In R, I have a df such as:
a b c
1 124 70 aa
2 129 67 aa
3 139 71 aa
4 125 77 aa
5 125 82 aa
6 121 69 aa
7 135 68 bb
8 137 72 bb
9 137 78 bb
10 140 86 bb
I want to iterate along rows within columns (a, b), computing the mean of all rows pairs, and paste this mean to the same two rows of new columns (a_new, b_new) if the difference between these two rows is >=12. Otherwise just copy the old value. This behaviour should be restricted to groups as marked by another column (c), i.e it should not happen if two rows are from different groups.
In this example, it happens in row 3 (cos in column a, difference with next (4th) row is 14) and in row 5 (cos in column b, difference with next row is 13). However, this should not happen with row 6 cos row 7 is in another c group.
Thus, resulting df would look like:
a b c a_new b_new
1 124 70 aa 124 70
2 129 67 aa 129 67
3 139 71 aa 132 71
4 125 77 aa 132 68
5 125 82 aa 125 75.5
6 121 69 aa 121 75.5
7 135 68 bb 135 68
8 137 72 bb 137 72
9 137 78 bb 137 78
10 140 86 bb 140 86
I've been struggling to do this for a while, figured out that perhaps lag function could be used, but no success. Help would be much appreciated (be it base R, or dplyr, or whatever)
Dput:
structure(list(a = c(124, 129, 139, 125, 125, 121, 135, 137,
137, 140), b = c(70, 67, 71, 77, 82, 69, 68, 72, 78, 86), c = c("aa",
"aa", "aa", "aa", "aa", "aa", "bb", "bb", "bb", "bb")), row.names = c(NA,
-10L), class = c("tbl_df", "tbl", "data.frame"))
We can write a function which works for one chunk.
apply_fun <- function(x) {
inds <- which(abs(diff(x)) >= 12)
if(length(inds))
x[sort(c(inds, inds + 1))] <- c(sapply(inds, function(i)
rep(mean(x[c(i, i + 1)]), 2)))
return(x)
}
and then apply it for multiple columns by group.
library(dplyr)
df %>% group_by(c) %>% mutate_at(vars(a, b), list(new = apply_fun))
# a b c a_new b_new
# <dbl> <dbl> <chr> <dbl> <dbl>
# 1 124 70 aa 124 70
# 2 129 67 aa 129 67
# 3 139 71 aa 132 71
# 4 125 77 aa 132 77
# 5 125 82 aa 125 75.5
# 6 121 69 aa 121 75.5
# 7 135 68 bb 135 68
# 8 137 72 bb 137 72
# 9 137 78 bb 137 78
#10 140 86 bb 140 86
What I understood is to apply to each group given by the indicator column "c" the procedure commented in the code below:
pairAverage <- function(x) {
# x should be a numeric vector of length > 1
if (is.vector(x) & is.numeric(x) & length(x) > 1) {
# copy data to an aux vector
aux <- x
# get differences of lag 1
dh<-diff(x, 1)
# get means of consecutive pairs
med <- c(x$a[2:length(x)] - dh/2)
# get positions (index) of abs(means) >= 12
idx <- match(med[abs(dh) >= 12], med)
# need 2 reps of each mean to replace consecutive values of x
valToRepl <- med[sort(rep(idx,2))]
# ordered indexes pairs of consecutive elements of x to be replaced
idxToRepl <- sort(c(idx,idx+1))
# replace pairs of values
aux[idxToRepl] <- valToRepl
return(aux)
} else {
# do nothing
warning("paramater x should be a numeric vector of length > 1")
return(NULL)
}
}
pairAverageByGroups <- function(x, gr) {
if (is.vector(x) & is.numeric(x) & length(x) == length(gr)) {
x.ls <- split(x, as.factor(gr))
output <- unlist(lapply(x.ls, pairAverage))
names(output) <- NULL
output
} else {
# do nothing
warning("paremater x should be a numeric vector of length > 1")
return(NULL)
}
}
pairAverageByGroups(dd$a, dd$c)
[1] 124 129 132 132 125 121 135 137 137 140
Related
I have a long dataframe of multiple measurements per ID, at different time points for variables BP1 and BP2.
ID <- c(1,1,1,2,2,2,3,3,4)
Time <- c(56,57,58,61,62,64,66,67,72)
BP1 <- c(70,73,73,74,75,76,74,74,70)
BP2 <- c(122,122,123,126,124,121,130,132,140)
df1 <- data.frame(ID, Time, BP1, BP2)
I would like to merge another dataframe (df2), which contains a single measurement for BP1 and BP2 per ID.
