how to I calculate this math using Dart? - math

totalDirection = 1540m
1st KM = $10
2nd KM = $8
Others(normal) KM = $5
how do I calculate this logic? Users should pay $10 for 1st km, then 2ns km for $8 and for others $5.
model.startUpCharge is array, store 10$ and $8
/// [totalDistance] is in meters
double calculateTripPrice(RideModel model, double totalDistance) {
double totalPrice = 0;
double standardPrice = 0;
totalPrice = model.normalCharge *
((totalDistance / 1000) - model.startUpCharge.length);
for (var i = 0; i < model.startUpCharge.length; i++) {
standardPrice = standardPrice + model.startUpCharge[i];
}
totalPrice = totalPrice + standardPrice;
return totalPrice;
}
1540m logic = 1000m pay $10 and 540m pay $8
#creativecreatorormaybenot answer
the answer should be 50, but result is 5.
The problem is: If I add 1 meter, the price should be 50. 1st KM has an initial charge. not change
import 'dart:math' as math;
class RideModel{
final List startUpCharge;
final double normalCharge;
RideModel({this.startUpCharge,this.normalCharge});
}
main() {
calculateTripPrice(RideModel(startUpCharge: [50,51],normalCharge: 10),1);
}
double calculateTripPrice(RideModel model, double totalDistance) {
var remainingDistance = totalDistance, price = .0;
// Kilometers with special charge
for (var i = 0; i < model.startUpCharge.length; i++) {
price += model.startUpCharge[i] / 1000 * math.min(1000, remainingDistance);
remainingDistance -= math.min(1000, remainingDistance);
}
// Remaining kilometers
price += model.normalCharge / 1000 * remainingDistance;
remainingDistance = 0;
print(price);
return price;
}

You can simply iteratively add to your price and subtract from the distance. Based on that, there will only be added to the price when there is still remaining distance and the correct factor is used every time.
double calculateTripPrice(RideModel model, double totalDistance) {
var remainingDistance = totalDistance, price = .0;
// Kilometers with special charge
for (var i = 0; i < model.startUpCharge.length; i++) {
price += model.startUpCharge[i] / 1000 * math.min(1000, remainingDistance);
remainingDistance -= math.min(1000, remainingDistance);
}
// Remaining kilometers
price += 5 / 1000 * remainingDistance;
remainingDistance = 0;
return price;
}
Remember to import 'dart:math' as math;.

Related

Arduino: float function returns inf

I have a function (shown below) that I need some advice on. The function returns the slope of a line which is fit (via the least squares method) to n data points. To give you a context, my project is a barometric pressure based altimeter which uses this function to determine velocity based on the n most recent altitude-time pairs. These altitude-time pairs are stored in 2 global arrays(times[] and alts[]).
My problem is not that this method doesn't work. It usually does. But sometimes I will run the altimeter and this function will return the value 'inf' interspersed with a bunch of other wrong values (I have also seen 'NaN' but that is more rare). There are a few areas of suspicion I have at this point but I would like a fresh perspective. Here is some further contextual information that may or may not be of use:
I am using interrupts for a quadrature encoder
The times[] array is of type unsigned long
The alts[] array is of type float
n is a const int, in this case n = 9
On the ATMEGA328 a double is the same as a float.. Arduino-double
float velF() { // uses the last n data points, fits a line to them,
// and uses the slope of that line as the velocity at that moment
float sumTY = 0, sumT = 0, sumY = 0, sumT2 = 0;
for (int i = 0; i < n; i++) {
sumTY += (float)times[i] * alts[i] / 1000;
sumT += (float)times[i] / 1000;
sumY += alts[i];
sumT2 += (float)times[i] * times[i] / 1000000;
}
return (n*sumTY - sumT*sumY) / (n*sumT2 - sumT*sumT);
}
Any help or advice would be greatly appreciated!
Code is certainly performing division by zero.
For a variety of reasons, n*sumT2 - sumT*sumT will be zero. #John Bollinger In most of these cases, the top (dividend) of the division will also be zero and a return value of zero would be acceptable.
float velF(void) {
float sumTY = 0, sumT = 0, sumY = 0, sumT2 = 0;
for (size_t i = 0; i < n; i++) {
// insure values are reasoable
assert(alts[i] >= ALT_MIN && alts[i] <= ALT_MAX);
assert(times[i] >= TIME_MIN && times[i] <= TIME_MAX);
sumTY += (float)times[i] * alts[i] / 1000;
sumT += (float)times[i] / 1000;
sumY += alts[i];
sumT2 += (float)times[i] * times[i] / 1000000;
}
float d = n*sumT2 - sumT*sumT;
if (d == 0) return 0;
return (n*sumTY - sumT*sumY) / d;
}
Side note: could factor out the division for improved accuracy and speed. Suggest performing the last calculation as double.
float velF(void) {
float sumTY = 0, sumT = 0, sumY = 0, sumT2 = 0;
for (size_t i = 0; i < n; i++) {
float tf = (float) times[i];
sumTY += tf * alts[i];
sumT += tf;
sumY += alts[i];
sumT2 += tf * tf;
}
double nd = n;
double sumTd = sumT;
double d = nd*sumT2 - sumTd*sumTd;
if (d == 0) return 0;
return (nd*sumTY - sumTd*sumY)*1000 / d;
}

