How to create dataframe using results (output) of sens.slope function? - r

I have an Excel data with multiple sheets. I imported them into R and applied Mann-Kendall trend test with the function sens.slope(). The results of this function are in htest class, but I want to put them in a table.
I installed packages needed and imported each sheets of dataset.
require(readxl)
require(trend)
tmin1 <- read_excel("C:/TEZ/ANALİZ/future_projection/2051-2100/model 3-3/average_tmin_3_3_end.xlsx", sheet = "acipayam")
tmin2 <- read_excel("C:/TEZ/ANALİZ/future_projection/2051-2100/model 3-3/average_tmin_3_3_end.xlsx", sheet = "adana")
...
tmin57 <- read_excel("C:/TEZ/ANALİZ/future_projection/2051-2100/model 3-3/average_tmin_3_3_end.xlsx", sheet = "yumurtalik")
Then, specified the columns for trend test.
x1<-tmin1$`13`
x2<-tmin1$`14`
x3<-tmin1$`15`
x4<-tmin1$`16`
x5<-tmin1$`17`
...
x281<-tmin57$`13`
x282<-tmin57$`14`
x283<-tmin57$`15`
x284<-tmin57$`16`
x285<-tmin57$`17`
And appplied the function.
sens.slope(x1)
sens.slope(x2)
sens.slope(x3)
....
sens.slope(x285)
The result is looking like this.
> sens.slope(x1)
Sen's slope
data: x1
z = 4.6116, n = 49, p-value = 3.996e-06
alternative hypothesis: true z is not equal to 0
95 percent confidence interval:
0.03241168 0.08101651
sample estimates:
Sen's slope
0.05689083
> sens.slope(x2)
Sen's slope
data: x2
z = 6.8011, n = 49, p-value = 1.039e-11
alternative hypothesis: true z is not equal to 0
95 percent confidence interval:
0.05632911 0.08373755
sample estimates:
Sen's slope
0.07032428
...
How can I put these values in a single table and write them to an Excel file? (names of needed values are statistic and estimates in the function.)

There is a package broom precisely for this:
library(tidyverse)
library(trend)
sens.slope(runif(1000)) %>%
broom::tidy()
# A tibble: 1 x 7
statistic p.value parameter conf.low conf.high method alternative
<dbl> <dbl> <int> <dbl> <dbl> <chr> <chr>
1 0.548 0.584 1000 -0.0000442 0.0000801 Sen's slope two.sided
And if you have many data frames, bind them all into one list and loop it over with map_df:
A = tibble(Value = runif(1000))
B = tibble(Value = runif(1000))
C = tibble(Value = runif(1000))
D = tibble(Value = runif(1000))
list(A,B,C,D) %>%
map_df(~.x %>%
pull(1) %>%
sens.slope() %>%
broom::tidy())
# A tibble: 4 x 7
statistic p.value parameter conf.low conf.high method alternative
<dbl> <dbl> <int> <dbl> <dbl> <chr> <chr>
1 -0.376 0.707 1000 -0.0000732 0.0000502 Sen's slope two.sided
2 -2.30 0.0215 1000 -0.000138 -0.0000110 Sen's slope two.sided
3 -1.30 0.194 1000 -0.000104 0.0000209 Sen's slope two.sided
4 0.674 0.500 1000 -0.0000410 0.0000848 Sen's slope two.sided
Edit: Just realised that broom::tidy in this case doesn't provide the estimate (haven't encountered this before), here is the solution without using broom:
A = tibble(Value = runif(1000))
B = tibble(Value = runif(1000))
C = tibble(Value = runif(1000))
D = tibble(Value = runif(1000))
list(A,B,C,D) %>%
purrr::map_df(.,~{
Test = sens.slope(.x %>% pull(1))
Test = tibble(Estimate = Test["estimates"] %>% unlist,
Statistic = Test["statistic"] %>% unlist)
}
)
# A tibble: 4 x 2
Estimate Statistic
<dbl> <dbl>
1 -0.0000495 -1.55
2 -0.00000491 -0.155
3 0.0000242 0.755
4 -0.0000301 -0.921

Try using lists instead of having so many objects in global environment.
Now since you already have them, you can combine them in a list, apply sens.slope on each one, extract statistic and estimates from them an get the dataframe.
library(trend)
output <- data.frame(t(sapply(mget(paste0('x', 1:285)), function(y)
{temp <- sens.slope(y);c(temp$statistic, temp$estimates)})))
You can now write this dataframe as csv using write.csv.
write.csv(output, 'output.csv', row.names = FALSE)

Related

How can I extract, label and data.frame values from Console in a loop?

