I need to write a function involving subsetting a df by a variable n bins. Like, if n is 2, then subsample the df some number of times in two bins (from the first half, then from the second half). If n is 3, subsample in 3 bins (first 1/3, second 1/3, third 1/3). I've been doing this for different lengths of n manually so far, and I know there must be a better way to do it. I want to write it into a function with n as an input, but I can't make it work so far. Code below.
# create df
df <- data.frame(year = c(1:46),
sample = seq(from=10,to=30,length.out = 46) + rnorm(46,mean=0,sd=2) )
# real df has some NAs, so we'll add some here
df[c(20,32),2] <- NA
this df is 46 years of sampling. I want to pretend instead of 46 samples, I only took 2, but at one random year in the first half (1:23), and one random year in the second half (24:46).
# to subset in 2 groups, say, 200 times
# I'll make a df of elements to sample
samplelist <- data.frame(firstsample = sample(1:(nrow(df)/2),200,replace = T), # first sample in first half of vector
secondsample = sample((nrow(df)/2):nrow(df),200, replace = T) )# second sample in second half of vector
samplelist <- as.matrix(samplelist)
# start a df to add to
plot_df <- df %>% mutate(first='all',
second = 'all',
group='full')
# fill the df using coords from expand.grid
for(i in 1:nrow(samplelist)){
plot_df <<- rbind(plot_df,
df[samplelist[i,] , ] %>%
mutate(
first = samplelist[i,1],
second = samplelist[i,2],
group = i
))
print(i)
}
(If we can make it skip samples on "NA" sample years, that would be extra good).
So, if I wanted to do this for three points instead of two, I'd repeat the process like this:
# to subset in 3 groups 200 times
# I'll make a df of elements to sample
samplelist <- data.frame(firstsample = sample(1:(nrow(df)/3),200,replace = T), # first sample in first 1/3
secondsample = sample(round(nrow(df)/3):round(nrow(df)*(2/3)),200, replace = T), # second sample in second 1/3
thirdsample = sample(round(nrow(df)*(2/3)):nrow(df), 200, replace=T) # third sample in last 1/3
)
samplelist <- as.matrix(samplelist)
# start a df to add to
plot_df <- df %>% mutate(first='all',
second = 'all',
third = 'all',
group='full')
# fill the df using coords from expand.grid
for(i in 1:nrow(samplelist)){
plot_df <<- rbind(plot_df,
df[samplelist[i,] , ] %>%
mutate(
first = samplelist[i,1],
second = samplelist[i,2],
third = samplelist[i,3],
group = i
))
print(i)
}
but, I want to do this many times, sampling up to ~20 times (so in 20 bins), so this manual method is not sustainable. Can you help me write a function to say "pick one sample from n bins x times"?
btw, this is the plot I am making with the complete df:
plot_df %>%
ggplot(aes(x=year,y=sample)) +
geom_point(color="grey40") +
stat_smooth(geom="line",
method = "lm",
alpha=.3,
aes(color=group,
group=group),
se=F,
show.legend = F) +
geom_line(color="grey40") +
geom_smooth(data = plot_df %>% filter(group %in% c("full")),
method = "lm",
alpha=.7,
color="black",
size=2,
#se=F,
# fill="grey40
show.legend = F
) +
theme_classic()
If I got you right, the following function splits your df in n bins, draws x samples from each and puts the results back into cols of a df:
library(tidyverse)
set.seed(42)
df <- data.frame(year = c(1:46),