Microsoft.VisualBasic.Financial.Rate errors with "Cannot calculate rate using the arguments provided"

So we have a rates calculator class in our ASP.NET4 web app that uses the Microsoft.VisualBasic.Financial.Rate to calculate a nominal rate (based on input parameters).
We noticed that for high values of NPer (total number of payment periods, e.g. 50 years x monthly payments = 600) the function would throw an exception: Cannot calculate rate using the arguments provided.
Searching around we did not find any solutions to this, so I am posting the solution here. A requirement for us was to maintain a function that as closely as possible implemented the same algorithm as the above, as we needed to produce exactly the same outputs.
Answering my own question, for any future coders who run into this problem - we used dotPeek to decompile the module, which produced the following:
public static double Rate(double NPer, double Pmt, double PV, double FV = 0.0, DueDate Due = DueDate.EndOfPeriod, double Guess = 0.1)
{
if (NPer <= 0.0)
throw new ArgumentException(Utils.GetResourceString("Rate_NPerMustBeGTZero"));
double Rate1 = Guess;
double num1 = Financial.LEvalRate(Rate1, NPer, Pmt, PV, FV, Due);
double Rate2 = num1 <= 0.0 ? Rate1 * 2.0 : Rate1 / 2.0;
double num2 = Financial.LEvalRate(Rate2, NPer, Pmt, PV, FV, Due);
int num3 = 0;
do
{
if (num2 == num1)
{
if (Rate2 > Rate1)
Rate1 -= 1E-05;
else
Rate1 -= -1E-05;
num1 = Financial.LEvalRate(Rate1, NPer, Pmt, PV, FV, Due);
if (num2 == num1)
throw new ArgumentException(Utils.GetResourceString("Financial_CalcDivByZero"));
}
double Rate3 = Rate2 - (Rate2 - Rate1) * num2 / (num2 - num1);
double num4 = Financial.LEvalRate(Rate3, NPer, Pmt, PV, FV, Due);
if (Math.Abs(num4) < 1E-07)
return Rate3;
double num5 = num4;
num1 = num2;
num2 = num5;
double num6 = Rate3;
Rate1 = Rate2;
Rate2 = num6;
checked { ++num3; }
}
while (num3 <= 39);
throw new ArgumentException(Utils.GetResourceString("Financial_CannotCalculateRate"));
}
private static double LEvalRate(double Rate, double NPer, double Pmt, double PV, double dFv, DueDate Due)
{
if (Rate == 0.0)
return PV + Pmt * NPer + dFv;
double num1 = Math.Pow(Rate + 1.0, NPer);
double num2 = Due == DueDate.EndOfPeriod ? 1.0 : 1.0 + Rate;
return PV * num1 + Pmt * num2 * (num1 - 1.0) / Rate + dFv;
}
We can see the error is thrown if num3 is exceeded, as it has a hard limit at 39. We tidied up the code a little, and increased the limit to 100:
private static double CalculateUpfrontNominalRate(double numberOfPeriods, double payment, double presentValue, double futureValue = 0.0, DueDate Due = DueDate.EndOfPeriod, double Guess = 0.1)
{
if (numberOfPeriods <= 0.0)
{
throw new ArgumentException("CalculateUpfrontNominalRate: Number of periods must be greater than zero");
}
var rateUpperBoundary = Guess;
var lEvalRate1 = LEvalRate(rateUpperBoundary, numberOfPeriods, payment, presentValue, futureValue, Due);
