Syntax for "is distributed as" in R - r

When specifying a model in JAGS/BUGS, the "is distributed as" symbol ~ is very useful. How to do this in R when using MCMC methods which require me to specify the likelihood?
Let's say, I want to estimate three parameters which are multivariate normally distributed.
In JAGS, I would do this by specifying pars[1:n] ~ dmnorm(mu[1:3], sigma[1:3, 1:3]). If everything is specified correctly, JAGS would go on to estimate these parameters under the given distribution.
In R, there are similar functions, like the dmvnorm() function, from the mvtnorm package. However, I'm not sure how to use these. I have to provide the data to get the probability density, whereas in JAGS, I only have to provide the parameters of the distribution like mu and sigma. What is the R equivalent to the ~ syntax in JAGS?

Here's some random data:
set.seed(123)
y = rbinom(10, 1, 0.2)
y
> y
[1] 0 0 0 1 1 0 0 1 0 0
So we know that the value of p that generated this data is 0.2. Let's see how we could try and recover that information (assuming we didn't know it). In JAGS I would write the following model:
model{
for(i in 1:10){
y[i] ~ dbern(p)
}
p ~ dunif(0, 1)
}
So I have said that the data is generated using (or sampled from) a Bernoulli distribution with parameter p, and that the prior for p is a Beta(1,1) which is equivalent to a uniform distribution.
So let's (initially) forget the Bayesian part. You have asked how to compute the likelihood. The likelihood for a parameter theta given independent and identically distributed data y = (y_1, ..., y_N) is
L(theta | y) = product(f(y_i | theta), i = 1,...,N)
In our example, the pdf f(y_i | theta) is p^y_i * (1 - p)^(1 - y_i). I know this just simplifies to p if y_i is 1, or (1 - p) if y_i is zero, but let's assume we don't know this and we are just using the Binomial probability function with parameters n = 1, and p to compute this, then you could get the likelihood like this:
Like = function(p){
prod(dbinom(y, 1, p))
}
This is a pretty simple function that only works for single values of p, but it works, e.g.
> Like(0.1)
[1] 0.0004782969
> Like(0.2)
[1] 0.001677722
> Like(0.3)
[1] 0.002223566
>
We can make it work for a whole range of values of p by using sapply
Like = function(p){
sapply(p, function(p.i)prod(dbinom(y, 1, p.i)))
}
So now, for example I could calculate the likelihood of values of p ranging from 0.01 to 0.99 in steps of 0.01 by
p = seq(0.01, 0.99, by = 0.01)
l = Like(p)
And I could plot them
plot(p, l, type = "l")
You can see from the plot that the likelihood is maximized at 0.3, so this is the MLE of p based on this data.
Going back to the Bayesian problem, here's an implementation of Metropolis-Hastings (uncommented sorry):
MH = function(N = 1000, p0 = runif(1)){
log.like = function(p){
sum(dbinom(y, size = 1, p, log = TRUE))
}
ll0 = log.like(p0)
r = c(p0, rep(0, N))
for(i in 1:N){
p1 = runif(1)
ll1 = log.like(p1)
if(ll1 > ll0 || log(runif(1)) < ll1 - ll0){
p0 = p1
ll0 = ll1
}
r[i + 1] = p0
}
return(r)
}
Now we take a sample of size 10,000 from this, with
set.seed(123)
p = MH(10000)
plot(density(p))
abline(v = c(mean(p), mean(p) + c(-1,1)*qnorm(0.975)*sd(p)))
and plot the KDE of the sample (plus some credible intervals)
And see that the Metropolis-Hastings has worked -- the intervals are wide because the sample size is small.

