Generalize a claim in a structural induction proof to be able to use the induction hypothesis - isabelle

I want to prove the following
lemma
fixes pi :: "'a path" and T :: "'a ts"
shows "valid_path T pi s ⟹ ∀ op ∈ set pi. valid_operator T op"
by induction on pi where
fun valid_path :: "'a ts ⇒ 'a path ⇒ 'a state ⇒ bool" where
"valid_path T [] s = True" |
"valid_path T (op#ops) s = (valid_operator T op ∧ valid_path T ops (effect op s))
and path is just a type synonym for an operator list.
The other definitions should not play a role for the proof.
The base case works fine.
The problem is that, informally, for the inductive step where pi = (x # xs) I'm assuming that
if valid_path T xs s
then ∀ op ∈ set xs. valid_operator T op
and I must show that this implies
if valid_path T (x#xs) s
then ∀ op ∈ set (x#xs). valid_operator T op
I can use the definition of valid_path here, so this last expression is equivalent to
if valid_path T (xs) (effect x s)
then ∀ op ∈ set (x#xs). valid_operator T op
If I could be able to use the induction hypothesis on valid_path T (xs) (effect x s) I would be done.
I can't since the hypothesis only holds for valid_path T (xs) s instead of valid_path T xs (effect x s).
But this does not really matter since the predicate of that if statement does not depend on s at all!
But Isabelle does not know that so it complains.
How can I make it such that I can apply the inductive hypothesis on valid_path T (xs) (effect x s)?
I have a feeling that I have to make the claim more general, so that I can use the hypothesis on the proof, but I don't know how.

It is very common that you have to generalize some terms in an induction. Use the keyword arbitrary in the induct method.
proof (induct pi arbitrary: s)
This is explained in Chapter 2.4 of Programming and Proving in Isabelle/HOL.

Related

Isabelle : proof using metis causes infinite loop

I want to prove Lemma 1 and 2 and Lemma 21 is one of the subgoals for Lemma 2. However while proving Lemma 2 it hangs at apply (metis step) and I believe there's no other way to prove it. Are there any ways to stop this infinite loop from occuring? Thanks in advance.
inductive star :: "('a ⇒ 'a ⇒ bool) ⇒ 'a ⇒ 'a ⇒ bool" for r where
refl: "star r x x"|
step: "r x y ⟹star r y z⟹star r x z"
inductive star' ::"('a ⇒ 'a ⇒ bool) ⇒ 'a ⇒ 'a ⇒ bool"for r where
refl' : "star' r x x" |
step' : "star' r x y ⟹ r y z ⟹ star' r x z"
lemma 21 : "r x y ⟹
star r y z ⟹
star' r y z ⟹
star' r x z"
apply (metis step)
lemma 1 : "star' r x y ⟹ star r x y"
apply (induction rule : star'.induct)
apply (metis refl)
done
lemma 2 : "star r x y ⟹ star' r x y"
apply (induction rule: star.induct)
apply (metis refl')
done
I believe that you are referring to an exercise from [0]. I will refrain from posting a complete answer out of fear that this is a homework problem. However, I will give a tip. There is a redundant assumption in lemma 21. Once you remove this assumption, the lemma becomes easier to prove (as stated, using an apply-style script, and very standard textbook techniques). However, most likely, metis alone will not be enough.
If the worst comes to worst, you may also get an idea about how to prove this from the theory Transitive_Closure.thy in Main. However, I would like to emphasize that the proof is very simple, so this should not be necessary.
[0] Nipkow T, Klein G. Concrete Semantics with Isabelle/HOL. Heidelberg: Springer-Verlag; 2017.

