How to display points per exercise when printing to pdf via `exams2pdf`? - r-exams

Consider creating exams using the exams package in R.
When using exams2nops there is a parameter showpoints that, when set to TRUE will show the points of each exercise. However, for exams2pdf this parameter is not available.
How to display the points per exercise when using exams2pdf?

(The answer below is adapted from the R/exams forum at https://R-Forge.R-project.org/forum/forum.php?thread_id=33884&forum_id=4377&group_id=1337.)
There is currently no built-in solution to automatically display the number of points in exams2pdf(). The points= argument only stores the number of points in the R object that exams2pdf() creates (as in other exams2xyz() interfaces) but not in the individual PDF files.
Thus, if you want the points to be displayed you need to do it in some way yourself. A simple solution would be to include it in the individual exercises already, possibly depending on the kind of interface used, e.g., something like this for an .Rmd exercise:
pts <- 17
pts_string <- if(match_exams_call() == "exams2pdf") {
sprintf("_(%s points)_", pts)
} else {
""
}
And then at the beginning of the "Question":
Question
========
`r pts_string` And here starts the question text...
Finally in the meta-information
expoints: `r pts`
This always includes the desired points in the meta-information but only displays them in the question when using exams2pdf(...). This is very flexible and can be easily customized further. The only downside is that it doesn't react to the exams2pdf(..., points = ...) argument.
In .Rnw exercises one would have to use \Sexpr{...} instead of r .... Also the pts_string should be something like sprintf("\\emph{(%s points)}", pts).
Finally, a more elaborate solution would be to create a suitable \newcommand in the .tex template you use. If all exercises have the same number of points, this is not hard to do. But if all the different exercises could have different numbers of points, it would need to be more involved.
The main reason for supporting this in exams2nops() but not exams2pdf() is that the former has a rather restrictive format and vocabulary. In the latter case, however, the point is to give users all freedom regarding layout, language, etc. Hence, I didn't see a solution that is simple enough but also flexible enough to cover all use-cases of exams2pdf().

Related

How to grade exams/questions manually?

What I'd like to do:
I would like to use r-exams in the following procedure:
Providing electronic exams in pdf format to students (using exams2pdf(..)
Let the students upload excel file with their answers
Grade the answers using (using eval_nops(...))
My Question:
Is calling the function eval_nops() the preferred way to manually grad questions in r-exams?
If not, which way is to be prefered?
What I have tried:
I'm aware of the exam2nops() function, and I know that it gives back an .RDS file where the correct answers are stored. Hence, I basically have what I need. However, I found that procedure to be not very straightforward, as the correct answers are buried rather deeply inside the RDS file.
Overview
You are right that there is no readily available system for administering/grading exams outside of a standard learning management system (LMS) like Moodle or Canvas, etc. R/exams does provide some building blocks for the grading, though, especially exams_eval(). This can be complemented with tools like Google forms etc. Below I start with the "hard facts" regarding exams_eval() even though this is a bit technical. But then I also provide some comments regarding such approaches.
Using exams_eval()
Let us consider a concrete example
eval <- exams_eval(partial = TRUE, negative = FALSE, rule = "false2")
indicating that you want partial credits for multiple-choice exercises but the overall points per item must not become negative. A correctly ticked box yields 1/#correct points and an incorrectly ticked box 1/#false. The only exception is where there is only one false item (which would then cancel all points) then 1/2 is used.
The resulting object eval is a list with the input parameters (partial, negative, rule) and three functions checkanswer(), pointvec(), pointsum(). Imagine that you have the correct answer pattern
cor <- "10100"
The associated points for correctly and incorrectly ticked boxed would be:
eval$pointvec(cor)
## pos neg
## 0.5000000 -0.3333333
Thus, for the following answer pattern you get:
ans <- "11100"
eval$checkanswer(cor, ans)
## [1] 1 -1 1 0 0
eval$pointsum(cor, ans)
## [1] 0.6666667
The latter would still need to be multiplied with the overall points assigned to that exercise. For numeric answers you can only get 100% or 0%:
eval$pointsum(1.23, 1.25, tolerance = 0.05)
## [1] 1
eval$pointsum(1.23, 1.25, tolerance = 0.01)
## [1] 0
Similarly, string answers are either correct or false:
eval$pointsum("foo", "foo")
## [1] 1
eval$pointsum("foo", "bar")
## [1] 0
Exercise metainformation
To obtain the relevant pieces of information for a given exercise, you can access the metainformation from the nested list that all exams2xyz() interfaces return:
x <- exams2xyz(...)
For example, you can then extract the metainfo for the i-th random replication of the j-th exercise as:
x[[i]][[j]]$metainfo
This contains the correct $solution, the $type, and also the $tolerance etc. Sure, this is somewhat long and inconvenient to type interactively but should be easy enough to cycle through programatically. This is what nops_eval() for example does base on the .rds file containing exactly the information in x.
Administering exams without a full LMS
My usual advice here is to try to leverage your university's services (if available, of course). Yes, there can be problems with the bandwidth/stability etc. but you can have all of the same if you're running your own system (been there, done that). Specifically, a discussion of Moodle vs. PDF exams mailed around is available here:
Create fillable PDF form with exams2nops
http://www.R-exams.org/general/distancelearning/#replacing-written-exams
If I were to provide my exams outside of an LMS I would use HTML, though, and not PDF. In HTML it is much easier to embed additional information (data, links, etc.) than in PDF. Also HTML can be viewed on mobile device moch more easily.
For collecting the answers, some R/exams users employ Google forms, see e.g.:
https://R-Forge.R-project.org/forum/forum.php?thread_id=34076&forum_id=4377&group_id=1337. Others have been interested in using learnr or webex for that:
http://www.R-exams.org/general/distancelearning/#going-forward.
Regarding privacy, though, I would be very surprised if any of these are better than using the university's LMS.