Related

Apply penalty function to non-linear least square estimation convergence with bounds in R - package minpack.lm

I want to perform a non-linear least square estimation using the function nlsLM from the package minpack.lm.
I want to impose an upper and a lower bound to the estimation to force the algorithm to find the solution within a specific support.
Something along these lines:
library(minpack.lm)
mydata <- data.frame(x=c(0,5,9,13,17,20),y = c(0,11,20,29,38,45))
myfit <- nlsLM(formula(y ~ a*x), data = mydata, start=list(a = 2.5), lower = c(a = 0), upper = c(a = 5))
summary(myfit)
My question is:
is it possible to apply a penalty function to nlsLM, so to avoid that the algorithm returns a corner solution? e.g. in my example a is not equal to 0 or 5.
Caveats:
I am exclusively looking at a solution with the package minpack.lm.
To implement this barrier function which approaches infinity as a approaches 0 from the right or 5 from the left:
log(a)^2 + log(5-a)^2
as a penalty we form the objective function
(y[1] - a*x[1])^2 + ... + (y[n] - a*x[n])^2 + (0 - log(a))^2 + (0 - log(5-a))^2
like this
n <- nrow(mydata)
mydata0 <- rbind(mydata, 0 * mydata[1:2, ])
nlsLM(y ~ c(a * x[1:n], log(a), log(5 - a)), mydata0, start = list(a = 1))

R generating binomial Random variables from exponential random variables

I have 100000 exponential random variables generated withrexp and I am asked to generate 100000 binomial random variables from them using built in R functions.
I really don't know how can I generate one random variable from another. I searched some resources on internet but they were mostly about generating poisson from exponential which are very related because exponential distribution can be interpreted as time intervals of poisson. making poisson can be easily achieved by applying cumsum on exponentials and using cut function to make some bins including number of occurrences in a time interval.
But I don't know how is it possible to generate binomial from exponential.
The function rbin below generates binomial rv's from exponential rv's. The reason why might be a question for CrossValidated, not for StackOverflow, which is about code.
rbin <- function(n, size, p){
onebin <- function(i, size, thres){
I <- 0L
repeat{
S <- sum(rexp(I + 1)/(size + 1 - seq_len(I + 1)))
if(S > thres) break
I <- I + 1L
}
I
}
thres <- -log(1 - p)
sapply(seq_len(n), onebin, size, thres)
}
set.seed(1234)
u <- rbin(100000, 1, 0.5)
v <- rbinom(100000, 1, 0.5)
X <- cbind(u, v)
cbind(Mean = colMeans(X), Var = apply(X, 2, var))
# Mean Var
#u 0.50124 0.2500010
#v 0.49847 0.2500002