membership proof

I need to prove the following:
lemma "m = min_list(x#xs) ⟹ m ∈ set (x#xs)"
In plain English, I need to prove that the return value from "min_list (x#xs)" is always a member of (x#xs)
I tried:
apply(induct xs)
apply(auto)
I also tried to reuse existing lemmas for the min_list by using:
find_theorems min_list
The sub-goal at this point is so long that I do not know how to proceed.
I am not looking for a full answer just hints on how to approach this lemma. Moreover, is this proof an easy one or significantly difficult one for someone just learning Isabelle?
Spoiler: it is possible to use the standard list induction and auto to prove the theorem, i.e. something similar to by (induct xs ...) (auto simp: ...). I deliberately left out sections in the proof for you to fill in on your own. You will need to think about if any variables (i.e. m or x) need to be specified as arbitrary and also understand what information the simplifier may need (look for clues in the specification of min_list in the theory List).
With regard to your question about the difficulty of the problem, I believe, that difficulty is a function of experience. Most certainly, when I started learning Isabelle, I was finding it difficult to formalise proofs similar to the one in your question. After a certain time spent coding in Isabelle (by the time of answering this question, I must have accrued an equivalent of 4-5 months of full-time coding in Isabelle), such problems no longer seem to present a significant challenge for me. Of course, there are other factors that need to be taken into account, e.g. previous training in mathematics or logic and previous coding experience.
General advice from someone who is learning Isabelle on his own (the advice may not be consistent with the approach that is normally recommended by professional instructors)
I believe, when proving similar results, it is important to understand that Isabelle is, primarily, a tool for formalisation of 'pen-and-paper' proofs. Therefore, it is important to have the 'pen-and-paper' proof at hand before trying to formalise it. I would suggest the following general approach when attacking similar problems:
Write the proof on paper.
Formalise the proof using Isar, providing as many details as possible and not caring too much about the length of the proof. Also, try not to rely on the tools for automated reasoning (i.e. auto, blast, meson, metis, fastforce) and use direct methods like rule and intro as much as you can.
Once your Isar proof is complete, apply tools for automated reasoning (e.g. auto, blast) to your Isar proof to simplify your proof as much as possible.
Of course, eventually, it will become increasingly easy to omit 1 and 2 as you make progress in learning Isabelle.
I can provide further details, e.g. the complete short proof and the long Isar version of the proof.
UPDATE
As per your request in the comments, I provide an informal proof.
Lemma. m = min_list (x # xs) ⟹ m ∈ set (x # xs).
Remarks. For completeness, I also provide the definition of min_list and some comments about the const set. The definition of min_list can be found in the theory List:
fun min_list :: "'a::ord list ⇒ 'a" where
"min_list (x # xs) = (case xs of [] ⇒ x | _ ⇒ min x (min_list xs))"
The const set is defined implicitly and constitutes a part of the datatype infrastructure for list (see the document "Defining (Co)datatypes and Primitively (Co)recursive Functions in Isabelle/HOL" in the standard documentation if Isabelle). In particular, it is called the 'set function' of the datatype. Many basic properties of the const set can be found by inspection/search, e.g. find_theorems list.set. I believe that the theorem thm list.set is representative of the main properties of the const set (I took the liberty to rename the schematic variables in the theorem):
set [] = {}
set (?x # ?xs) = insert ?x (set ?xs)
Proof. The proof is by structural induction on the list xs. The induction principle is stated as an unnamed lemma at the beginning of the theory List. For completeness, I restate the induction principle below:
"P [] ⟹ (⋀a list. P list ⟹ P (a # list)) ⟹ P list"
Base case: assume xs = [], show m = min_list (x # xs) ⟹ m ∈ set (x # xs) for all x. From the definition of min_list, it is trivial to see that min_list (x # []) = x. Similarly, set (x # []) = {x} can be shown directly from the properties of the const set. Substituting into the predicate above, it remains to show that m = x ⟹ m ∈ {x} for all x. This follows from basic set theory.
Inductive step: assume ⋀x. m = min_list (x # xs) ⟹ m ∈ set (x # xs), show m = min_list (a # x # xs) ⟹ m ∈ set (a # x # xs) for all a, x and xs. Fix a, x and xs. Assume m = min_list (a # x # xs). Then it remains to show that m ∈ set (a # x # xs). Given m = min_list (a # x # xs), from the definition of min_list, it is easy to infer that either m = a or m = min_list (x # xs). Consider these cases explicitly:
Case I: m = a. a ∈ set (a # x # xs) follows from the definitions. Then, m ∈ set (a # x # xs) by substitution.
Case II: m = min_list (x # xs). Then, from the assumption ⋀x. m = min_list (x # xs) ⟹ m ∈ set (x # xs) it follows that m ∈ set (x # xs). Thus, m ∈ set (a # x # xs) follows from the properties of set.
In all possible cases m ∈ set (a # x # xs), which is what was required to prove.
Thus, the proof is concluded.
Concluding thoughts. Try converting this informal proof to an Isar proof. Also, please note that the proof may not be ideal - I might make edits to the proof later.