I made a nls loop and get values calculated in console. Now I want to extract those values, specify which values are from which group and put everything in a dataframe to continue working.
my loop so far:
for (i in seq_along(trtlist2)) { loopmm.nls <-
nls(rate ~ (Vmax * conc /(Km + conc)),
data=subset(M3, M3$trtlist==trtlist2[i]),
start=list(Km=200, Vmax=2), trace=TRUE )
summary(loopmm.nls)
print(summary(loopmm.nls))
}
the output in console: (this is what I want to extract and put in a dataframe, I have this same "parameters" thing like 20 times)
Parameters:
Estimate Std. Error t value Pr(>|t|)
Km 23.29820 9.72304 2.396 0.0228 *
Vmax 0.10785 0.01165 9.258 1.95e-10 ***
---
different ways of extracting data from the console that work but not in the loop (so far!)
#####extract data in diff ways from nls#####
## extract coefficients as matrix
Kinall <- summary(mm.nls)$parameters
## extract coefficients save as dataframe
Kin <- as.data.frame(Kinall)
colnames(Kin) <- c("values", "SE", "T", "P")
###create Km Vmax df
Kms <- Kin[1, ]
Vmaxs <- Kin[2, ]
#####extract coefficients each manually
Km <- unname(coef(summary(mm.nls))["Km", "Estimate"])
Vmax <- unname(coef(summary(mm.nls))["Vmax", "Estimate"])
KmSE <- unname(coef(summary(mm.nls))["Km", "Std. Error"])
VmaxSE <- unname(coef(summary(mm.nls))["Vmax", "Std. Error"])
KmP <- unname(coef(summary(mm.nls))["Km", "Pr(>|t|)"])
VmaxP <- unname(coef(summary(mm.nls))["Vmax", "Pr(>|t|)"])
KmT <- unname(coef(summary(mm.nls))["Km", "t value"])
VmaxT <- unname(coef(summary(mm.nls))["Vmax", "t value"])
one thing that works if you extract data through append, but somehow that only works for "estimates" not the rest
Kms <- append(Kms, unname(coef(loopmm.nls)["Km"] ))
Vmaxs <- append(Vmaxs, unname(coef(loopmm.nls)["Vmax"] ))
}
Kindf <- data.frame(trt = trtlist2, Vmax = Vmaxs, Km = Kms)
I would just keep everything in the dataframe for ease. You can nest by the group and then run the regression then pull the coefficients out. Just make sure you have tidyverse and broom installed on your computer.
library(tidyverse)
#example
mtcars |>
nest(data = -cyl) |>
mutate(model = map(data, ~nls(mpg~hp^b,
data = .x,
start = list(b = 1))),
clean_mod = map(model, broom::tidy)) |>
unnest(clean_mod) |>
select(-c(data, model))
#> # A tibble: 3 x 6
#> cyl term estimate std.error statistic p.value
#> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 6 b 0.618 0.0115 53.6 2.83e- 9
#> 2 4 b 0.731 0.0217 33.7 1.27e-11
#> 3 8 b 0.504 0.0119 42.5 2.46e-15
#what I expect will work for your data
All_M3_models <- M3 |>
nest(data = -trtlist) |>
mutate(model = map(data, ~nls(rate ~ (Vmax * conc /(Km + conc)),
data=.x,
start=list(Km=200, Vmax=2))),
clean_mod = map(model, broom::tidy))|>
unnest(clean_mod) |>
select(-c(data, model))

How to run a set of functions over given list of variable names and write the output to a table?

