_Whiskers_Plot <- Box_Whiskers_Plot %>% gather(key = "concerns", "value") %>% mutate(value = as.numeric(value)) ggplot(Box_Whiskers_Plot, mapping = aes(x = concerns, y = value)) + geom_boxplot() Resulting in:
singularity error regressing lag in R
I am trying to run a forecasting model where I simply regress earnings on lagged earnings $Y_{i,t+1}=a+bY_{i,t}$ (edit: the mathematical formulas do not seem to work in so?) Y(i,t) = a + bY(i,t-1) Doing so gives me however the following error: Error in lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) : NA/NaN/Inf in 'x' What surprises me is that I was not getting an error message when my model was larger (where I included other variables such as X(i,t). What can I do to solve this issue? I tried to copy my data with dput but it was too long. How can i only paste the first 100 values of a vector? as in dput(A[1:100,])? lm(I(inc.plus1/csout)~I(inc/csout), data=df) where inc.plus1 is the lagged income (lag+1) and csout are the number of shares outstanding A represents the first 100 entries of my vector I(inc.plus1/csout): dput(head(A,600)) structure(c(NA, NA, 1.446, 0.9995, 1.999, 2.902, 3.657, 3.96875, 4.10175, 4.0565, 3.44475, 5.7205, 61.93475, -3.85725, -4.5245390070922, 5.62880429175694, 2.47738918119605, 2.96300124018189, 2.73025552646406, 8.07212115316016, 10.5535326434138, 15.9591327947488, 1.96747660017018, 2.22629738160507, 3.58404764906088, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 4.37888779527559, -1.41959644816633, 1.0763348800732, 2.68114979918346, 2.80325842125764, 2.43790873353744, -2.15764063396585, 1.4799008091882, NA, NA, NA, 1.37544255734004, 1.9209810662425, 2.80281184257786, 4.19364769870183, 4.92729231874391, 2.12704602596336, 0.595823284929961, 2.11401303299297, 2.72348504284468, 2.52902356618847, 2.32582482425984, 0.346862332597876, 1.82379803991995, 2.08507363127918, 5.08163579455077, 5.94934078367083, 7.23445185266149, 5.8378412444986, 4.63755947383151, -2.17174787920901, 1.40756281631882, -4.05886251253207, -0.0212408027324169, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -0.479369880443708, -0.293425018839488, 0.0929350592321281, 0.123835254518112, 0.12706259774046, 0.116354410972905, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 3.44976515683205, 4.48091561842034, 4.96571829617233, 1.65772899046248, 0.680583048407414, 1.98560374302681, 4.02555335612741, 4.81968688141083, 0.762689075630252, 1.88469387755102, 3.33593220338983, 0.309443507588533, 3.51697478991597, 2.86402247341315, 2.03178679830559, 5.51008520836107, 3.87780527915746, 2.40556264606919, 5.07700077828744, 4.83989720998532, 4.53742961245445, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -1.98851777777778, 0.0187844444444444, 0.128071111111111, 0.699172682926829, 0.907074545454545, 0.795127607650579, 0.357956423686356, -0.463226859004222, 0.60042762366109, 0.855410812777128, 1.70155389507976, NA, NA, NA, 6.28810975609756, 5.65225290697674, 5.50109011627907, 5.46905424200278, 6.82666666666667, 9.63833333333333, 8.50433333333333, 7.02166666666667, 7.61833333333333, 8.26466666666667, 9.84033333333333, 9.239, 8.05, 6.783, 7.553, 8.29666724227249, 11.525749819631, 14.2648420619405, 11.2771348353078, -14.1189900160153, -17.6900879135628, 14.6432951757972, 17.706462585034, NA, NA, NA, 2.54016638089795, 2.28029063187611, -1.70405905251086, -13.3982068926821, 1.08612445944267, 1.02272906761858, -4.90830977239342, 4.93192336244886, 2.71279872376048, 3.58730158730159, 2.67460317460317, -14.7646639032994, -10.1970204908481, -2.43234807690238, 1.50090714167904, 0.777890139686844, 1.00461845428288, -0.577281452731578, 0.916700774289767, 0.693536467511796, 1.02936271521732, 0.885562723018554, 0.533956763933385, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 