var rateLowerBoundary = lEvalRate1 <= 0.0 ? rateUpperBoundary * 2.0 : rateUpperBoundary / 2.0;
var lEvalRate2 = LEvalRate(rateLowerBoundary, numberOfPeriods, payment, presentValue, futureValue, Due);
for (var i = 0; i < 100; i++)
{
if (lEvalRate2 == lEvalRate1)
{
if (rateLowerBoundary > rateUpperBoundary)
rateUpperBoundary -= 1E-05;
else
rateUpperBoundary -= -1E-05;
lEvalRate1 = LEvalRate(rateUpperBoundary, numberOfPeriods, payment, presentValue, futureValue, Due);
if (lEvalRate2 == lEvalRate1)
{
throw new ArgumentException("CalculateUpfrontNominalRate: Inputs will cause a divsion by zero");
}
}
double temporaryRate = rateLowerBoundary - (rateLowerBoundary - rateUpperBoundary) * lEvalRate2 / (lEvalRate2 - lEvalRate1);
double lEvalRate3 = LEvalRate(temporaryRate, numberOfPeriods, payment, presentValue, futureValue, Due);
if (Math.Abs(lEvalRate3) < 1E-07)
{
return temporaryRate;
}
lEvalRate1 = lEvalRate2;
lEvalRate2 = lEvalRate3;
rateUpperBoundary = rateLowerBoundary;
rateLowerBoundary = temporaryRate;
}
throw new ArgumentException("CalculateUpfrontNominalRate: The maximum number of iterations has been exceeded, unable to calculate rate");
}
private static double LEvalRate(double Rate, double NPer, double Pmt, double PV, double dFv, DueDate Due)
{
if (Rate == 0.0)
return PV + Pmt * NPer + dFv;
double num1 = Math.Pow(Rate + 1.0, NPer);
double num2 = Due == DueDate.EndOfPeriod ? 1.0 : 1.0 + Rate;
return PV * num1 + Pmt * num2 * (num1 - 1.0) / Rate + dFv;
}
Changing the count of iterative calculations won't solve the problem for all cases
For the sample calculation your posted, the rate algorithm did not find the rate within 40 iterations that was correct to 7 decimal places (accurate to 7 decimal places)
Is this the programming code from Vb.net financial functions that you have decompiled
If so, the programmer has done a poor job of coding the RATE function with Secant method
There are far better algorithms to use to find interest rates than the lousy Secant method
If you think you have solved the problem by changing the iterations to 100 then try to test the code with various data and see if you can get the RATE in all instances
I had the same problems using the Rate function.
Found out that your 'guess' is very important to ensure convergence - as outlined in the Remarks in the documentation:
Remarks:
Make sure that you are consistent about the units you use for
specifying guess and nper. If you make monthly payments on a four-year
loan at 12 percent annual interest, use 12%/12 for guess and 4*12 for
nper. If you make annual payments on the same loan, use 12% for guess
and 4 for nper.
If you're italian and going insane while trying to use Excel's Rata function from C# or VB.NET, beware of the fact that the Rata function is called Pmt in english. The Rate function is something entirely different.
Financial.Pmt(tassoTemp / 12, durataMutuo * 12, -importoMutuo);