What I'm seeking to do is run a mean/standard deviation calculation, as well as a statistical test, along a set of variables. What seems right to do is build the function such that one can pass the list of column names through the function.
One possibly complicating factor is that for this specific data frame, it requires certain functions relating to survey data.
library(radiant.data) #for weighted.sd
library(survey) #survey functions
library(srvyr) #survey functions
#building a df
df <- data.frame("GroupingFactor" = c(1, 1, 0, 0),
"VarofInterest1" = c(1, 1, 1, 0),
"VarofInterest2" = c(1, 0, 0, 0),
"PSU" = c(1, 2, 1, 2),
"SAMPWEIGHT" = c(0, 23254, 343, 5652),
"STRATA" = c(6133, 6131, 6145, 6152))
options(survey.adjust.domain.lonely=TRUE) #adjusting for the one PSU
options(survey.lonely.psu="adjust")
svy <- svydesign(~PSU, weights = ~SAMPWEIGHT, strata = ~STRATA, data = df, nest = TRUE, check.strata = FALSE) #the design
#here is what i would like to iterate
df %>%
group_by(GroupingFactor) %>%
summarise(mean = weighted.mean(VarofInterest1, SAMPWEIGHT, na.rm =T), sd = weighted.sd(VarofInterest1, SAMPWEIGHT, na.rm =T)) #for mean and SD
svychisq(~GroupingFactor+VarofInterest1, svy, statistic = 'Chisq') #the test of interest
Everything AFTER creating the svy object is what I'd ideally automate across a list of variables, e.g., applied to a list including VarofInterest2, a VarofInterest3, and so on.
The final product is a table/tibble including all the variable names, each one's mean and standard deviation and the output of the Chi-squared test (e.g., test statistic/X-squared and p-value).
I would also take a reference for doing this on non-survey weighted data! (i.e., just running, say, a dozen t-tests using a similar premise of feeding a list of variables you'd like to run the t-test against with a grouping factor).
Edit: Intended output
GroupingFactor
Mean
SD
Statistic
p
Variable
0
.25
.25
341.14
.014
VarofInterest1
1
.50
.00
N/A
N/A
VarofInterest1
OR separate functions/table generating functions, one of just the means/SDs:
GroupingFactor
Mean
SD
Variable
0
.50
.25
VarofInterest1
1
.25
.00
VarofInterest1
and then a second with the test statistic and p-values:
Variable
Statistic
p
VarofInterest1
4131.11
.001
VarofInterest2
131.14
.131
You can write a function f() that takes the data, the group variable, and the variable of interest, and return the statistics.. You would need to modify the below example for survey data, but this might give you starting point.
f <- function(df, g, v) {
v_string = quo_name(enquo(v))
g_string = quo_name(enquo(v))
chi_result = chisq.test(df[[v_string]], df[[g_string]])
df %>%
group_by({{g}}) %>%
summarize(Mean = mean({{v}}, na.rm=T),SD = sd({{v}}, na.rm=T)) %>%
mutate(variable=v_string,
statistic=chi_result$statistic,
pvalue=chi_result$p.value)
}
bind_rows(
lapply(c("VarofInterest1", "VarofInterest2"),\(i) f(df,GroupingFactor,!!sym(i)))
)
Output:
# A tibble: 4 × 6
GroupingFactor Mean SD variable statistic pvalue
<dbl> <dbl> <dbl> <chr> <dbl> <dbl>
1 0 0.5 0.707 VarofInterest1 0.444 0.505
2 1 1 0 VarofInterest1 0.444 0.505
3 0 0 0 VarofInterest2 0.444 0.505
4 1 0.5 0.707 VarofInterest2 0.444 0.505

How to use results from different regression models in a scatterplot built using group_by in R?