ID <- c(1,2,3,4)
Time <- c(55, 60, 65, 70)
BP1 <- c(70, 72, 73, 74)
BP2 <- c(120, 124, 130, 134)
df2 <- data.frame(ID, Time, BP1, BP2)
How do I combine these dataframes so that the Time variable is in order, and the dataframe looks like this:
Any help greatly appreciated, thank you!
In base R, use rbind() to combine and order() to sort, then clean up the rownames:
df3 <- rbind(df1, df2)
df3 <- df3[order(df3$ID, df3$Time), ]
rownames(df3) <- seq(nrow(df3))
df3
Or, using dplyr:
library(dplyr)
bind_rows(df1, df2) %>%
arrange(ID, Time)
Result from either approach:
ID Time BP1 BP2
1 1 55 70 120
2 1 56 70 122
3 1 57 73 122
4 1 58 73 123
5 2 60 72 124
6 2 61 74 126
7 2 62 75 124
8 2 64 76 121
9 3 65 73 130
10 3 66 74 130
11 3 67 74 132
12 4 70 74 134
13 4 72 70 140
I have some dataframe. Here is a small expample:
a <- rnorm(100, 5, 2)
b <- rnorm(100, 10, 3)
c <- rnorm(100, 15, 4)
df <- data.frame(a, b, c)
And I have a character variable vect <- "c('a','b')"
When I try to calculate sum of vars using command
df$d <- df[vect]
which must be an equivalent of
df$d <- df[c('a','b')]
But, as a reslut I have got an error
[.data.frame(df, vect) :undefined columns selected
You're assumption that
vect <- "c('a','b')"
df$d <- df[vect]
is equivalent to
df$d <- df[c('a','b')]
is incorrect.
As #Karthik points out, you should remove the quotation marks in the assignment to vect
However, from your question it sounds like you want to then sum the elements specified in vect and then assign to d. To do this you need to slightly change your code
vect <- c('a','b')
df$d <- apply(X = df[vect], MARGIN = 1, FUN = sum)
This does elementwise sum on the columns in df specified by vect. The MARGIN = 1 specifies that we want to apply the sum rowise rather than columnwise.
EDIT:
As #ThomasIsCoding points out below, if for some reason vect has to be a string, you can parse a string to an R expression using str2lang
vect <- "c('a','b')"
parsed_vect <- eval(str2lang(vect))
df$d <- apply(X = df[parsed_vect], MARGIN = 1, FUN = sum)
Perhaps you can try
> df[eval(str2lang(vect))]
a b
1 8.1588519 9.0617818
2 3.9361214 13.2752377
3 5.5370983 8.8739725
4 8.4542050 8.5704234
5 3.9044461 13.2642793
6 5.6679639 12.9529061
7 4.0183808 6.4746806
8 3.6415608 11.0308990
9 4.5237453 7.3255129
10 6.9379168 9.4594150
11 5.1557935 11.6776181
12 2.3829337 3.5170335
13 4.3556430 7.9706624
14 7.3274615 8.1852829
15 -0.5650641 2.8109197
16 7.1742283 6.8161200
17 3.3412044 11.6298940
18 2.5388981 10.1289533
19 3.8845686 14.1517643
20 2.4431608 6.8374837
21 4.8731053 12.7258259
22 6.9534912 6.5069513
23 4.4394807 14.5320225
24 2.0427553 12.1786148
25 7.1563978 11.9671603
26 2.4231207 6.1801862
27 6.5830372 0.9814878
28 2.5443326 9.8774632
29 1.1260322 9.4804636
30 4.0078436 12.9909014
31 9.3599808 12.2178596
32 3.5362245 8.6758910
33 4.6462337 8.6647953
34 2.0698037 7.2750532
35 7.0727970 8.9386798
36 4.8465248 8.0565347
37 5.6084462 7.5676308
38 6.7617479 9.5357666
39 5.2138482 13.6822924
40 3.6259103 13.8659939
41 5.8586547 6.5087016
42 4.3490281 9.5367522
43 7.5130701 8.1699117
44 3.7933813 9.3241308
45 4.9466813 9.4432584
46 -0.3730035 6.4695187
47 2.0646458 10.6511916
48 4.6027309 4.9207746
49 5.9919348 7.1946723
50 6.0148330 13.4702419
51 5.5354452 9.0193366
52 5.2621651 12.8856488
53 6.8580210 6.3526151
54 8.0812166 14.4659778
55 3.6039030 5.9857886
56 9.8548553 15.9081336
57 3.3675037 14.7207681
58 3.9935336 14.3186175
59 3.4308085 10.6024579
60 3.9609624 6.6595521
61 4.2358603 10.6600581
62 5.1791856 9.3241118
63 4.6976289 13.2833055
64 5.1868906 7.1323826
65 3.1810915 12.8402472
66 6.0258287 9.3805249
67 5.3768112 6.3805096
68 5.7072092 7.1130150
69 6.5789349 8.0092541
70 5.3175820 17.3377234
71 9.7706112 10.8648956
72 5.2332127 12.3418373