How do I insert text before a group of exercises in an exam?

I am very new to R and to R/exams. I've finally figured out basic things like compiling a simple exam with exams2pdf and exams2canvas, and I've figured out how to arrange exercises such that this group of X exercises gets randomized in the exam and others don't.
In my normal written exams, sometimes I have a group of exercises that require some introductory text (e.g,. a brief case study on which the next few questions are based, or a specific set of instructions for the questions that follow).
How do I create this chunk of text using R/exams and Rmd files?
I can't figure out if it's a matter of creating a particular Rmd file and then simply adding that to the list when creating the exam (like a dummy file of sorts that only shows text, but isn't numbered), or if I have to do something with the particular tex template I'm using.
There's a post on R-forge about embedding a plain LaTeX file between exercises that seems to get at what I'm asking, but I'm using Rmd files to create exercises, not Rnw files, and so, frankly, I just don't understand it.
Thank you for any help.
There are two strategies for this:
1. Separate exercise files in the same sequence
Always use the same sequence of exercises, say, ex1.Rmd, ex2.Rmd, ex3.Rmd where ex1.Rmd creates and describes the setting and ex2.Rmd and ex3.Rmd simply re-use the variables created internally by ex1.Rmd. In the exams2xyz() interface you have to assure that all exercises are processed in the same environment, e.g., the global environment:
exams2pdf(c("ex1.Rmd", "ex2.Rmd", "ex3.Rmd"), envir = .GlobalEnv)
For .Rnw exercises this is not necessary because they are always processed in the global environment anyway.
2. Cloze exercises
Instead of separate exercise files, combine all exercises in a single "cloze" exercise ex123.Rmd that combines three sub-items. For a simple exercise with two sub-items, see: http://www.R-exams.org/templates/lm/
Which strategy to use?
For exams2pdf() both strategies work and it is more a matter of taste whether one prefers all exercises together in a single file or split across separate files. However, for other exams2xyz() interfaces only one or none of these strategies work:
exams2pdf(): 1 + 2
exams2html(): 1 + 2
exams2nops(): 1
exams2moodle(): 2
exams2openolat(): 2
exams2blackboard(): -
exams2canvas(): -
Basically, strategy 1 is only guaranteed to work for interfaces that generate separate files for separate exams like exams2pdf(), exams2nops(), etc. However, for interfaces that create pools of exercises for learning management systems like exams2moodle(), exams2canvas(), etc. it typically often cannot be assured that the same random replication is drawn for all three exercises. (Thus, if there are two random replications per exercise, A and B, participants might not get A/A/A or B/B/B but A/B/A.)
Hence, if ex1/2/3 are multiple-choice exercises that you want to print and scan automatically, then you could use exams2nops() in combination with strategy 1. However, strategy 2 would not work because cloze exercises cannot be scanned automatically in exams2nops().
In contrast, if you want to use Moodle, then exams2moodle() could be combined with strategy 2. In contrast, strategy 1 would not work (see above).
As you are interested in Canvas export: In Canvas neither of the two strategies works. It doesn't support cloze exercises. And to the best of my knowledge it is not straightforward to assure that exercises are sampled "in sync".