sample = seq(from=10,to=30,length.out = 46) + rnorm(46,mean=0,sd=2) )
get_df_sample <- function(df, n, x) {
df %>%
# bin df in n bins of (approx.) equal length
mutate(bin = ggplot2::cut_number(seq_len(nrow(.)), n, labels = seq_len(n))) %>%
# split by bin
split(.$bin) %>%
# sample x times from each bin
map(~ .x[sample(seq_len(nrow(.x)), x, replace = TRUE),]) %>%
# keep only column "sample"
map(~ select(.x, sample)) %>%
# Rename: Add number of df-bin from which sample is drawn
imap(~ rename(.x, !!sym(paste0("sample_", .y)) := sample)) %>%
# bind
bind_cols() %>%
# Add group = rownames
rownames_to_column(var = "group")
}
get_df_sample(df, 3, 200) %>%
head()
#> sample_1 sample_2 sample_3 group
#> 1 12.58631 18.27561 24.74263 1
#> 2 19.46218 24.24423 23.44881 2
#> 3 12.92179 18.47367 27.40558 3
#> 4 15.22020 18.47367 26.29243 4
#> 5 12.58631 24.24423 24.43108 5
#> 6 19.46218 23.36464 27.40558 6
Created on 2020-03-24 by the reprex package (v0.3.0)
Here's a function using loops, closer to what you started doing:
df <- data.frame(year = c(1:46),
sample = seq(from=10, to=30, length.out = 46) +
rnorm(46,mean=0,sd=2))
df[c(20,32), 2] <- NA
my_function <- function(n, sample_size, data = df) {
plot_df <- data %>% mutate(group = 'full')
sample_matrix <- matrix(data = NA, nrow = sample_size, ncol = n)
first_row <- 1 # First subset has 1 as first row, no matter how many subsets
for (i in 1:n) {
last_row <- round(first_row + nrow(df)/n - 1) # Determine last row of i-th subset
sample_matrix[, i] <- sample(first_row:last_row, sample_size, replace = T) # Store sample directly in matrix
first_row <- i + last_row # Determine first row for next i
group_name <- paste("group", i, sep = "_") # Column name for i-th group
plot_df[[group_name]] <- "all" # Column for i-th group
}
for (j in 1:sample_size) {
# Creating a new data frame for new observations
new_obs <- df[sample_matrix[j,], ]
new_obs[["group"]] <- j
for (group_n in 1:n) {
new_obs[[paste0("group_", group_n)]] <- sample_matrix[j, group_n]
}
plot_df <- rbind(plot_df, new_obs)
plot_df <<- plot_df
}
}
my_function(2, 200, data = df)
Related
I have a dataframe of coefficients and a dataframe of parameters. Example:
coefficients <- data.frame(a = c(1, 2, 3),
b_w = c(3, 4, 5),
b_x = c(5, 6, 7))
parameters <- data.frame(w = c(0, 1),
x = c(2, 3))
I want to generate a dataframe by multiplying these two data frames for all combinations of coefficients and parameters, in which each column is numbered based on the relevant row number in the parameters dataframe. Example:
output <- data.frame(
params1 = c(coefficients$a[1] + coefficients$b_w[1]*parameters$w[1] + coefficients$b_x[1]*parameters$x[1],
coefficients$a[2] + coefficients$b_w[2]*parameters$w[1] + coefficients$b_x[2]*parameters$x[1],
coefficients$a[3] + coefficients$b_w[3]*parameters$w[1] + coefficients$b_x[3]*parameters$x[1]),
params2 = c(coefficients$a[1] + coefficients$b_w[1]*parameters$w[2] + coefficients$b_x[1]*parameters$x[2],
coefficients$a[2] + coefficients$b_w[2]*parameters$w[2] + coefficients$b_x[2]*parameters$x[2],
coefficients$a[3] + coefficients$b_w[3]*parameters$w[2] + coefficients$b_x[3]*parameters$x[2]
)
)
It seems to me that this must be possible using purrr, but I cannot figure out how to get started.