6.33737983599889, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 1.97118644067797, 2.74399323181049, 3.00780780780781, 3.58680659670165, 2.81889504170007, 2.50917809245523, 2.79962476547842, 2.3177358490566, 2.98221831785893, 3.53841135956795, 4.84714071243347, 4.42075856720104, 3.43539749078812, 2.10469553058082, 0.698847262247839, 1.15489967560666, NA, NA, NA, NA, NA, NA, NA, NA, NA, 16.48, 23.5307692307692, 26.2953846153846, 29.1553846153846, 34.8107692307692, 34.1, 31.7707692307692, 35.66, 42.6569230769231, 50.8294573643411, 60.6072371486256, 71.8920605209796, 73.1694942127795, 81.0144689246958, 101.277860326894, 84.9637442320369, 99.4780896110291, NA, NA, NA, 3.21418291525857, 3.47403755478572, 2.82309202411355, 1.88046287028157, 2.54218477118243, 2.86466949503918, 2.7850953423992, 3.71485649429788, 3.57246064220529, 3.59200878943474, 3.39917935379717, 4.36734916933839, 3.47052845528455, 2.10217797766436, 2.50138966092273, 2.53216008085335, 5.6740159729317, 7.12959606279318, 3.0704500763493, -9.36316494785294, 2.98453249387051, 0.15134546114962, -0.30269092229924, NA, NA, NA, 2.5918904109589, 1.72054794520548, 3.37534246575342, 3.15616438356164, 2.44266666666667, 3.72987012987013, 4.66193853427896, 5.6548463356974, -6.70449172576832, 5.53191489361702, 7.55555555555556, 4.56737588652482, -0.699029126213592, 3.77435897435897, 5.6053580628542, 8.82009465467434, 9.75106700157242, 17.3575865849202, 6.79550870390565, -10.0748330068806, 2.45326283957664, 12.7237136465324, 15.6632796497851, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 6.74737416450689, 3.73783734165596, 3.56847945896463, 4.01606499861509, 4.31513436031426, NA, NA, NA, 1.18216666666667, 1.15616666666667, 0.718833333333333, 0.846666666666667, 0.949833333333333, 0.855, 0.947, 1.362, 1.29283333333333, -0.4095, -1.71166666666667, -6.73979933110368, -1.07073578595318, 0.439966555183946, 0.889597315436242, 1.29455445544554, 0.888846453280844, 2.07047744964451, 1.42014282853901, -5.14692281267341, 2.76534467725315, 2.98839786207796, 2.61554688592088, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 9.3883876937312, 0.0920378175190796, 1.80967558338076, 4.26608220425823, 4.22229845626072, 8.08242880047986, -2.31627512828963, 7.1832993650083, 1.45599924522962, -1.63071337035455, 2.12153047215424, -14.241522334182, -13.2118418381361, NA, NA, NA, 115.623529411765, 210, 224.705882352941, 234.117647058824, 217.714285714286, 235.555555555556, 240, 244.878048780488, 305.853658536585, 316.818181818182, 346.363636363636, 419.724770642202, 467.43119266055, 561.467889908257, 683.48623853211, 792.201834862385, 953.902327704245, 1135.53943789665, 1172.64573991031, 854.803010181496, 1066.1084178052, 1080.66637439719, 1076.95690413369, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -8.00416281221091, -10.8834412580944, 7.80989824236818, -6.48704902867715, -27.7520814061055, 4.79648473635523, 8.26732673267327, 4.09595559080095, 4.86207928837189, -9.03804256745433, -3.14144062935344, 0.0326826252097871, -0.859022222222222, 2.15602936527451, NA, NA, NA, NA, NA, NA, NA, Inf, 1.16978683393883, 1.51189430424169, 3.52039622666496, 3.18081603714028, 3.61737627328914, 3.10188513592364, -7.09439807225699, -3.69752722803501, 0.707971643687819, 0.327086826731375, 1.23655832779557, 0.575014101013737, 0.473355975527496, -0.122513039981693, -0.851168008718768, 0.840333176705788, 0.978143386038959, 0.767234041909876, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 3.9974572801517, 3.81505135065159, 3.59021071115013, 2.22077609062425, 1.36322005302483, 2.3571531896427, NA, NA, NA, NA, NA, NA, NA, NA, 1.37809917355372, 5.96900826446281, 9.65909090909091, 8.60330578512397, 12.426, 21.7577639751553, 22.3953974895398, 12.6962809917355, 2.77066115702479, 5.46201232032854, 13.7374488657494, 