I would like to add 2 different regression curves, coming from different models, in a scatter plot.
Let's use the example below:
Weight=c(12.6,12.6,16.01,17.3,17.7,10.7,17,10.9,15,14,13.8,14.5,17.3,10.3,12.8,14.5,13.5,14.5,17,14.3,14.8,17.5,2.9,21.4,15.8,40.2,27.3,18.3,10.7,0.7,42.5,1.55,46.7,45.3,15.4,25.6,18.6,11.7,28,35,17,21,41,42,18,33,35,19,30,42,23,44,22)
Increment=c(0.55,0.53,16.53,55.47,80,0.08,41,0.1,6.7,2.2,1.73,3.53,64,0.05,0.71,3.88,1.37,3.8,40,3,26.3,29.7,10.7,35,27.5,60,43,31,21,7.85,63,9.01,67.8,65.8,27,40.1,31.2,22.3,35,21,74,75,12,19,4,20,65,46,9,68,74,57,57)
Id=c(rep("Aa",20),rep("Ga",18),rep("Za",15))
df=data.frame(Id,Weight,Increment)
The scatter plot looks like this:
plot_df <- ggplot(df, aes(x = Weight, y = Increment, color=Id)) + geom_point()
I tested a linear and an exponential regression model and could extract the results following loki's answer there:
linear_df <- df %>% group_by(Id) %>% do(model = glance(lm(Increment ~ Weight,data = .))) %>% unnest(model)
exp_df <- df %>% group_by(Id) %>% do(model = glance(lm(log(Increment) ~ Weight,data = .))) %>% unnest(model)
The linear model fits better for the Ga group, the exponential one for the Aa group, and nothing for the Za one:
> linear_df
# A tibble: 3 x 13
Id r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <int>
1 Aa 0.656 0.637 15.1 34.4 1.50e- 5 1 -81.6 169. 172. 4106. 18 20
2 Ga 1.00 1.00 0.243 104113. 6.10e-32 1 1.01 3.98 6.65 0.942 16 18
3 Za 0.0471 -0.0262 26.7 0.642 4.37e- 1 1 -69.5 145. 147. 9283. 13 15
> exp_df
# A tibble: 3 x 13
Id r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <int>
1 Aa 0.999 0.999 0.0624 24757. 1.05e-29 1 28.2 -50.3 -47.4 0.0700 18 20
2 Ga 0.892 0.885 0.219 132. 3.86e- 9 1 2.87 0.264 2.94 0.766 16 18
3 Za 0.00444 -0.0721 0.941 0.0580 8.14e- 1 1 -19.3 44.6 46.7 11.5 13 15
Now, how can I draw the linear regression line for the Aa group, the exponential regression curve for the Ga group, and no curve for the Za group? There is this, but it applies for different regressions built inside the same model type. How can I combine my different objects?
The formula shown below gives the same fitted values as does 3 separate fits for each Id so create the lm objects for each of the two models and then plot the points and the lines for each. The straight solid lines are the linear model and the curved dashed lines are the exponential model.
library(ggplot2)
fm.lin <- lm(Increment ~ Id/Weight + 0, df)
fm.exp <- lm(log(Increment) ~ Id/Weight + 0, df)
df %>%
ggplot(aes(Weight, Increment, color=Id)) +
geom_point() +
geom_line(aes(y = fitted(fm.lin))) +
geom_line(aes(y = exp(fitted(fm.exp))), lty = 2, lwd = 1)
To only show the Aa fitted lines for the linear model and Ga fitted lines for the exponential model NA out the portions not wanted. In this case we used solid lines for the fitted models.
df %>%
ggplot(aes(Weight, Increment, color=Id)) +
geom_point() +
geom_line(aes(y = ifelse(Id == "Aa", fitted(fm.lin), NA))) +
geom_line(aes(y = ifelse(Id == "Ga", exp(fitted(fm.exp)), NA)))
Added
Regarding the questions in the comments, the formula used above nests Weight within Id and effectively uses a model matrix which, modulo column order, is a block diagonal matrix whose blocks are the model matrices of the 3 individual models. Look at this to understand it.
model.matrix(fm.lin)
Since this is a single model rather than three models the summary statistics will be pooled. To get separate summary statistics use lmList from the nlme package (which comes with R so it does not have to be installed -- just issue a library statement). The statements below will give objects of class lmList that can be used in place of the ones above as they have a fitted method that will return the same fitted values.
library(nlme)
fm.lin2 <- lmList(Increment ~ Weight | Id, df, pool = FALSE)
fm.exp2 <- lmList(log(Increment) ~ Weight | Id, df, pool = FALSE)
In addition, they can be used to get individual summary statistics. Internally the lmList objects consist of a list of 3 lm objects with attributes in this case so we can extract the summary statistics by extracting the summary statistics from each component.
library(broom)
sapply(fm.lin2, glance)
sapply(fm.exp2, glance)
One caveat is that common statistical tests between models using different dependent variables, Increment vs. log(Increment), are invalid.
possible solution
Weight=c(12.6,12.6,16.01,17.3,17.7,10.7,17,10.9,15,14,13.8,14.5,17.3,10.3,12.8,14.5,13.5,14.5,17,14.3,14.8,17.5,2.9,21.4,15.8,40.2,27.3,18.3,10.7,0.7,42.5,1.55,46.7,45.3,15.4,25.6,18.6,11.7,28,35,17,21,41,42,18,33,35,19,30,42,23,44,22)
Increment=c(0.55,0.53,16.53,55.47,80,0.08,41,0.1,6.7,2.2,1.73,3.53,64,0.05,0.71,3.88,1.37,3.8,40,3,26.3,29.7,10.7,35,27.5,60,43,31,21,7.85,63,9.01,67.8,65.8,27,40.1,31.2,22.3,35,21,74,75,12,19,4,20,65,46,9,68,74,57,57)
Id=c(rep("Aa",20),rep("Ga",18),rep("Za",15))
df=data.frame(Id,Weight,Increment)
library(tidyverse)
df_model <- df %>%
group_nest(Id) %>%
mutate(
formula = c(
"lm(log(Increment) ~ Weight, data = .x)",
"lm(Increment ~ Weight,data = .x)",
"lm(Increment ~ 0,data = .x)"
),
transform = c("exp(fitted(.x))",
"fitted(.x)",
"fitted(.x)")
) %>%
mutate(model = map2(data, formula, .f = ~ eval(parse(text = .y)))) %>%
mutate(fit = map2(model, transform, ~ eval(parse(text = .y)))) %>%
select(Id, data, fit) %>%
unnest(c(data, fit))
ggplot(df_model) +
geom_point(aes(Weight, Increment, color = Id)) +
geom_line(aes(Weight, fit, color = Id))
Created on 2021-10-06 by the reprex package (v2.0.1)