73 4.7626124 13.8816910
74 3.9395911 6.5270785
75 6.4394724 10.6344965
76 2.6803695 10.4501753
77 3.5577834 8.2323369
78 5.8431140 7.7932460
79 2.8596818 8.9581837
80 2.7365174 10.2902512
81 4.7560973 6.4555758
82 4.6519084 8.9786777
83 4.9467471 11.2818536
84 5.6167284 5.2641380
85 9.4700525 2.9904731
86 4.7392906 11.3572521
87 3.1221908 6.3881556
88 5.6949432 7.4518023
89 5.1435241 10.8912283
90 2.1628966 10.5080671
91 3.6380837 15.0594135
92 5.3434709 7.4034042
93 -0.1298439 0.4832707
94 7.8759390 2.7411723
95 2.0898649 9.7687250
96 4.2131549 9.3175228
97 5.0648105 11.3943350
98 7.7225193 11.4180456
99 3.1018895 12.8890257
100 4.4166832 10.4901303
Instead of looking at the first n rows of a data frame, as head(mydf) does, or the last n as tail(mydf) does, it occurs to me that I would often rather see n evenly-spaced rows, including the first and the last row. For example, if a data frame had 601 rows, this hypothetical function would display row 1, 101, 201, 301, 401, 501, and 601, assuming that 6 is the default number, as it is for head() and tail().
Is there a built-in function of some package that does this, and if not what would be the best way to implement?
For example, for the data frame mydf <- data.frame(name=letters, value=101:126), I would want the output of an alternative to head() called myview() to be something like:
> myview(mydf)
name value
1 a 101
6 f 106
11 k 111
16 p 116
21 u 121
26 z 126
You can directly do this in seq :
looksee <- function(df, n = 6) df[seq(1, nrow(df), length.out = n),]
looksee(mydf)
# name value
#1 a 101
#6 f 106
#11 k 111
#16 p 116
#21 u 121
#26 z 126
looksee(mydf, 10)
# name value
#1 a 101
#3 c 103
#6 f 106
#9 i 109
#12 l 112
#14 n 114
#17 q 117
#20 t 120
#23 w 123
#26 z 126
This is my try at implementing, but it is probably not very robust compared to head()--it will only work for things that nrow() works for, for one thing.
looksee <- function(df, n=6){
q <- seq(0, 1, length.out=n)
n = nrow(df)
rows <- round(quantile(1:n, probs=q))
return(df[rows,])
}
Example usage:
> mydf <- data.frame(name=letters, value=101:126)
> looksee(mydf)
name value
1 a 101
6 f 106
11 k 111
16 p 116
21 u 121
26 z 126
I am not very experienced in if statements and loops in R.
Probably you can help me to solve my problem.
My task is to add +1 to df$fz if sum(df$fz) < 450, but in the same time I have to add +1 only to max values in df$fz till that moment when when sum(df$fz) is lower than 450
Here is my df
ID_PP <- c(3,6, 22, 30, 1234456)
z <- c(12325, 21698, 21725, 8378, 18979)
fz <- c(134, 67, 70, 88, 88)
df <- data.frame(ID_PP,z,fz)
After mutating the new column df$new_value, it should look like 134 68 71 88 89
At this moment I have this code, but it adds +1 to all values.
if (sum(df$fz ) < 450) {
mutate(df, new_value=fz+1)
}
I know that I can pick top_n(3, z) and add +1 only to this top, but it is not what I want, because in that case I have to pick a top manually after checking sum(df$fz)
From what I understood from #Oksana's question and comments, we probably can do it this way:
library(tidyverse)
# data
vru <- data.frame(
id = c(3, 6, 22, 30, 1234456),
z = c(12325, 21698, 21725, 8378, 18979),
fz = c(134, 67, 70, 88, 88)
)
# solution
vru %>% #
top_n(450 - sum(fz), z) %>% # subset by top z, if sum(fz) == 450 -> NULL
mutate(fz = fz + 1) %>% # increase fz by 1 for the subset
bind_rows( #
anti_join(vru, ., by = "id"), # take rows from vru which are not in subset
. # take subset with transformed fz
) %>% # bind thous subsets
arrange(id) # sort rows by id
# output
id z fz
1 3 12325 134
2 6 21698 68
3 22 21725 71
4 30 8378 88
5 1234456 18979 89
The clarifications in the comments helped. Let me know if this works for you. Of course, you can drop the cumsum_fz and leftover columns.