Adding skipped/ungraded open-ended questions

Is there a way to include open-ended/free-form questions that are ungraded or skipped by r-exams?
Use case: we want to have an exam with mostly multiple choice questions using the package and its grading capability, but also have 5-10 open ended questions that are printed in the same exam. Ideally, r-exams would provide the grade for the first MCQ section, and we could manually add the grade of the open-ended questions.
I forked the package and made some small changes that allows one to control how many questions are printed on the first page and to remove the string-question pages.
The new parameters are number_of_closed_questions and include_string_pages. It is far away from being ideal, but works for me.
As an example let us have 6 mpc/single-choice questions and one essay question (essayreg):
# install devtools if you do not have it!
# install the fork
devtools::install_github("johannes-titz/exams")
library("exams")
myexam <- list(
"tstat2.Rnw",
"ttest.Rnw",
"relfreq.Rnw",
"anova.Rnw",
c("boxplots.Rnw", "scatterplot.Rnw"),
"cholesky.Rnw",
"essayreg.Rnw"
)
set.seed(403)
ex1 <- exams2nops(myexam, n = 2,
dir = "nops_pdf", name = "demo", date = "2015-07-29",
number_of_closed_questions = 6, include_string_pages = FALSE)
This will produce only 6 questions on the front page (instead of 7) and will also exclude the string-question pages.
If you want normal behavior, just exclude the new parameters. Obviously, one will have to set the number of closed questions manually, so one should be really careful.
I guess one could automatically detect how many string questions are loaded and from this determine the number of open-ended/closed-ended questions, but I currently do not have the time to write this and the presented solution is usable for my case.
I am not 100% sure that the scans will work this way, but I assume there should not be any bigger problems as I did not really change much. Maybe Achim Zeileis could comment on that? See my commit: https://github.com/johannes-titz/exams/commit/def044e7e171ea032df3553acec0ea0590ae7f5e
There is built-in support for up to three open-ended "string" questions that are printed on a separate sheet that has to be marked by hand. The resulting sheet can then be scanned and evaluated along with the main sheet using nops_scan() and nops_eval(). It's on the wish list for the package to extend that number but it hasn't been implemented yet.
Another "trick" you could do is to use the pages= argument of exams2nops() to include a separate PDF sheet with the extra questions. But this would have to be handled completely separately "by hand" afterwards.