Perlin Noise Assistance

Ok so I found this article and I am confused by some parts of it. If anyone can explain this process in more depth to me I would greatly appreciate it because I have been trying to code this for 2 months now and still have not gotten a correct version working yet. I am specifically confused about the Persistence part of the article because I mostly do not understand what the author is trying to explain about it and at the bottom of the article he talks about a 2D pseudo code implementation of this but the PerlinNoise_2D function does not make sense to me because after the random value is smoothed and interpolated, it is an integer value but the function takes float values? Underneath the persistence portion there is the octaves part. I do not quite understand because he "adds" the smoothed functions together to get the Perlin function. What does he mean by"adds" because you obviously do not add the values together. So if anyone can explain these parts to me I would be very happy. Thanks.
Here is my code:
import java.awt.Color;
import java.awt.Graphics;
import java.util.Random;
import javax.swing.JFrame;
import javax.swing.JPanel;
#SuppressWarnings("serial")
public class TerrainGen extends JPanel {
public static int layers = 3;
public static float[][][][] noise = new float[16][16][81][layers];
public static int[][][][] octaves = new int[16][16][81][layers];
public static int[][][][] perlin = new int[16][16][81][layers];
public static int[][][] perlinnoise = new int[16][16][81];
public static int SmoothAmount = 3;
public static int interpolate1 = 0;
public static int interpolate2 = 10;
public static double persistence = 0.25;
//generate noise
//smooth noise
//interpolate noise
//perlin equation
public TerrainGen() {
for(int t = 0; t < layers; t++) {
for(int z = 0; z < 81; z++) {
for(int y = 0; y < 16; y++) {
for(int x = 0; x < 16; x++) {
noise[x][y][z][t] = GenerateNoise();
}
}
}
}
for(int t = 0; t < layers; t++) {
SmoothNoise(t);
}
for(int t = 0; t < layers; t++) {
for(int z = 0; z < 81; z++) {
for(int y = 0; y < 16; y++) {
for(int x = 0; x < 16; x++) {
octaves[x][y][z][t] = InterpolateNoise(interpolate1, interpolate2, noise[x][y][z][t]);
}
}
}
}
for(int t = 0; t < layers; t++) {
PerlinNoise(t);
}
}
public static Random generation = new Random(5);
public float GenerateNoise() {
float i = generation.nextFloat();
return i;
}
public void SmoothNoise(int t) {
//Huge smoothing algorithm
}
//Cosine interpolation
public int InterpolateNoise(int base, int top, float input) {
return (int) ((1 - ((1 - Math.cos(input * 3.1415927)) * 0.5)) + top * ((1 - Math.cos(input * 3.1415927)) * 0.5));
}
public void PerlinNoise(int t) {
double f = Math.pow(2.0, new Double(t));
double a = Math.pow(persistence, new Double(t));
for(int z = 0; z < 81; z++) {
for(int y = 0; y < 16; y++) {
for(int x = 0; x < 16; x++) {
perlin[x][y][z][t] = (int) ((octaves[x][y][z][t] * f) * a);
}
}
}
}
public static void main(String [] args) {
JFrame frame = new JFrame();
frame.setSize(180, 180);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
TerrainGen test = new TerrainGen();
frame.add(test);
frame.setVisible(true);
}
public static int size = 5;
public void paintComponent(Graphics g) {
super.paintComponent(g);
int i = 0;
for(int t = 0; t < 9; t++) {
for(int z = 0; z < 9; z++) {
for(int y = 0; y < 16; y++) {
for(int x = 0; x < 16; x++) {
g.setColor(new Color(perlin[x][y][i][0] * 10, perlin[x][y][i][0] * 10, perlin[x][y][i][0] * 10));
g.fillRect((z * (16 * size)) + (x * size), (t * (16 * size)) + (y * size), size, size);
}
}
i++;
}
}
repaint();
}
}
And I did not include the smoothing part because that was about 400 lines of code to smooth between chunks.
What the article calls persistence is how the amplitude of the higher frequency noises "falls off" when they are combined.
"octaves" are just what the article calls the noise functions at different frequencies.
You take 1.0 and repeatedly multiply by the persistence to get the list of amplitudes to multiply each octave by - e.g. a persistence of 0.8 gives factors 1.0, 0.8, 0.64, 0.512.
The noise is not an integer, his function Noise1 produces noise in the range 0..1 - i.e. variable n is an Int32 bit it returns a float.
The input paramters are integers i.e. The Noise1 function is only evaluated at (1, 0) or (2, 2).
After smoothing/smearing the noise a bit in SmoothNoise_1 the values get interpolated to produce the values inbetween.
Hope that helped!!
this loop makes octaves from 2d noise. same loop would work for 3d perlin...
function octaves( vtx: Vector3 ): float
{
var total = 0.0;
for (var i:int = 1; i < 7; i ++)//num octaves
{
total+= PerlinNoise(Vector3 (vtx.x*(i*i),0.0,vtx.z*(i*i)))/(i*i);
}
return total;//added multiple perlins into noise with 1/2/4/8 etc ratios
}
the best thing i have seen for learning perlin is the following code. instead of hash tables, it uses sin based semi random function. using 2-3 octaves it becomes high quality perlin... the amazing thing is that i ran 30 octave of this on a realtime landscape and it didnt slow down, whereas i used 1 voronoi once and it was slowing. so... amazing code to learn from.
#ifndef __noise_hlsl_
#define __noise_hlsl_
// hash based 3d value noise
// function taken from https://www.shadertoy.com/view/XslGRr
// Created by inigo quilez - iq/2013
// License Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
// ported from GLSL to HLSL
float hash( float n )
{
return frac(sin(n)*43758.5453);
}
float noise( float3 x )
{
// The noise function returns a value in the range -1.0f -> 1.0f
float3 p = floor(x);
float3 f = frac(x);
f = f*f*(3.0-2.0*f);
float n = p.x + p.y*57.0 + 113.0*p.z;
return lerp(lerp(lerp( hash(n+0.0), hash(n+1.0),f.x),
lerp( hash(n+57.0), hash(n+58.0),f.x),f.y),
lerp(lerp( hash(n+113.0), hash(n+114.0),f.x),
lerp( hash(n+170.0), hash(n+171.0),f.x),f.y),f.z);
}
note that sin is expensive on CPU, instead you would use:
function hash ( n: float ): float
{//random -1, 1
var e = ( n *73.9543)%1;
return (e*e*142.05432)%2-1;// fast cpu random by me :) uses e*e rather than sin
}