How to run monte carlo simulation from a custom distribution in R

I would like to pull 1000 samples from a custom distribution in R
I have the following custom distribution
library(gamlss)
mu <- 1
sigma <- 2
tau <- 3
kappa <- 3
rate <- 1
Rmax <- 20
x <- seq(1, 2e1, 0.01)
points <- Rmax * dexGAUS(x, mu = mu, sigma = sigma, nu = tau) * pgamma(x, shape = kappa, rate = rate)
plot(points ~ x)
How can I randomly sample via Monte Carlo simulation from this distribution?
My first attempt was the following code which produced a histogram shape I did not expect.
hist(sample(points, 1000), breaks = 51)
This is not what I was looking for as it does not follow the same distribution as the pdf.
If you want a Monte Carlo simulation, you'll need to sample from the distribution a large number of times, not take a large sample one time.
Your object, points, has values that increases as the index increases to a threshold around 400, levels off, and then decreases. That's what plot(points ~ x) shows. It may describe a distribution, but the actual distribution of values in points is different. That shows how often values are within a certain range. You'll notice your x axis for the histogram is similar to the y axis for the plot(points ~ x) plot. The actual distribution of values in the points object is easy enough to see, and it is similar to what you're seeing when sampling 1000 values at random, without replacement from an object with 1900 values in it. Here's the distribution of values in points (no simulation required):
hist(points, 100)
I used 100 breaks on purpose so you could see some of the fine details.
Notice the little bump in the tail at the top, that you may not be expecting if you want the histogram to look like the plot of the values vs. the index (or some increasing x). That means that there are more values in points that are around 2 then there are around 1. See if you can look at how the curve of plot(points ~ x) flattens when the value is around 2, and how it's very steep between 0.5 and 1.5. Notice also the large hump at the low end of the histogram, and look at the plot(points ~ x) curve again. Do you see how most of the values (whether they're at the low end or the high end of that curve) are close to 0, or at least less than 0.25. If you look at those details, you may be able to convince yourself that the histogram is, in fact, exactly what you should expect :)
If you want a Monte Carlo simulation of a sample from this object, you might try something like:
samples <- replicate(1000, sample(points, 100, replace = TRUE))
If you want to generate data using points as a probability density function, that question has been asked and answered here
Let's define your (not normalized) probability density function as a function:
library(gamlss)
fun <- function(x, mu = 1, sigma = 2, tau = 3, kappa = 3, rate = 1, Rmax = 20)
Rmax * dexGAUS(x, mu = mu, sigma = sigma, nu = tau) *
pgamma(x, shape = kappa, rate = rate)
Now one approach is to use some MCMC (Markov chain Monte Carlo) method. For instance,
simMCMC <- function(N, init, fun, ...) {
out <- numeric(N)
out[1] <- init
for(i in 2:N) {
pr <- out[i - 1] + rnorm(1, ...)
r <- fun(pr) / fun(out[i - 1])
out[i] <- ifelse(runif(1) < r, pr, out[i - 1])
}
out
}
It starts from point init and gives N draws. The approach can be improved in many ways, but I'm simply only going to start form init = 5, include a burnin period of 20000 and to select every second draw to reduce the number of repetitions:
d <- tail(simMCMC(20000 + 2000, init = 5, fun = fun), 2000)[c(TRUE, FALSE)]
plot(density(d))
You invert the ECDF of the distribution:
ecd.points <- ecdf(points)
invecdfpts <- with( environment(ecd.points), approxfun(y,x) )
samp.inv.ecd <- function(n=100) invecdfpts( runif(n) )
plot(density (samp.inv.ecd(100) ) )
plot(density(points) )
png(); layout(matrix(1:2,1)); plot(density (samp.inv.ecd(100) ),main="The Sample" )
plot(density(points) , main="The Original"); dev.off()
Here's another way to do it that draws from R: Generate data from a probability density distribution and How to create a distribution function in R?:
x <- seq(1, 2e1, 0.01)
points <- 20*dexGAUS(x,mu=1,sigma=2,nu=3)*pgamma(x,shape=3,rate=1)
f <- function (x) (20*dexGAUS(x,mu=1,sigma=2,nu=3)*pgamma(x,shape=3,rate=1))
C <- integrate(f,-Inf,Inf)
> C$value
[1] 11.50361
# normalize by C$value
f <- function (x)
(20*dexGAUS(x,mu=1,sigma=2,nu=3)*pgamma(x,shape=3,rate=1)/11.50361)
random.points <- approx(cumsum(pdf$y)/sum(pdf$y),pdf$x,runif(10000))$y
hist(random.points,1000)
hist((random.points*40),1000) will get the scaling like your original function.