You can use matrix multiplication here:
coefs <- as.matrix(coefficients)
params <- as.matrix(parameters)
out <- coefs %*% t(cbind(1, params))
colnames(out) <- paste0("params", 1:2)
out
# params1 params2
#[1,] 11 19
#[2,] 14 24
#[3,] 17 29
#markus provides an elegant matrix-based solution, but (as per the question title) I am looking for a purrr-based solution. I still haven't found one, but I do have a solution that remains within the tidyverse:
library(tidyverse)
parameters %>%
mutate(params = row_number()) %>%
crossing(coefficients) %>%
mutate(output = a + b_w*w + b_x*x) %>%
select(params, output) %>%
pivot_wider(names_from = params,
names_prefix = "params",
values_from = output,
values_fn = list) %>%
unnest(cols = everything())
I have a list of 2D matrices. Each matrix is filled using the function fillMatrices. This function adds a number of individuals to each day 0 in a matrix and updates the columns a_M, b_M and c_M. The numbers of individuals come from an initial matrix ind. The code works but it is slow when the number of matrices within the list is large. For example with n = 10000:
user system elapsed
3.73 0.83 4.55
If possible, I would like to reduce the elapsed time to <= 1 sec and increase the n to 720000 matrices. So, I am looking for way to optimize only the section 3. Here is the code:
###############################################
###############################################
## Section 3
## Run the function "fillMatrices"
indexTime <- 1
dt_t_1 <- do.call(rbind, lapply(list_matrices, function(x) x[1,]))
dt_t <- fillMatrices(dt_t_1 = dt_t_1, species = c("a_M", "b_M", "c_M"), maxDuration = 5, matrixColumns = col_mat)
## Fill the matrices within the list
system.time(for(i in 1:n){
list_matrices[[i]][indexTime + 1,] <- dt_t[,i]
})
## test <- list_matrices[[1]]
The code of the section 1 is used to initialize the matrices and the function fillMatrices can be found in the section 2. In my example, the function is used to fill matrices for one species. In reality, the function is used for 3 species (i.e., is applied three times) by changing the argument species = c("a_M", "b_M", "c_M"). How can I speed up my code? Any advice would be much appreciated.
Here are the codes of sections 1 and 2:
rm(list=ls(all=TRUE))
library(ff)
library(dplyr)
set.seed(12345)
## Define the number of individuals
n <- 10000
###############################################
###############################################
## Section 1
## Build the list of 2D matrices
v_date <- as.vector(outer(c(paste(seq(0, 1, by = 1), "day", sep="_"), paste(seq(2, 5, by = 1), "days", sep="_")), c("a_M", "b_M", "c_M"), paste, sep="|"))
col_mat <- c("year", "day", "time", "ID", "died", v_date)
list_matrices <- list()
for(i in 1:n){
print(i)
list_matrices[[i]] <- ff(-999, dim=c(3650, length(col_mat)), dimnames=list(NULL, col_mat), vmode="double", overwrite = TRUE)
}
## test <- list_matrices[[1]]
## dim(list_matrices[[1]])
## Fill the first row of each matrix
for(i in 1:n){
print(i)
list_matrices[[i]][1,] <- c(1, 1, 1, i-1, 0, rep(0, length(v_date)))
}
## test <- list_matrices[[2]]
## Build the matrix "individual"
ind <- as.matrix(data.frame(year = rep(1, n), day = rep(1, n), time = rep(1, n), died = rep(0, n), ID = (seq(1, n, 1))- 1, a_M = sample(1:10, n, replace = T), b_M = sample(1:10, n, replace = T), c_M = sample(1:10, n, replace = T)))
## print(ind)
###############################################
###############################################
## Section 2
## Function to convert a data frame into a matrix
convertDFToMat <- function(x){
mat <- as.matrix(x[,-1])
ifelse(is(x[,1], "data.frame"), rownames(mat) <- pull(x[,1]), rownames(mat) <- x[,1])
## Convert character matrix into numeric matrix
mat <- apply(mat, 2, as.numeric)
return(mat)
}
## Define the function that is used to fill the matrices within the list
fillMatrices <- function(dt_t_1, species, maxDuration, matrixColumns){
## Format data
dt <- as.data.frame(dt_t_1) %>%
reshape::melt(id = c("ID")) %>%
arrange(ID) %>%
dplyr::mutate_all(as.character)
## summary(dt)
## Break out the variable "variable" into different columns, with one row for each individual-day
dt_reshape_filter_1 <- dt %>%