# Making variables to use in the calculation
df <- df %>%
arrange(fz) %>%
mutate(cumsum_fz = cumsum(fz),
leftover = 450 - cumsum_fz)
# Find the minimum, non-negative value to use for select values that need +1
min_pos <- min(df$leftover[df$leftover > 0])
# Creating a vector that adds 1 using the min_pos value and keeps
# the other values the same
df$new_value <- c((head(sort(df$fz), min_pos) + 1), tail(sort(df$fz), length(df$fz) - min_pos))
# Checking the sum of the new value
> sum(df$new_value)
[1] 450
>
> df
ID_PP z fz cumsum_fz leftover new_value
1 6 21698 67 67 383 68
2 22 21725 70 137 313 71
3 30 8378 88 225 225 89
4 1234456 18979 88 313 137 88
5 3 12325 134 447 3 134
EDIT:
Because utubun already posted a great tidyverse solution, I am going to translate my first one completely to base (it was a bit sloppy to mix the two anyway). Same logic as above, and using the data OP provided.
> # Using base
> df <- df[order(fz),]
>
> leftover <- 450 - cumsum(fz)
> min_pos <- min(leftover[leftover > 0])
> df$new_value <- c((head(sort(df$fz), min_pos) + 1), tail(sort(df$fz), length(df$fz) - min_pos))
>
> sum(df$new_value)
[1] 450
> df
ID_PP z fz new_value
2 6 21698 67 68
3 22 21725 70 71
4 30 8378 88 89
5 1234456 18979 88 88
1 3 12325 134 134
I am new to R, and want to sort a data frame called "weights". Here are the details:
>str(weights)
'data.frame': 57 obs. of 1 variable:
$ attr_importance: num 0.04963 0.09069 0.09819 0.00712 0.12543 ...
> names(weights)
[1] "attr_importance"
> dim(weights)
[1] 57 1
> head(weights)
attr_importance
make 0.049630556
address 0.090686474
all 0.098185517
num3d 0.007122618
our 0.125433292
over 0.075182467
I want to sort by decreasing order of attr_importance BUT I want to preserve the corresponding row names also.
I tried:
> weights[order(-weights$attr_importance),]
but it gives me a "numeric" back.
I want a data frame back - which is sorted by attr_importance and has CORRESPONDING row names intact. How can I do this?
Thanks in advance.
Since your data.frame only has one column, you need to set drop=FALSE to prevent the dimensions from being dropped:
weights[order(-weights$attr_importance),,drop=FALSE]
# attr_importance
# our 0.125433292
# all 0.098185517
# address 0.090686474
# over 0.075182467
# make 0.049630556
# num3d 0.007122618
Here is the big comparison on data.frame sorting:
How to sort a dataframe by column(s)?
Using my now-preferred solution arrange:
dd <- data.frame(b = factor(c("Hi", "Med", "Hi", "Low"),
levels = c("Low", "Med", "Hi"), ordered = TRUE),
x = c("A", "D", "A", "C"), y = c(8, 3, 9, 9),
z = c(1, 1, 1, 2))
library(plyr)
arrange(dd,desc(z),b)
b x y z
1 Low C 9 2
2 Med D 3 1
3 Hi A 8 1
4 Hi A 9 1
rankdata.txt
regno name total maths science social cat
1 SUKUMARAN 400 78 89 73 S
2 SHYAMALA 432 65 79 87 S
3 MANOJ 500 90 129 78 C
4 MILYPAULOSE 383 59 88 65 G
5 ANSAL 278 39 77 60 O
6 HAZEENA 273 45 55 56 O
7 MANJUSHA 374 50 99 52 C
8 BILBU 408 81 97 72 S
9 JOSEPHROBIN 374 57 85 68 G
10 SHINY 381 70 79 70 S
z <- data.frame(rankdata)
z[with(z, order(-total+ maths)),] #order function maths group selection
z
z[with(z, order(name)),] # sort on name
z