Maximum Likelihood Estimation for three-parameter Weibull distribution in r

I want to estimate the scale, shape and threshold parameters of a 3p Weibull distribution.
What I've done so far is the following:
Refering to this post, Fitting a 3 parameter Weibull distribution in R
I've used the functions
EPS = sqrt(.Machine$double.eps) # "epsilon" for very small numbers
llik.weibull <- function(shape, scale, thres, x)
{
sum(dweibull(x - thres, shape, scale, log=T))
}
thetahat.weibull <- function(x)
{
if(any(x <= 0)) stop("x values must be positive")
toptim <- function(theta) -llik.weibull(theta[1], theta[2], theta[3], x)
mu = mean(log(x))
sigma2 = var(log(x))
shape.guess = 1.2 / sqrt(sigma2)
scale.guess = exp(mu + (0.572 / shape.guess))
thres.guess = 1
res = nlminb(c(shape.guess, scale.guess, thres.guess), toptim, lower=EPS)
c(shape=res$par[1], scale=res$par[2], thres=res$par[3])
}
to "pre-estimate" my Weibull parameters, such that I can use them as initial values for the argument "start" in the "fitdistr" function of the MASS-Package.
You might ask why I want to estimate the parameters twice... reason is that I need the variance-covariance-matrix of the estimates which is also estimated by the fitdistr function.
EXAMPLE:
set.seed(1)
thres <- 450
dat <- rweibull(1000, 2.78, 750) + thres
pre_mle <- thetahat.weibull(dat)
my_wb <- function(x, shape, scale, thres) {
dweibull(x - thres, shape, scale)
}
ml <- fitdistr(dat, densfun = my_wb, start = list(shape = round(pre_mle[1], digits = 0), scale = round(pre_mle[2], digits = 0),
thres = round(pre_mle[3], digits = 0)))
ml
> ml
shape scale thres
2.942548 779.997177 419.996196 ( 0.152129) ( 32.194294) ( 28.729323)
> ml$vcov
shape scale thres
shape 0.02314322 4.335239 -3.836873
scale 4.33523868 1036.472551 -889.497580
thres -3.83687258 -889.497580 825.374029
This works quite well for cases where the shape parameter is above 1. Unfortunately my approach should deal with the cases where the shape parameter could be smaller than 1.
The reason why this is not possible for shape parameters that are smaller than 1 is described here: http://www.weibull.com/hotwire/issue148/hottopics148.htm
in Case 1, All three parameters are unknown the following is said:
"Define the smallest failure time of ti to be tmin. Then when γ → tmin, ln(tmin - γ) → -∞. If β is less than 1, then (β - 1)ln(tmin - γ) goes to +∞ . For a given solution of β, η and γ, we can always find another set of solutions (for example, by making γ closer to tmin) that will give a larger likelihood value. Therefore, there is no MLE solution for β, η and γ."
This makes a lot of sense. For this very reason I want to do it the way they described it on this page.
"In Weibull++, a gradient-based algorithm is used to find the MLE solution for β, η and γ. The upper bound of the range for γ is arbitrarily set to be 0.99 of tmin. Depending on the data set, either a local optimal or 0.99tmin is returned as the MLE solution for γ."
I want to set a feasible interval for gamma (in my code called 'thres') such that the solution is between (0, .99 * tmin).
Does anyone have an idea how to solve this problem?
In the function fitdistr there seems to be no opportunity doing a constrained MLE, constraining one parameter.
Another way to go could be the estimation of the asymptotic variance via the outer product of the score vectors. The score vector could be taken from the above used function thetahat.weibul(x). But calculating the outer product manually (without function) seems to be very time consuming and does not solve the problem of the constrained ML estimation.
Best regards,
Tim
It's not too hard to set up a constrained MLE. I'm going to do this in bbmle::mle2; you could also do it in stats4::mle, but bbmle has some additional features.
The larger issue is that it's theoretically difficult to define the sampling variance of an estimate when it's on the boundary of the allowed space; the theory behind Wald variance estimates breaks down. You can still calculate confidence intervals by likelihood profiling ... or you could bootstrap. I ran into a variety of optimization issues when doing this ... I haven't really thought about wether there are specific reasons
Reformat three-parameter Weibull function for mle2 use (takes x as first argument, takes log as an argument):
dweib3 <- function(x, shape, scale, thres, log=TRUE) {
dweibull(x - thres, shape, scale, log=log)
}
Starting function (slightly reformatted):
weib3_start <- function(x) {
mu <- mean(log(x))
sigma2 <- var(log(x))
logshape <- log(1.2 / sqrt(sigma2))
logscale <- mu + (0.572 / logshape)
logthres <- log(0.5*min(x))
list(logshape = logshape, logsc = logscale, logthres = logthres)
}
Generate data:
set.seed(1)
dat <- data.frame(x=rweibull(1000, 2.78, 750) + 450)
Fit model: I'm fitting the parameters on the log scale for convenience and stability, but you could use boundaries at zero as well.
tmin <- log(0.99*min(dat$x))