dplyr::filter(!variable %in% c("year", "day", "time", "ID", "died")) %>%
dplyr::mutate(day = variable %>% gsub(pattern = "\\_.*", replacement = "", x = .), col = variable %>% gsub(pattern = ".*\\|", replacement = "", x = .)) %>%
dplyr::select(-variable) %>%
tidyr::spread(col, value) %>%
dplyr::mutate_all(as.numeric) %>%
dplyr::arrange(ID, day)
## summary(dt_reshape_filter_1)
## Apply requested transformations and build the data frame
dt_transform <- dt_reshape_filter_1 %>%
dplyr::rename_at(vars(species), ~ c("a", "b", "c")) %>%
dplyr::mutate(day = day + 1) %>%
dplyr::filter(day < maxDuration + 1) %>%
dplyr::bind_rows(tibble(ID = ind[,c("ID")], day = 0, a = ind[,c("a_M")], b = ind[,c("b_M")])) %>%
dplyr::mutate(c = a + b) %>%
dplyr::rename_at(vars("a", "b", "c"), ~ species) %>%
dplyr::arrange(ID, day)
## summary(dt_transform)
## Take different columns of the data frame and gather them into a single column
dt_gather <- dt_transform %>%
tidyr::gather(variable, value, species) %>%
dplyr::mutate(day = if_else(day > 1, paste0(day, "_days"), paste0(day, "_day"))) %>%
tidyr::unite(variable, c("day", "variable"), sep = "|") %>%
dplyr::rename(var2 = ID) %>%
dplyr::mutate_all(as.character)
## summary(dt_gather)
## Add the other columns in the data frame and convert the resulting data frame into a matrix
dt_reshape_filter_2 <- dt %>%
dplyr::rename(var2 = ID) %>%
dplyr::filter(variable %in% c("year", "day", "time", "ID", "died")) %>%
tidyr::spread(variable, value) %>%
dplyr::arrange(as.numeric(var2)) %>%
dplyr::mutate(year = ind[,c("year")],
day = ind[,c("day")],
time = ind[,c("time")],
ID = ind[,c("ID")],
died = ind[,c("died")]) %>%
tidyr::gather(variable, value, c(year, day, time, ID, died)) %>%
dplyr::arrange(as.numeric(var2)) %>%
dplyr::mutate_all(as.character)
## summary(dt_reshape_filter_2)
## Build the output matrix
dt_bind <- bind_rows(dt_reshape_filter_2, dt_gather) %>%
tidyr::spread(var2, value) %>%
dplyr::arrange(match(variable, matrixColumns)) %>%
dplyr::select("variable", as.character(ind[,c("ID")]))
## summary(dt_bind)
dt_mat <- convertDFToMat(dt_bind)
## summary(dt_mat)
return(dt_mat)
}
Making a 3D array instead of a 2D list of matrices gives you more options
library(ff)
library(dplyr)
set.seed(12345)
## Define the number of individuals
n <- 10000L
n_row <- 3650L
#array way:
v_date <- as.vector(outer(c(paste(seq(0, 1, by = 1), "day", sep="_"), paste(seq(2, 5, by = 1), "days", sep="_")), c("a_M", "b_M", "c_M"), paste, sep="|"))
col_mat <- c("year", "day", "time", "ID", "died", v_date)
arr1 <- ff(-999L, dim = c(n_row, length(col_mat), n), dimnames = list(NULL, col_mat, NULL))
## Fill the first row of each matrix slice
arr1[1, , ] <- c(1L, 1L, 1L, NA, 0L, rep(0L, length(v_date)))
arr1[1, 4, ] <- seq_len(n)-1L
## Build the matrix "individual"
ind <- as.matrix(data.frame(year = rep(1L, n), day = rep(1L, n), time = rep(1L, n), died = rep(0L, n), ID = (seq(1L, n, 1L))- 1L, a_M = sample(1L:10L, n, replace = T), b_M = sample(1L:10L, n, replace = T), c_M = sample(1L:10L, n, replace = T)))
##fill the matrix
indexTime <- 1L
dt_t <- fillMatrices(dt_t_1 = t(arr1[1, ,]), species = c("a_M", "b_M", "c_M"), maxDuration = 5, matrixColumns = col_mat)
## reassign
system.time(
arr1[indexTime + 1, ,] <- dt_t
)
user system elapsed
0.05 0.70 0.7
# for comparison
#> system.time(for(i in 1:n){
#+ list_matrices[[i]][indexTime + 1,] <- dt_t[,i]
#+ })
# user system elapsed
# 4.75 1.08 5.90
As far as I can tell, it's giving me the same results as your original approach but does so a lot faster.
I have a large dataset on which to perform a diff-in-diff estimation. Given the nature of the dataset my t-statistics denominators are inflated and coefficient are (surreptitiously) statistically significant.
I want to step-by-step reducing the number of element in the database, and for each step resample a large number of times and re-estimating each time interaction coefficient and standard errors.
Then I want to take all the averages estimates and standard error, and plot them on a graph, to show at what point (if any) they are not statistically different from zero.