Converting a decimal to a mixed-radix (base) number

How do you convert a decimal number to mixed radix notation?
I guess that given an input of an array of each of the bases, and the decimal number, it should output an array of the values of each column.
Pseudocode:
bases = [24, 60, 60]
input = 86462 #One day, 1 minute, 2 seconds
output = []
for base in reverse(bases)
output.prepend(input mod base)
input = input div base #div is integer division (round down)
Number -> set:
factors = [52,7,24,60,60,1000]
value = 662321
for i in n-1..0
res[i] = value mod factors[i]
value = value div factors[i]
And the reverse:
If you have the number like 32(52), 5(7), 7(24), 45(60), 15(60), 500(1000) and you want this converted to decimal:
Take number n, multiply it with the factor of n-1, continue for n-1..n=0
values = [32,5,7,45,15,500]
factors = [52,7,24,60,60,1000]
res = 0;
for i in 0..n-1
res = res * factors[i] + values[i]
And you have the number.
In Java you could do
public static int[] Number2MixedRadix(int[] base, int number) throws Exception {
//NB if the max number you want # a position is say 3 then the base# tha position
//in your base array should be 4 not 3
int[] RadixFigures = new int[base.length];
int[] PositionPowers = new int[base.length];
PositionPowers[base.length-1] = 1;
for (int k = base.length-2,pow = 1; k >-1; k--){
pow*=base[k+1];
PositionPowers[k]=pow;
}for (int k = 0; k<base.length; k++){
RadixFigures[k]=number/PositionPowers[k];
if(RadixFigures[k]>base[k])throw new Exception("RadixFigure#["+k+"] => ("+RadixFigures[k]+") is > base#["+k+"] => ("+base[k]+") | ( number is Illegal )");
number=number%PositionPowers[k];
}return RadixFigures;
}
Example
//e.g. mixed-radix base for 1day
int[] base = new int[]{1, 24, 60, 60};//max-day,max-hours,max-minutes,max-seconds
int[] MixedRadix = Number2MixedRadix(base, 19263);//19263 seconds
//this would give [0,5,21,3] => as per 0days 5hrs 21mins 3secs
Reversal
public static int MixedRadix2Number(int[] RadixFigures,int[] base) throws Exception {
if(RadixFigures.length!=base.length)throw new Exception("RadixFigures.length must be = base.length");
int number=0;
int[] PositionPowers = new int[base.length];
PositionPowers[base.length-1] = 1;
for (int k = base.length-2,pow = 1; k >-1; k--){
pow*=base[k+1];
PositionPowers[k]=pow;
}for (int k = 0; k<base.length; k++){
number+=(RadixFigures[k]*PositionPowers[k]);
if(RadixFigures[k]>base[k])throw new Exception("RadixFigure#["+k+"] => ("+RadixFigures[k]+") is > base#["+k+"] => ("+base[k]+") | ( number is Illegal )");
}return number;
}
I came up with a slightly different, and probably not as good method as the other ones here, but I thought I'd share anyway:
var theNumber = 313732097;
// ms s m h d
var bases = [1000, 60, 60, 24, 365];
var placeValues = []; // initialise an array
var currPlaceValue = 1;
for (var i = 0, l = bases.length; i < l; ++i) {
placeValues.push(currPlaceValue);
currPlaceValue *= bases[i];
}
console.log(placeValues);
// this isn't relevant for this specific problem, but might
// be useful in related problems.
var maxNumber = currPlaceValue - 1;
var output = new Array(placeValues.length);
for (var v = placeValues.length - 1; v >= 0; --v) {
output[v] = Math.floor(theNumber / placeValues[v]);
theNumber %= placeValues[v];
}
console.log(output);
// [97, 52, 8, 15, 3] --> 3 days, 15 hours, 8 minutes, 52 seconds, 97 milliseconds
I tried a few of the examples before and found an edge case they didn't cover, if you max out your scale you need to prepend the result from the last step
def intToMix(number,radix=[10]):
mixNum=[]
radix.reverse()
for i in range(0,len(radix)):
mixNum.append(number%radix[i])
number//=radix[i]
mixNum.append(number)
mixNum.reverse()
radix.reverse()
return mixNum
num=60*60*24*7
radix=[7,24,60,60]
tmp1=intToMix(num,radix)