library(bbmle)
m1 <- mle2(x~dweib3(exp(logshape),exp(logsc),exp(logthres)),
data=dat,
upper=c(logshape=Inf,logsc=Inf,
logthres=tmin),
start=weib3_start(dat$x),
method="L-BFGS-B")
vcov(m1), which should normally provide a variance-covariance estimate (unless the estimate is on the boundary, which is not the case here) gives NaN values ... not sure why without more digging.
library(emdbook)
tmpf <- function(x,y) m1#minuslogl(logshape=x,
logsc=coef(m1)["logsc"],
logthres=y)
tmpf(1.1,6)
s1 <- curve3d(tmpf,
xlim=c(1,1.2),ylim=c(5.9,tmin),sys3d="image")
with(s1,contour(x,y,z,add=TRUE))
h <- lme4:::hessian(function(x) do.call(m1#minuslogl,as.list(x)),coef(m1))
vv <- solve(h)
diag(vv) ## [1] 0.002672240 0.001703674 0.004674833
(se <- sqrt(diag(vv))) ## standard errors
## [1] 0.05169371 0.04127558 0.06837275
cov2cor(vv)
## [,1] [,2] [,3]
## [1,] 1.0000000 0.8852090 -0.8778424
## [2,] 0.8852090 1.0000000 -0.9616941
## [3,] -0.8778424 -0.9616941 1.0000000
This is the variance-covariance matrix of the log-scaled variables. If you want to convert to the variance-covariance matrix on the original scale, you need to scale by (x_i)*(x_j) (i.e. by the derivatives of the transformation exp(x)).
outer(exp(coef(m1)),exp(coef(m1))) * vv
## logshape logsc logthres
## logshape 0.02312803 4.332993 -3.834145
## logsc 4.33299307 1035.966372 -888.980794
## logthres -3.83414498 -888.980794 824.831463
I don't know why this doesn't work with numDeriv - would be very careful with variance estimates above. (Maybe too close to boundary for Richardson extrapolation to work?)
library(numDeriv)
hessian()
grad(function(x) do.call(m1#minuslogl,as.list(x)),coef(m1)) ## looks OK
vcov(m1)
The profiles look OK ... (we have to supply std.err because the Hessian isn't invertible)
pp <- profile(m1,std.err=c(0.01,0.01,0.01))
par(las=1,bty="l",mfcol=c(1,3))
plot(pp,show.points=TRUE)
confint(pp)
## 2.5 % 97.5 %
## logshape 0.9899645 1.193571
## logsc 6.5933070 6.755399
## logthres 5.8508827 6.134346
Alternately, we can do this on the original scale ... one possibility would be to use the log-scaling to fit, then refit starting from those parameters on the original scale.
wstart <- as.list(exp(unlist(weib3_start(dat$x))))
names(wstart) <- gsub("log","",names(wstart))
m2 <- mle2(x~dweib3(shape,sc,thres),
data=dat,
lower=c(shape=0.001,sc=0.001,thres=0.001),
upper=c(shape=Inf,sc=Inf,
thres=exp(tmin)),
start=wstart,
method="L-BFGS-B")
vcov(m2)
## shape sc thres
## shape 0.02312399 4.332057 -3.833264
## sc 4.33205658 1035.743511 -888.770787
## thres -3.83326390 -888.770787 824.633714
all.equal(unname(coef(m2)),unname(exp(coef(m1))),tol=1e-4)
About the same as the values above.
We can fit with a small shape, if we are a little more careful to bound the paraameters, but now we end up on the boundary for the threshold, which will cause lots of problems for the variance calculations.
set.seed(1)
dat <- data.frame(x = rweibull(1000, .53, 365) + 100)
tmin <- log(0.99 * min(dat$x))
m1 <- mle2(x ~ dweib3(exp(logshape), exp(logsc), exp(logthres)),
lower=c(logshape=-10,logscale=0,logthres=0),
upper = c(logshape = 20, logsc = 20, logthres = tmin),
data = dat,
start = weib3_start(dat$x), method = "L-BFGS-B")
For censored data, you need to replace dweibull with pweibull; see Errors running Maximum Likelihood Estimation on a three parameter Weibull cdf for some hints.
Another possible solution is to do Bayesian inference. Using scale priors on the shape and scale parameters and a uniform prior on the location parameter, you can easily run Metropolis-Hastings as follows. It might be adviceable to reparameterize in terms of log(shape), log(scale) and log(y_min - location) because the posterior for some of the parameters becomes strongly skewed, in particular for the location parameter. Note that the output below shows the posterior for the backtransformed parameters.
library(MCMCpack)
logposterior <- function(par,y) {
gamma <- min(y) - exp(par[3])
sum(dweibull(y-gamma,exp(par[1]),exp(par[2]),log=TRUE)) + par[3]
}
y <- rweibull(100,shape=.8,scale=10) + 1
chain0 <- MCMCmetrop1R(logposterior, rep(0,3), y=y, V=.01*diag(3))
chain <- MCMCmetrop1R(logposterior, rep(0,3), y=y, V=var(chain0))
plot(exp(chain))
summary(exp(chain))
This produces the following output
#########################################################
The Metropolis acceptance rate was 0.43717
#########################################################
Iterations = 501:20500
Thinning interval = 1
Number of chains = 1
Sample size per chain = 20000
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
Mean SD Naive SE Time-series SE
[1,] 0.81530 0.06767 0.0004785 0.001668
[2,] 10.59015 1.39636 0.0098738 0.034495
[3,] 0.04236 0.05642 0.0003990 0.001174
2. Quantiles for each variable:
2.5% 25% 50% 75% 97.5%
var1 0.6886083 0.768054 0.81236 0.8608 0.9498
var2 8.0756210 9.637392 10.50210 11.4631 13.5353
var3 0.0003397 0.007525 0.02221 0.0548 0.1939