My code follows with a toy example.
I am not sure this is the most efficient way to tackle the problem
I cannot retrieve and thus plot the confidence interval
I am not sure the sampling is representative given the existence of different groups.
Toy example (Creds Torres-Reyna - 2015)
library(foreign)
library(dplyr)
library(ggplot2)
df_0 <- NULL
for (i in 1:length(seq(5,nrow(mydata)-1,5))){
index <- seq(5,nrow(mydata),5)[i]
df_1 <- NULL
for (j in 1:10){
mydata_temp <- mydata[sample(nrow(mydata), index), ]
didreg = lm(y ~ treated + time + did, data = mydata_temp)
out <- summary(didreg)
new_line <- c(out$coefficients[,1][4], out$coefficients[,2][4], index)
new_line <- data.frame(t(new_line))
names(new_line) <- c("c","s","i")
df_1 <- rbind(df_1,new_line)
}
df_0 <- rbind(df_0,df_1)
}
df_0 <- df_0 %>% group_by(i) %>% summarise(coefficient <- mean(c, na.rm = T),
standard_error <- mean(s, na.rm = T))
names(df_0) <- c("i","c","s")
View(df_0)
Consider the following refactored code using base R functions: within, %in%, nested lapply, setNames, aggregate, and do.call. This approach avoids calling rbind in a loop and compactly re-writes code without constantly using $ column referencing.
library(foreign)
mydata = read.dta("http://dss.princeton.edu/training/Panel101.dta")
mydata <- within(mydata, {
time <- ifelse(year >= 1994, 1, 0)
treated <- ifelse(country %in% c("E", "F", "G"), 1, 0)
did <- time * treated
})
# OUTER LIST OF DATA FRAMES
df_0_list <- lapply(1:length(seq(5,nrow(mydata)-1,5)), function(i) {
index <- seq(5,nrow(mydata),5)[i]
# INNER LIST OF DATA FRAMES
df_1_list <- lapply(1:100, function(j) {
mydata_temp <- mydata[sample(nrow(mydata), index), ]
didreg <- lm(y ~ treated + time + did, data = mydata_temp)
out <- summary(didreg)
new_line <- c(out$coefficients[,1][4], out$coefficients[,2][4], index)
new_line <- setNames(data.frame(t(new_line)), c("c","s","i"))
})
# APPEND ALL INNER DFS
df <- do.call(rbind, df_1_list)
return(df)
})
# APPEND ALL OUTER DFS
df_0 <- do.call(rbind, df_0_list)
# AGGREGATE WITH NEW COLUMNS
df_0 <- within(aggregate(cbind(c, s) ~ i, df_0, function(x) mean(x, na.rm=TRUE)), {
upper = c + s
lower = c - s
})
# RUN PLOT
within(df_0, {
plot(i, c, ylim=c(min(c)-5000000000, max(c)+5000000000), type = "l",
cex.lab=0.75, cex.axis=0.75, cex.main=0.75, cex.sub=0.75)
polygon(c(i, rev(i)), c(lower, rev(upper)),
col = "grey75", border = FALSE)
lines(i, c, lwd = 2)
})
In the end I solved it like this:
Is this the most efficient way?
library(foreign)
library(dplyr)
mydata = read.dta("http://dss.princeton.edu/training/Panel101.dta")
mydata$time = ifelse(mydata$year >= 1994, 1, 0)
mydata$treated = ifelse(mydata$country == "E" |
mydata$country == "F" |
mydata$country == "G", 1, 0)
mydata$did = mydata$time * mydata$treated
df_0 <- NULL
for (i in 1:length(seq(5,nrow(mydata)-1,5))){
index <- seq(5,nrow(mydata),5)[i]
df_1 <- NULL
for (j in 1:100){
mydata_temp <- mydata[sample(nrow(mydata), index), ]
didreg = lm(y ~ treated + time + did, data = mydata_temp)
out <- summary(didreg)
new_line <- c(out$coefficients[,1][4], out$coefficients[,2][4], index)
new_line <- data.frame(t(new_line))
names(new_line) <- c("c","s","i")
df_1 <- rbind(df_1,new_line)
}
df_0 <- rbind(df_0,df_1)
}
df_0 <- df_0 %>% group_by(i) %>% summarise(c = mean(c, na.rm = T), s =
mean(s, na.rm = T))
df_0 <- df_0 %>% group_by(i) %>% mutate(upper = c+s, lower = c-s)
df <- df_0
plot(df$i, df$c, ylim=c(min(df_0$c)-5000000000, max(df_0$c)+5000000000), type = "l")
polygon(c(df$i,rev(df$i)),c(df$lower,rev(df$upper)),col = "grey75", border = FALSE)
lines(df$i, df$c, lwd = 2)
I'm Brazilian, sorry about my english!