4.1607203533809, 9.63248867259607, 12.3481116584565, -16.9937258042985, 9.91789166997749, 13.2756799577502, 7.46975276170437, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0.564217391304348, -0.212196078431373, 0.0218077803203661, 1.11794583661086, 0.440747736316973, 0.363348739557059, 0.641371480161689, 1.61685900721797, NA, NA, NA), class = "AsIs") and B: I(inc/csout) dput(head(B,600)) structure(c(NA, NA, 1.6175, 1.446, 0.9995, 1.999, 2.902, 3.657, 3.96875, 4.10175, 4.0565, 3.44475, 5.7205, 61.93475, -4.37702127659574, -5.48471405481619, 5.62880429175694, 2.48174176657021, 2.85056176051437, 2.67146609592373, 7.95068353136579, 10.4269755112345, 15.9375059090479, 1.96710464127044, 2.22664817849489, 3.33193683532066, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 2.46958661417323, 3.21177447300029, -1.28516110058166, 1.0933050087961, 2.73595610276559, 2.99856886650604, 2.66279506915451, -2.03313196852743, 1.54029613242514, NA, NA, 1.00559289855816, 1.37544255734004, 1.9209810662425, 2.80281184257786, 4.19364769870183, 4.92729231874391, 2.12704602596336, 0.595823284929961, 2.11401303299297, 2.79331431759097, 2.4658012212017, 2.32582482425984, 0.346862332597876, 1.82379803991995, 2.08507363127918, 5.71682560206885, 5.63252814515248, 6.95230192325872, 5.36379165580937, 4.63755947383151, -2.23752373944775, 0.801826142613582, -4.05886251253207, -0.0212111270744482, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -0.0609118506239777, -0.46619168322258, -0.273575584586673, 0.0868731271713617, 0.121252977886906, 0.126940380912401, 0.116359932757648, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -0.295874906555075, NA, NA, NA, NA, 2.71176375317173, 3.44976515683205, 4.48091561842034, 1.65520964549217, 1.65772899046248, 0.680583048407414, 1.98560374302681, 4.02555335612741, 4.50134453781513, 0.771768707482993, 1.87830508474576, 3.31905564924115, 0.308403361344538, 3.49909705036452, 2.85647576798639, 2.02752629476767, 5.49992524792771, 3.86932091296348, 2.40325224792595, 4.50212922173275, 2.72935574693607, 4.27727254986144, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0.189564444444444, -1.98851777777778, 0.0187844444444444, 0.112452682926829, 0.651501818181818, 0.916795915967128, 0.794619441852948, 0.35890755018202, -0.473067607413648, 0.627831250675921, 0.749854780188053, 1.53659424970853, NA, NA, 5.64291158536585, 5.99563953488372, 5.65225290697674, 5.26390820584145, 5.243, 6.82666666666667, 9.63833333333333, 8.50433333333333, 7.02166666666667, 7.61833333333333, 8.26466666666667, 9.84033333333333, 9.239, 8.05, 6.783, 7.82559143498532, 8.25334112069262, 11.5059848406901, 14.2409094021776, 11.2229529423791, -13.903429300047, -17.9612973562279, 14.619387755102, 17.706462585034, NA, NA, 2.478958140989, 2.18773270954903, 2.18862560772722, -1.69130819883693, -13.3982068926821, 1.07011419816462, 1.02272906761858, -4.90830977239342, 4.93192336244886, 2.72619047619048, 3.58730158730159, 2.49220723035908, -14.3167028199566, -10.2029468004578, -2.79564571994062, 1.0112571815929, 0.781369908886687, 1.00884137370567, -0.577493454139731, 0.929452560968677, 0.701576822662082, 1.03605050601517, 0.8831933500736, 0.536452684873194, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0.492431541310724, 6.37958532695375, NA, NA, NA, NA, NA, NA, NA, NA, NA, 1.18508474576271, 1.9678510998308, 2.43498498498498, 3.00329835082459, 3.58538211954771, 2.81853600059939, 2.51332082551595, 2.81547169811321, 2.32570467867258, 2.98696865802967, 3.53706989369607, 4.81367137790562, 4.3791117807647, 3.42566215683504, 2.10174099052259, 0.698447811272854, 1.15344409599431, NA, NA, NA, NA, NA, NA, NA, NA, 14.96, 16.48, 23.5307692307692, 26.2953846153846, 29.1553846153846, 34.8107692307692, 34.1, 31.7707692307692, 35.66, 42.9875968992248, 