Generating samples from a two-Gaussian mixture in r (code given in MATLAB)

I'm trying to create (in r) the equivalent to the following MATLAB function that will generate n samples from a mixture of N(m1,(s1)^2) and N(m2, (s2)^2) with a fraction, alpha, from the first Gaussian.
I have a start, but the results are notably different between MATLAB and R (i.e., the MATLAB results give occasional values of +-8 but the R version never even gives a value of +-5). Please help me sort out what is wrong here. Thanks :-)
For Example:
Plot 1000 samples from a mix of N(0,1) and N(0,36) with 95% of samples from the first Gaussian. Normalize the samples to mean zero and standard deviation one.
MATLAB
function
function y = gaussmix(n,m1,m2,s1,s2,alpha)
y = zeros(n,1);
U = rand(n,1);
I = (U < alpha)
y = I.*(randn(n,1)*s1+m1) + (1-I).*(randn(n,1)*s2 + m2);
implementation
P = gaussmix(1000,0,0,1,6,.95)
P = (P-mean(P))/std(P)
plot(P)
axis([0 1000 -15 15])
hist(P)
axis([-15 15 0 1000])
resulting plot
resulting hist
R
yn <- rbinom(1000, 1, .95)
s <- rnorm(1000, 0 + 0*yn, 1 + 36*yn)
sn <- (s-mean(s))/sd(s)
plot(sn, xlim=range(0,1000), ylim=range(-15,15))
hist(sn, xlim=range(-15,15), ylim=range(0,1000))
resulting plot
resulting hist
As always, THANK YOU!
SOLUTION
gaussmix <- function(nsim,mean_1,mean_2,std_1,std_2,alpha){
U <- runif(nsim)
I <- as.numeric(U<alpha)
y <- I*rnorm(nsim,mean=mean_1,sd=std_1)+
(1-I)*rnorm(nsim,mean=mean_2,sd=std_2)
return(y)
}
z1 <- gaussmix(1000,0,0,1,6,0.95)
z1_standardized <- (z1-mean(z1))/sqrt(var(z1))
z2 <- gaussmix(1000,0,3,1,1,0.80)
z2_standardized <- (z2-mean(z2))/sqrt(var(z2))
z3 <- rlnorm(1000)
z3_standardized <- (z3-mean(z3))/sqrt(var(z3))
par(mfrow=c(2,3))
hist(z1_standardized,xlim=c(-10,10),ylim=c(0,500),
main="Histogram of 95% of N(0,1) and 5% of N(0,36)",
col="blue",xlab=" ")
hist(z2_standardized,xlim=c(-10,10),ylim=c(0,500),
main="Histogram of 80% of N(0,1) and 10% of N(3,1)",
col="blue",xlab=" ")
hist(z3_standardized,xlim=c(-10,10),ylim=c(0,500),
main="Histogram of samples of LN(0,1)",col="blue",xlab=" ")
##
plot(z1_standardized,type='l',
main="1000 samples from a mixture N(0,1) and N(0,36)",
col="blue",xlab="Samples",ylab="Mean",ylim=c(-10,10))
plot(z2_standardized,type='l',
main="1000 samples from a mixture N(0,1) and N(3,1)",
col="blue",xlab="Samples",ylab="Mean",ylim=c(-10,10))
plot(z3_standardized,type='l',
main="1000 samples from LN(0,1)",
col="blue",xlab="Samples",ylab="Mean",ylim=c(-10,10))
There are two problems, I think ... (1) your R code is creating a mixture of normal distributions with standard deviations of 1 and 37. (2) By setting prob equal to alpha in your rbinom() call, you're getting a fraction alpha in the second mode rather than the first. So what you are getting is a distribution that is mostly a Gaussian with sd 37, contaminated by a 5% mixture of Gaussian with sd 1, rather than a Gaussian with sd 1 that is contaminated by a 5% mixture of a Gaussian with sd 6. Scaling by the standard deviation of the mixture (which is about 36.6) basically reduces it to a standard Gaussian with a slight bump near the origin ...