I would like to know if there is an function implemented in some R package to filter first "n" rows and group the remaining into an "Other" row and summarise the column.
Here is below an example of what I want:
library(tidyverse)
library(plotly)
library(scales)
data("lakers")
x = bind_rows(
lakers %>% count(player) %>% arrange(-n) %>% head(10),
lakers %>% count(player) %>% arrange(-n) %>% slice(11:n()) %>%
summarise(player = "Others", n = sum(n))) %>%
filter(!player == "") %>%
mutate(
player = factor(player, levels = rev(.$player)))
ggplot(x, aes(x=player, y=n))+
geom_col(fill = "DodgerBlue1", col = "DodgerBlue3")+
coord_flip()+
geom_text(aes(y=n, label = comma(n)),hjust = -.2)+
scale_y_continuous(limits = c(0, max( x$n*1.1 )))+
theme_minimal()
I need to create an ggplot like that. So I have a big query using dplyr and I don't want to repeat the query every time.
I would like some function like:
head.other(x, rows = 20, fun = sum, name = "Others")
Here is a function that I think will give you what you need:
library(tibble)
library(dplyr)
df <- data.frame(col1 = rnorm(10), col2 = rnorm(10)) # your data frame
n <- 6 # top n rows to keep
myfun <- function(df, n) {
# seperate keep rows and those to aggregate
preserve.df <- df[1:n, ]
summarise.df <- df[(n+1):nrow(df), ]
# create new df in required format
new.df <- bind_rows(preserve.df, sapply(summarise.df, sum))
# add a column to identify the rows and return
rownames(new.df) <- c(paste0("r", 1:n), "Other")
rownames_to_column(new.df)
}
myfun(df, 6)
I've seen a lot of posts on this topic so apologies if this is a duplicate but I couldn't figure out my problem.
I have
df <- data.frame(name = c('bike+ride','shoe+store','ride','mountian%20bike','ride+along'),
count = c(2,5,8,7,6))
and want to sum each count if it name contains a string group
group <- data.frame(group = c('ride','bike'))
So the end result looks as follows:
Group Count
bike 9
ride 16
Can anyone help?
A base R idea,
sapply(sapply(as.character(group$group), function(i) grep(i, df$name)), function(i) sum(df$count[i]))
#or make it a function
aggr1 <- function(var1, grp, cnt){
m1 <- sapply(as.character(grp), function(i) grep(i, var1))
final_d <- sapply(m1, function(i) sum(cnt[i]))
return(data.frame(Group = names(final_d),
Count = as.integer(final_d), stringsAsFactors = FALSE)
)
}
aggr1(df$name, group$group, df$count)
# Group Count
#1 ride 16
#2 bike 9
One way is
do.call(rbind, sapply(group$group, FUN = function(x, df) {
out <- df[grepl(pattern = x, x = df$name), ]
data.frame(group = x, count = sum(out$count))
}, df = df, simplify = FALSE))
group count
1 ride 16
2 bike 9
In two steps:
# make a data.frame which locates where each group level is located
grp <- as.data.frame(sapply(group$group, FUN = function(x) grepl(pattern = x, x = df$name)))
names(grp) <- group$group
# based on above location (TRUE/FALSE), sum accordingly
data.frame(count = apply(grp, MARGIN = 2, FUN = function(x, df) {
sum(df[x, "count"])
}, df = df))
count
ride 16
bike 9
A way using tidyverse packages purrr, dplyr and tidyr:
library(tidyverse) # for dplyr, purr and tidyr
groups <- c('ride','bike')
map_df(groups, ~setNames(summarize_(df, interp(~sum(df$count[grepl(var, name)], na.rm = TRUE), var = .x)), .x)) %>%
gather(group, count, na.rm = TRUE)