FAQ markup to R data structure

I'm reading the R FAQ source in texinfo, and thinking that it would be easier to manage and extend if it was parsed as an R structure. There are several existing examples related to this:
the fortunes package
bibtex entries
Rd files
each with some desirable features.
In my opinion, FAQs are underused in the R community because they lack i) easy access from the R command-line (ie through an R package); ii) powerful search functions; iii) cross-references; iv) extensions for contributed packages. Drawing ideas from packages bibtex and fortunes, we could conceive a new system where:
FAQs can be searched from R. Typical calls would resemble the fortune() interface: faq("lattice print"), or faq() #surprise me!, faq(51), faq(package="ggplot2").
Packages can provide their own FAQ.rda, the format of which is not clear yet (see below)
Sweave/knitr drivers are provided to output nicely formatted Markdown/LaTeX, etc.
QUESTION
I'm not sure what is the best input format, however. Either for converting the existing FAQ, or for adding new entries.
It is rather cumbersome to use R syntax with a tree of nested lists (or an ad hoc S3/S4/ref class or structure,
\list(title = "Something to be \\escaped", entry = "long text with quotes, links and broken characters", category = c("windows", "mac", "test"))
Rd documentation, even though not an R structure per se (it is more a subset of LaTeX with its own parser), can perhaps provide a more appealing example of an input format. It also has a set of tools to parse the structure in R. However, its current purpose is rather specific and different, being oriented towards general documentation of R functions, not FAQ entries. Its syntax is not ideal either, I think a more modern markup, something like markdown, would be more readable.
Is there something else out there, maybe examples of parsing markdown files into R structures? An example of deviating Rd files away from their intended purpose?
To summarise
I would like to come up with:
1- a good design for an R structure (class, perhaps) that would extend the fortune package to more general entries such as FAQ items
2- a more convenient format to enter new FAQs (rather than the current texinfo format)
3- a parser, either written in R or some other language (bison?) to convert the existing FAQ into the new structure (1), and/or the new input format (2) into the R structure.
Update 2: in the last two days of the bounty period I got two answers, both interesting but completely different. Because the question is quite vast (arguably ill-posed), none of the answers provide a complete solution, thus I will not (for now anyway) accept an answer. As for the bounty, I'll attribute it to the answer most up-voted before the bounty expires, wishing there was a way to split it more equally.
(This addresses point 3.)
You can convert the texinfo file to XML
wget http://cran.r-project.org/doc/FAQ/R-FAQ.texi
makeinfo --xml R-FAQ.texi
and then read it with the XML package.
library(XML)
doc <- xmlParse("R-FAQ.xml")
r <- xpathSApply( doc, "//node", function(u) {
list(list(
title = xpathSApply(u, "nodename", xmlValue),
contents = as(u, "character")
))
} )
free(doc)
But it is much easier to convert it to text
makeinfo --plaintext R-FAQ.texi > R-FAQ.txt
and parse the result manually.
doc <- readLines("R-FAQ.txt")
# Split the document into questions
# i.e., around lines like ****** or ======.
i <- grep("[*=]{5}", doc) - 1
i <- c(1,i)
j <- rep(seq_along(i)[-length(i)], diff(i))
stopifnot(length(j) == length(doc))
faq <- split(doc, j)
# Clean the result: since the questions
# are in the subsections, we can discard the sections.
faq <- faq[ sapply(faq, function(u) length(grep("[*]", u[2])) == 0) ]
# Use the result
cat(faq[[ sample(seq_along(faq),1) ]], sep="\n")
I'm a little unclear on your goals. You seem to want all the R-related documentation converted into some format which R can manipulate, presumably so the one can write R routines to extract information from the documentation better.
There seem to be three assumptions here.
1) That it will be easy to convert these different document formats (texinfo, RD files, etc.) to some standard form with (I emphasize) some implicit uniform structure and semantics.
Because if you cannot map them all to a single structure, you'll have to write separate R tools for each type and perhaps for each individual document, and then the post-conversion tool work will overwhelm the benefit.
2) That R is the right language in which to write such document processing tools; suspect you're a little biased towards R because you work in R and don't want to contemplate "leaving" the development enviroment to get information about working with R better. I'm not an R expert, but I think R is mainly a numerical language, and does not offer any special help for string handling, pattern recognition, natural language parsing or inference, all of which I'd expect to play an important part in extracting information from the converted documents that largely contain natural language. I'm not suggesting a specific alternative language (Prolog??), but you might be better off, if you succeed with the conversion to normal form (task 1) to carefully choose the target language for processing.
3) That you can actually extract useful information from those structures. Library science was what the 20th century tried to push; now we're all into "Information Retrieval" and "Data Fusion" methods. But in fact reasoning about informal documents has defeated most of the attempts to do it. There are no obvious systems that organize raw text and extract deep value from it (IBM's Jeopardy-winning Watson system being the apparent exception but even there it isn't clear what Watson "knows"; would you want Watson to answer the question, "Should the surgeon open you with a knife?" no matter how much raw text you gave it) The point is that you might succeed in converting the data but it isn't clear what you can successfully do with it.
All that said, most markup systems on text have markup structure and raw text. One can "parse" those into tree-like structures (or graph-like structures if you assume certain things are reliable cross-references; texinfo certainly has these). XML is widely pushed as a carrier for such parsed-structures, and being able to represent arbitrary trees or graphs it is ... OK ... for capturing such trees or graphs. [People then push RDF or OWL or some other knoweldge encoding system that uses XML but this isn't changing the problem; you pick a canonical target independent of R]. So what you really want is something that will read the various marked-up structures (texinfo, RD files) and spit out XML or equivalent trees/graphs. Here I think you are doomed into building separate O(N) parsers to cover all the N markup styles; how otherwise would a tool know what the value markup (therefore parse) was? (You can imagine a system that could read marked-up documents when given a description of the markup, but even this is O(N): somebody still has to describe the markup). One this parsing is to this uniform notation, you can then use an easily built R parser to read the XML (assuming one doesn't already exist), or if R isn't the right answer, parse this with whatever the right answer is.
There are tools that help you build parsers and parse trees for arbitrary lanuages (and even translators from the parse trees to other forms). ANTLR is one; it is used by enough people so you might even accidentally find a texinfo parser somebody already built. Our DMS Software Reengineering Toolkit is another; DMS after parsing will export an XML document with the parse tree directly (but it won't necessarily be in that uniform representation you ideally want). These tools will likely make it relatively easy to read the markup and represent it in XML.
But I think your real problem will be deciding what you want to extract/do, and then finding a way to do that. Unless you have a clear idea of how to do the latter, doing all the up front parsers just seems like a lot of work with unclear payoff. Maybe you have a simpler goal ("manage and extend" but those words can hide a lot) that's more doable.