How to fix "Illegal schematic variable(s)" in mutually recursive rule induction?

In Isabelle, I'm trying to do rule induction on mutually recursive inductive definitions. Here's the simplest example I was able to create:
theory complex_exprs
imports Main
begin
datatype A = NumA int
| AB B
and B = NumB int
| BA A
inductive eval_a :: "A ⇒ int ⇒ bool" and eval_b :: "B ⇒ int ⇒ bool" where
eval_num_a: "eval_a (NumA i) i" |
eval_a_b: "eval_b b i ⟹ eval_a (AB b) i" |
eval_num_b: "eval_b (NumB i) i" |
eval_b_a: "eval_a a i ⟹ eval_b (BA a) i"
lemma foo:
assumes "eval_a a result"
shows "True"
using assms
proof (induction a)
case (NumA x)
show ?case by auto
case (AB x)
At this point, Isabelle stops with 'Illegal schematic variable(s) in case "AB"'. Indeed the current goal is ⋀x. ?P2.2 x ⟹ eval_a (AB x) result ⟹ True which contains the assumption ?P2.2 x. Is that the 'schematic variable' Isabelle is talking about? Where does it come from, and how can I get rid of it?
I get the same problem if I try to do the induction on the rules:
proof (induction)
case (eval_num_a i)
show ?case by auto
case (eval_a_b b i)
Again, the goal is ⋀b i. eval_b b i ⟹ ?P2.0 b i ⟹ True with the unknown ?P2.0 b i, and I can't continue.
As a related question: I tried to do the induction using
proof (induction rule: eval_a_eval_b.induct)
but Isabelle doesn't accept this, saying 'Failed to apply initial proof method'.
How do I make this induction go through? (In my actual application, I do actually need induction because the goal is more complex than True.)
Proofs about mutually recursive definitions, be they datatypes, functions or inductive predicates, must be mutually recursive themselves. However, in your lemma, you only state the inductive property for eval_a, but not for eval_b. In the case for AB, you obviously want to use the induction hypothesis for eval_b, but as the lemma does not state the inductive property for eval_b, Isabelle does not know what it is. So it leaves it as a schematic variable ?P2.0.
So, you have to state two goals, say
lemma
shows "eval_a a result ==> True"
and "eval_b b result ==> True"
Then, the method induction a b will figure out that the first statement corresponds to A and the second to B.
The induction rule for the inductive predicates fails because this rule eliminates the inductive predicate (induction over datatypes only "eliminates" the type information, but this is not a HOL formula) and it cannot find the assumption for the second inductive predicate.
More examples on induction over mutually recursive objects can be found in src/HOL/Induct/Common_Patterns.thy.

How to prove basic facts about datatypes and codatatypes?

I would like to prove some basic facts about a datatype_new and a codatatype: the first does not have an infinite element, and that the latter does have one.
theory Co
imports BNF
begin
datatype_new natural = Zero | Successor natural
lemma "¬ (∃ x. x = Successor x)"
oops
codatatype conat = CoZero | CoSucc conat
lemma "∃ x. x = CoSucc x"
oops
The problem was that I could not come up with a pen-and-paper proof, let alone a proof script.
An idea for the first was to use the size function, which has a theorem
size (Successor ?natural) = size ?natural + Suc 0
and somehow using that size is a function, applying it to the two sides of the original equation one cannot have a natural number equal to its successor. But I do not see how I could formalise this.
For the latter I did not even have an idea how to derive this theorem from the facts that the codatatype package proves.
How can I prove these?
Personally, I don't know the first thing about codatatypes. But let me try to help you nevertheless.
The first lemma you posted can be proven automatically by sledgehammer. It finds a proof using the size function, effectively reducing the problem on natural to the same problem on nat:
by (metis Scratch.natural.size(2) n_not_Suc_n nat.size(4) size_nat)
If you want a very basic, step-by-step version of this proof, you could write it like this:
lemma "¬(∃x. x = Successor x)"
proof clarify
fix x assume "x = Successor x"
hence "size x = size (Successor x)" by (rule subst) (rule refl)
also have "... = size x + Suc 0" by (rule natural.size)
finally have "0 = Suc 0" by (subst (asm) add_0_iff) (rule sym)
moreover have "0 ≠ Suc 0" by (rule nat.distinct(1))
ultimately show False by contradiction
qed
If you want a more “elementary” proof, without the use of HOL natural numbers, you can do a proof by contradiction using induction on your natural:
lemma "¬(∃x. x = Successor x)"
proof clarify
fix x assume "x = Successor x"
thus False by (induction x) simp_all
qed
You basically get the two cases in the induction:
Zero = Successor Zero ⟹ False
⋀x. (x = Successor x ⟹ False) ⟹
Successor x = Successor (Successor x) ⟹ False
The first subgoal is a direct consequence of natural.distinct(1), the second one can be reduced to the induction hypothesis using natural.inject. Since these rules are in the simpset, simp_all can solve it automatically.
As for the second lemma, the only solution I can think of is to explicitly construct the infinite element using primcorec:
primcorec infinity :: conat where
"infinity = CoSucc infinity"
Then you can prove your second lemma simply by unfolding the definition:
lemma "∃x. x = CoSucc x"
proof
show "infinity = CoSucc infinity" by (rule infinity.ctr)
qed
Caveat: these proofs work, but I am not sure whether they are the easiest and/or most elegant solution to this problem. I have virtually no knowledge of codatatypes or the new datatype package.