extract certain elements from lists of lists

I have a list that contains outputs from multiple correlation tests
dput(head(corr[1:2]))
list(structure(list(statistic = c(S = 1486), parameter = NULL,
p.value = 0.219369570345178, estimate = c(rho = 0.265810276679842),
null.value = c(rho = 0), alternative = "two.sided", method = "Spearman's rank correlation rho",
data.name = "x$theta.x and x$theta.y"), class = "htest"),
structure(list(statistic = c(S = 1852), parameter = NULL,
p.value = 0.699151237307271, estimate = c(rho = 0.0849802371541502),
null.value = c(rho = 0), alternative = "two.sided", method = "Spearman's rank correlation rho",
data.name = "x$theta.x and x$theta.y"), class = "htest"))
I would like to extract into a separate data frame p.value and estimate. For each element I can do it like this:
corr[[1]][3]
$p.value
[1] 0.2193696
> corr[[1]][4]
$estimate
rho
0.2658103
But I did not have any success in trying to extract those values from the entire list at once.
We can also use extract function from magrittr package for this purpose:
library(purrr)
df %>% map_dfr(magrittr::extract, c("estimate", "p.value"))
# A tibble: 2 x 2
estimate p.value
<dbl> <dbl>
1 0.266 0.219
2 0.0850 0.699
We could do
do.call(rbind, lapply(corr, \(x) data.frame(x[3:4])))
p.value estimate
rho 0.2193696 0.26581028
rho1 0.6991512 0.08498024
You can use [ to extract specific element.
as.data.frame(t(sapply(corr, `[`, c(3, 4))))
# p.value estimate
#1 0.219 0.266
#2 0.699 0.085
Moreover, using broom::tidy might be simpler.
purrr::map_df(corr, broom::tidy)
# estimate statistic p.value method alternative
# <dbl> <dbl> <dbl> <chr> <chr>
#1 0.266 1486 0.219 Spearman's rank correlation rho two.sided
#2 0.0850 1852 0.699 Spearman's rank correlation rho two.sided