50.9162913495884, 60.8719388550928, 73.0775328999524, 75.8763564616902, 81.3488525672775, 101.094264996704, 84.6151321188249, 99.3965234503116, NA, NA, 2.3167169493513, 2.94633564772966, 3.08802835253036, 2.72227364294659, 1.88046287028157, 2.54218477118243, 2.86466949503918, 2.7850953423992, 3.71485649429788, 3.8251978743918, 3.59200878943474, 3.45198192946663, 4.8729674796748, 3.45141240082874, 2.10217797766436, 2.71891375276011, 2.53216008085335, 5.6740159729317, 7.12959606279318, 3.25700635087106, -9.72848624269758, 2.98453249387051, 0.15134546114962, -0.30269092229924, NA, NA, 2.53928767123288, 2.5918904109589, 1.72054794520548, 3.37534246575342, 3.072, 2.37922077922078, 3.39479905437352, 4.66193853427896, 5.6548463356974, -6.70449172576832, 5.53191489361702, 7.55555555555556, 4.68932038834951, -0.738461538461539, 3.79185986604843, 5.57274273187322, 8.79127611345953, 9.6938568354379, 17.2664485641585, 6.76008236653106, -10.0433576656954, 2.44686800894855, 12.7916783806579, 15.9669198174039, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 3.89339789933161, 4.54057279236277, 3.04295028677116, 3.52709814421568, 3.94625587429463, 0.843121058173297, NA, NA, 1.16633333333333, 1.18216666666667, 1.15616666666667, 0.718833333333333, 0.846666666666667, 0.949833333333333, 0.855, 0.947, 1.362, 1.29283333333333, -0.4095, -1.71739130434783, -6.73979933110368, -1.07073578595318, 0.441442953020134, 0.874917491749175, 1.15237157924115, 0.816345803596724, 2.04858840018688, 1.40567608276299, -5.14637884112347, 2.72871855038456, 2.91316668996454, 2.59330191769775, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 11.880985426787, 9.24615559858754, 0.0919749573136027, 1.81008766936127, 4.28461978273299, 4.25916740682639, 8.24690457134787, -2.3184854446709, 7.19083897445574, 1.46494850253928, -1.64066137408225, 2.12416777231924, -14.2285966776933, -13.1682814768967, NA, NA, 121.211764705882, 115.623529411765, 210, 224.705882352941, 227.428571428571, 211.666666666667, 217.435897435897, 228.292682926829, 244.878048780488, 285, 316.818181818182, 349.54128440367, 419.724770642202, 467.43119266055, 561.467889908257, 683.48623853211, 788.224554997718, 947.416137805984, 1123.31838565022, 1157.59185480301, 851.035698545615, 1060.4997807979, 1083.99296394019, 1079.33010136624, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 5.07169287696577, -8.00416281221091, -10.8834412580944, 7.80989824236818, -6.48704902867715, -27.7520814061055, 2.01320132013201, 4.82440240172199, 3.09241756831886, 4.76328138092844, -8.83881012865689, -3.3861849659924, 0.0263111111111111, -0.84864238294285, 2.13807997770656, NA, NA, NA, NA, NA, NA, Inf, 1.13667965939339, 1.16978683393883, 1.51189430424169, 1.93641281650334, 3.18037779732132, 3.60374959261304, 2.95168386947919, -7.1346652146591, -3.73879239931005, 0.618398531789007, 0.302060049537848, 1.15002820202747, 0.574163266612055, 0.472550297072245, -0.122848990949101, -0.853532127125251, 0.849206303333824, 0.831485168572279, 0.722226135762859, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 4.87792789880837, 4.00254595667558, 3.88103599648815, 3.94239575801398, 2.22077609062425, 1.36361444621245, 2.33424853766265, NA, NA, NA, NA, NA, NA, NA, 2.1797520661157, 1.37809917355372, 5.96900826446281, 9.65909090909091, 8.328, 12.8633540372671, 21.9853556485356, 22.1177685950413, 12.6962809917355, 2.75359342915811, 4.94607660840461, 12.5518178729188, 4.10974995804665, 8.56844305120167, 11.0425844346549, -16.8586942126871, 9.88777396355955, 13.2233035244608, 7.5351552135845, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -1.47473913043478, 0.508901960784314, -0.0619107551487414, 0.0142787579128741, 1.07581896303132, 0.445689416361701, 0.34090023049512, 0.649568445989942, 1.70371965372768, NA, NA ), class = "AsIs")