Finding What You Need in R: focused searching within R and all (3,500+) CRAN Packages

Often in R, there are a dozen functions scattered across as many packages--all of which have the same purpose but of course differ in accuracy, performance, documentation, theoretical rigor, and so on.
How do you locate these--from within R and even from among the CRAN Packages which you have not installed?
So for instance: the generic plot function. Setting secondary ticks is much easier using a function outside of the base package:
minor.tick(nx=n, ny=n, tick.ratio=n)
Of course plot is in R core, but minor.tick is not, it's actually in Hmisc.
Of course, that doesn't show up in the documentation for plot, nor should you expect it to.
Another example: data-input arguments to plot can be supplied by an object returned from the function hexbin, again, this function is from a library outside of R core.
What would be great obviously is a programmatic way to gather these function arguments from the various libraries and put them in a single namespace?
*edit: (trying to re-state my example just above more clearly:) the arguments to plot supplied in R core, e.g., setting the axis tick frequency are xaxp/yaxp; however, one can also set a/t/f via a function outside of the base package, again, as in the minor.tick function from the Hmisc package--but you wouldn't know that just from looking at the plot method signature. Is there a meta function in R for this?*
So far, as i come across them, i've been manually gathering them, each set gathered in a single TextMate snippet (along with the attendant library imports). This isn't that difficult or time consuming, but i can only update my snippet as i find out about these additional arguments/parameters. Is there a canonical R way to do this, or at least an easier way?
Just in case that wasn't clear, i am not talking about the case where multiple packages provide functions directed to the same statistic or view (e.g., 'boxplot' in the base package; 'boxplot.matrix' in gplots; and 'bplots' in Rlab). What i am talking is the case in which the function name is the same across two or more packages.
The "sos" package is an excellent resource. It's primary interface is the "findFn" command, which accepts a string (your search term) and scans the "function" entries in Johnathan Baron's site search database, and returns the entries that contain the search term in a data frame (of class "findFn").
The columns of this data frame are: Count, MaxScore, TotalScore, Package, Function, Date, Score, Description, and Link. Clicking on "Link" in any entry's row will immediately pull up the help page.
An example: suppose you wanted to find all convolution filters across all 1800+ R packages.
library(sos)
cf = findFn("convolve")
This query will look the term "convolve", in other words, that doesn't have to be the function name.
Keying in "cf" returns an HTML table of all matches found (23 in this case). This table is an HTML rendering of the data frame i mentioned just above. What is particularly convenient is that each column ("Count", "MaxScore", etc.) is sortable by clicking on the column header, so you can view the results by "Score", by "Package Name", etc.
(As an aside: when running that exact query, one of the results was the function "panel.tskernel" in a package called "latticeExtra". I was not aware this package had any time series filters in it and i doubt i would have discovered it otherwise.
Your question is not easy to answer. There is not one definitive function.
formals is the function that gives the named arguments to a function and their defaults in a named list, but you can always have variable arguments through the ... parameter and hidden named arguments with embedded hadArg function. To get a list of those you would have to use a getAnywhere and then scan the expression for the hasArg. I can't think of a automatic way of doing it yourself. That is if the functions hidden arguments are not documented.

Resources