A better similarity ranking algorithm for variable length strings

I'm looking for a string similarity algorithm that yields better results on variable length strings than the ones that are usually suggested (levenshtein distance, soundex, etc).
For example,
Given string A: "Robert",
Then string B: "Amy Robertson"
would be a better match than
String C: "Richard"
Also, preferably, this algorithm should be language agnostic (also works in languages other than English).
Simon White of Catalysoft wrote an article about a very clever algorithm that compares adjacent character pairs that works really well for my purposes:
http://www.catalysoft.com/articles/StrikeAMatch.html
Simon has a Java version of the algorithm and below I wrote a PL/Ruby version of it (taken from the plain ruby version done in the related forum entry comment by Mark Wong-VanHaren) so that I can use it in my PostgreSQL queries:
CREATE FUNCTION string_similarity(str1 varchar, str2 varchar)
RETURNS float8 AS '
str1.downcase!
pairs1 = (0..str1.length-2).collect {|i| str1[i,2]}.reject {
|pair| pair.include? " "}
str2.downcase!
pairs2 = (0..str2.length-2).collect {|i| str2[i,2]}.reject {
|pair| pair.include? " "}
union = pairs1.size + pairs2.size
intersection = 0
pairs1.each do |p1|
0.upto(pairs2.size-1) do |i|
if p1 == pairs2[i]
intersection += 1
pairs2.slice!(i)
break
end
end
end
(2.0 * intersection) / union
' LANGUAGE 'plruby';
Works like a charm!
marzagao's answer is great. I converted it to C# so I thought I'd post it here:
Pastebin Link
/// <summary>
/// This class implements string comparison algorithm
/// based on character pair similarity
/// Source: http://www.catalysoft.com/articles/StrikeAMatch.html
/// </summary>
public class SimilarityTool
{
/// <summary>
/// Compares the two strings based on letter pair matches
/// </summary>
/// <param name="str1"></param>
/// <param name="str2"></param>
/// <returns>The percentage match from 0.0 to 1.0 where 1.0 is 100%</returns>
public double CompareStrings(string str1, string str2)
{
List<string> pairs1 = WordLetterPairs(str1.ToUpper());
List<string> pairs2 = WordLetterPairs(str2.ToUpper());
int intersection = 0;
int union = pairs1.Count + pairs2.Count;
for (int i = 0; i < pairs1.Count; i++)
{
for (int j = 0; j < pairs2.Count; j++)
{
if (pairs1[i] == pairs2[j])
{
intersection++;
pairs2.RemoveAt(j);//Must remove the match to prevent "GGGG" from appearing to match "GG" with 100% success
break;
}
}
}
return (2.0 * intersection) / union;
}
/// <summary>
/// Gets all letter pairs for each
/// individual word in the string
/// </summary>
/// <param name="str"></param>
/// <returns></returns>
private List<string> WordLetterPairs(string str)
{
List<string> AllPairs = new List<string>();
// Tokenize the string and put the tokens/words into an array
string[] Words = Regex.Split(str, #"\s");
// For each word
for (int w = 0; w < Words.Length; w++)
{
if (!string.IsNullOrEmpty(Words[w]))
{
// Find the pairs of characters
String[] PairsInWord = LetterPairs(Words[w]);
for (int p = 0; p < PairsInWord.Length; p++)
{
AllPairs.Add(PairsInWord[p]);
}
}
}
return AllPairs;
}
/// <summary>
/// Generates an array containing every
/// two consecutive letters in the input string
/// </summary>
/// <param name="str"></param>
/// <returns></returns>
private string[] LetterPairs(string str)
{
int numPairs = str.Length - 1;