(The other answers posted here do solve your problem perfectly well, but I thought you might be interested in a diagnosis ...)
A more compact (and perhaps more idiomatic) version of your Matlab gaussmix function (I think runif(n)<alpha is slightly more efficient than rbinom(n,size=1,prob=alpha) )
gaussmix <- function(n,m1,m2,s1,s2,alpha) {
I <- runif(n)<alpha
rnorm(n,mean=ifelse(I,m1,m2),sd=ifelse(I,s1,s2))
}
set.seed(1001)
s <- gaussmix(1000,0,0,1,6,0.95)
Not that you asked for it, but the mclust package offers a way to generalize your problem to more dimensions and diverse covariance structures. See ?mclust::sim. The example task would be done this way:
require(mclust)
simdata = sim(modelName = "V",
parameters = list(pro = c(0.95, 0.05),
mean = c(0, 0),
variance = list(modelName = "V",
d = 1,
G = 2,
sigmasq = c(0, 36))),
n = 1000)
plot(scale(simdata[,2]), type = "h")
I recently wrote the density and sampling function of a multinomial mixture of normal distributions:
dmultiNorm <- function(x,means,sds,weights)
{
if (length(means)!=length(sds)) stop("Length of means must be equal to length of standard deviations")
N <- length(x)
n <- length(means)
if (missing(weights))
{
weights <- rep(1,n)
}
if (length(weights)!=n) stop ("Length of weights not equal to length of means and sds")
weights <- weights/sum(weights)
dens <- numeric(N)
for (i in 1:n)
{
dens <- dens + weights[i] * dnorm(x,means[i],sds[i])
}
return(dens)
}
rmultiNorm <- function(N,means,sds,weights,scale=TRUE)
{
if (length(means)!=length(sds)) stop("Length of means must be equal to length of standard deviations")
n <- length(means)
if (missing(weights))
{
weights <- rep(1,n)
}
if (length(weights)!=n) stop ("Length of weights not equal to length of means and sds")
Res <- numeric(N)
for (i in 1:N)
{
s <- sample(1:n,1,prob=weights)
Res[i] <- rnorm(1,means[s],sds[s])
}
return(Res)
}
With means being a vector of means, sds being a vector of standard deviatians and weights being a vector with proportional probabilities to sample from each of the distributions. Is this useful to you?
Here is code to do this task:
"For Example: Plot 1000 samples from a mix of N(0,1) and N(0,36) with 95% of samples from the first Gaussian. Normalize the samples to mean zero and standard deviation one."
plot(multG <- c( rnorm(950), rnorm(50, 0, 36))[sample(1000)] , type="h")
scmulG <- scale(multG)
summary(scmulG)
#-----------
V1
Min. :-9.01845
1st Qu.:-0.06544
Median : 0.03841
Mean : 0.00000
3rd Qu.: 0.13940
Max. :12.33107

Resources