How to extract the instantiated variable in Isabelle?

I am trying to prove the following in Isabelle:
theorem map_fold: "∃h b. (map f xs) = foldr h xs b"
apply (induction xs)
apply auto
done
How can I get the instantiated value of h and b?
An approach that sometimes works for this purpose is to state a schematic lemma:
schematic_lemma "map f xs = foldr ?h xs ?b"
apply (induct xs)
apply simp
...
Methods like simp or rule can instantiate schematic variables during the proof (a result of unification). If you are able to complete the proof, then you can just look at the resulting lemma to see what the final instantiations were.
Beware that schematic variables can be a bit tricky: sometimes simp will instantiate a schematic variable in a way that makes the current goal trivially provable, but simultaneously makes other subgoals unsolvable.
In this specific case, Isabelle is able to instantiate ?b with no problem, but it can't determine ?h by unification. In general, schematic variables with function types are much trickier to handle.
In the end, I did something like what Manuel suggested: First, state a lemma with ordinary variables (lemma "map f xs = foldr h xs b"). Then see where the proof by induction gets stuck, and incrementally refine the statement until it is provable.
One way is to use SOME:
h := SOME h. ∃b. map f xs = foldr h xs b
b := SOME b. map f xs = foldr h xs b
Using your map_fold theorem and some fiddling around with someI_ex, you could prove that with these definitions, map f xs = foldr h xs b does indeed hold.
However, while this logically gives you values of h and b, I expect you will not be very satisfied with them, because you don't actualls see what h and b are; and there is no way (logically) to do that either.
In some cases, you can also formulate a theorem stating “There are f, xs such that no h, b exist with map f xs = foldr h xs b” and get nitpick to find a counterexample for that statement, but this case is too complicated for nitpick, as it would have to find a function on an infinite domain that depends on another function on an infinite domain.
I do not think there is a way for you to actually get the existential witnesses h and b out of the theorem you proved as concrete values. You will just have to find them yourself by inspection of the induction cases and find that they are h = λx xs. f x # xs and b = [].
This is by far the easiest solution.
Update: Proof extraction
Upon re-reading this thread today, I actually remembered that proof extraction does exist in Isabelle. It requires explicit proof terms to be computed for all theorems, so you need to start Isabelle with isabelle jedit -l HOL-Proofs. Then you can do this:
theorem map_fold: "∃h b. (map f xs) = foldr h xs b"
by (induction xs) auto
extract map_fold
This defines you a constant map_fold of type ('a ⇒ 'b) ⇒ 'a list ⇒ ('a ⇒ 'b list ⇒ 'b list) × 'b list, i.e. given a mapping function and a list, it gives you the function and the initial state you have to put into the foldr in order to get the same result. You can look at the definition using thm map_fold_def. Simplifying it a bit, it looks like this:
map_fold f xs =
rec_list (λx xa. default, []) (λx xa H. (λa b. f a # map f xa, default)) xs
This is a bit difficult to read, but you can see the [] and the f a # map f xa.
Unfortunately, proof terms get pretty big, so I doubt this will be of much use for anything more than toy examples.

Resources