R loop for linear regression lm(y~x) and save model output as a dataset

I would like to make a regression loop lm(y~x) with a dataset with one y and several x, and run the regression for each x, and then also store the results (estimate, p-values) in a data.frame() so I don't have to copy them manually (especially as my real data set it much bigger).
I think this should not be too difficult, but I struggle a lot to make it work and appreciate your help:
Here is my sample data set:
sample_data <- data.frame(
fit = c(0.8971963, 1.4205607, 1.4953271, 0.8971963, 1.1588785, 0.1869159, 1.1588785, 1.142857143, 0.523809524),
Xbeta = c(2.8907744, -0.7680777, -0.7278847, -0.06293916, -0.04047017, 2.3755812, 1.3043990, -0.5698354, -0.5698354),
Xgamma = c( 0.1180758, -0.6275700, 0.3731964, -0.2353454,-0.5761923, -0.5186803, 0.43041835, 3.9111749, -0.5030638),
Xalpha = c(0.2643091, 1.6663923, 0.4041057, -0.2100472, -0.2100472, 7.4874195, -0.2385278, 0.3183102, -0.2385278),
Xdelta = c(0.1498646, -0.6325119, -0.5947564, -0.2530748, 3.8413339, 0.6839322, 0.7401834, 3.8966404, 1.2028175)
)
#yname <- ("fit")
#xnames <- c("Xbeta ","Xgamma", "Xalpha", "Xdelta")
The simple regression with the first independant variable Xbeta would look like this lm(fit~Xbeta, data= sample_data)and I would like to run the regression for each variable starting with an "X" and then store the result (estimate, p-value).
I have found a code that allows me to select variables that start with "X" and then use it for the model, but the code gives me an error from mutate() onwards (indicated by #).
library(tidyverse)
library(tsibble)
sample_data %>%
gather(stock, return, starts_with("X")) %>%
group_nest(stock)
# %>%
# mutate(model = map(data,
# ~lm(formula = "fit~ return",
# data = .x))
# ),
# resid = map(model, residuals)
# ) %>%
# unnest(c(data,resid)) %>%
# summarise(sd_residual = sd(resid))
For then storing the regression results I have also found the following appraoch using the R package "broom": r for loop for regression lm(y~x)
sample_data%>%
group_by(y,x)%>% # get combinations of y and x to regress
do(tidy(lm(fRS_relative~xvalue, data=.)))
But I always get an error for group_by() and do()
I really appreciate your help!
One option would be to use lapply to perform a regression with each of the independent variables. Use tidy from broom library to store the results into a tidy format.
lapply(1:length(xnames),
function(i) broom::tidy(lm(as.formula(paste0('fit ~ ', xnames[i])), data = sample_data))) -> test
and then combine all the results into a single dataframe:
do.call('rbind', test)
# term estimate std.error statistic p.value
# <chr> <dbl> <dbl> <dbl> <dbl>
# 1 (Intercept) 1.05 0.133 7.89 0.0000995
# 2 Xbeta -0.156 0.0958 -1.62 0.148
# 3 (Intercept) 0.968 0.147 6.57 0.000313
# 4 Xgamma 0.0712 0.107 0.662 0.529
# 5 (Intercept) 1.09 0.131 8.34 0.0000697
# 6 Xalpha -0.0999 0.0508 -1.96 0.0902
# 7 (Intercept) 0.998 0.175 5.72 0.000723
# 8 Xdelta -0.0114 0.0909 -0.125 0.904
Step one
Your data is messy, let us tidy it up.
sample_data <- data.frame(
fit = c(0.8971963, 1.4205607, 1.4953271, 0.8971963, 1.1588785, 0.1869159, 1.1588785, 1.142857143, 0.523809524),
Xbeta = c(2.8907744, -0.7680777, -0.7278847, -0.06293916, -0.04047017, 2.3755812, 1.3043990, -0.5698354, -0.5698354),
Xgamma = c( 0.1180758, -0.6275700, 0.3731964, -0.2353454,-0.5761923, -0.5186803, 0.43041835, 3.9111749, -0.5030638),
Xalpha = c(0.2643091, 1.6663923, 0.4041057, -0.2100472, -0.2100472, 7.4874195, -0.2385278, 0.3183102, -0.2385278),
Xdelta = c(0.1498646, -0.6325119, -0.5947564, -0.2530748, 3.8413339, 0.6839322, 0.7401834, 3.8966404, 1.2028175)
)
tidyframe = data.frame(fit = sample_data$fit,
X = c(sample_data$Xbeta,sample_data$Xgamma,sample_data$Xalpha,sample_data$Xdelta),
type = c(rep("beta",9),rep("gamma",9),rep("alpha",9),rep("delta",9)))
Created on 2020-07-13 by the reprex package (v0.3.0)
Step two
Iterate over each type, and get the P-value, using this nifty function
# From https://stackoverflow.com/a/5587781/3212698
lmp <- function (modelobject) {
if (class(modelobject) != "lm") stop("Not an object of class 'lm' ")
f <- summary(modelobject)$fstatistic
p <- pf(f[1],f[2],f[3],lower.tail=F)
attributes(p) <- NULL
return(p)
}
Then do some clever piping
tidyframe %>% group_by(type) %>%
summarise(type = type, p = lmp(lm(formula = fit ~ X))) %>%
unique()
#> `summarise()` regrouping output by 'type' (override with `.groups` argument)
#> # A tibble: 4 x 2
#> # Groups: type [4]
#> type p
#> <fct> <dbl>
#> 1 alpha 0.0902
#> 2 beta 0.148
#> 3 delta 0.904
#> 4 gamma 0.529
Created on 2020-07-13 by the reprex package (v0.3.0)

Resources