string[] pairs = new string[numPairs];
for (int i = 0; i < numPairs; i++)
{
pairs[i] = str.Substring(i, 2);
}
return pairs;
}
}
Here is another version of marzagao's answer, this one written in Python:
def get_bigrams(string):
"""
Take a string and return a list of bigrams.
"""
s = string.lower()
return [s[i:i+2] for i in list(range(len(s) - 1))]
def string_similarity(str1, str2):
"""
Perform bigram comparison between two strings
and return a percentage match in decimal form.
"""
pairs1 = get_bigrams(str1)
pairs2 = get_bigrams(str2)
union = len(pairs1) + len(pairs2)
hit_count = 0
for x in pairs1:
for y in pairs2:
if x == y:
hit_count += 1
break
return (2.0 * hit_count) / union
if __name__ == "__main__":
"""
Run a test using the example taken from:
http://www.catalysoft.com/articles/StrikeAMatch.html
"""
w1 = 'Healed'
words = ['Heard', 'Healthy', 'Help', 'Herded', 'Sealed', 'Sold']
for w2 in words:
print('Healed --- ' + w2)
print(string_similarity(w1, w2))
print()
A shorter version of John Rutledge's answer:
def get_bigrams(string):
'''
Takes a string and returns a list of bigrams
'''
s = string.lower()
return {s[i:i+2] for i in xrange(len(s) - 1)}
def string_similarity(str1, str2):
'''
Perform bigram comparison between two strings
and return a percentage match in decimal form
'''
pairs1 = get_bigrams(str1)
pairs2 = get_bigrams(str2)
return (2.0 * len(pairs1 & pairs2)) / (len(pairs1) + len(pairs2))
Here's my PHP implementation of suggested StrikeAMatch algorithm, by Simon White. the advantages (like it says in the link) are:
A true reflection of lexical similarity - strings with small differences should be recognised as being similar. In particular, a significant substring overlap should point to a high level of similarity between the strings.
A robustness to changes of word order - two strings which contain the same words, but in a different order, should be recognised as being similar. On the other hand, if one string is just a random anagram of the characters contained in the other, then it should (usually) be recognised as dissimilar.
Language Independence - the algorithm should work not only in English, but in many different languages.
<?php
/**
* LetterPairSimilarity algorithm implementation in PHP
* #author Igal Alkon
* #link http://www.catalysoft.com/articles/StrikeAMatch.html
*/
class LetterPairSimilarity
{
/**
* #param $str
* #return mixed
*/
private function wordLetterPairs($str)
{
$allPairs = array();
// Tokenize the string and put the tokens/words into an array
$words = explode(' ', $str);
// For each word
for ($w = 0; $w < count($words); $w++)
{
// Find the pairs of characters
$pairsInWord = $this->letterPairs($words[$w]);
for ($p = 0; $p < count($pairsInWord); $p++)
{
$allPairs[] = $pairsInWord[$p];
}
}
return $allPairs;
}
/**
* #param $str
* #return array
*/
private function letterPairs($str)
{
$numPairs = mb_strlen($str)-1;
$pairs = array();
for ($i = 0; $i < $numPairs; $i++)
{
$pairs[$i] = mb_substr($str,$i,2);
}
return $pairs;
}
/**
* #param $str1
* #param $str2
* #return float
*/
public function compareStrings($str1, $str2)
{
$pairs1 = $this->wordLetterPairs(strtoupper($str1));
$pairs2 = $this->wordLetterPairs(strtoupper($str2));
$intersection = 0;
$union = count($pairs1) + count($pairs2);
for ($i=0; $i < count($pairs1); $i++)
{
$pair1 = $pairs1[$i];
$pairs2 = array_values($pairs2);
for($j = 0; $j < count($pairs2); $j++)
{
$pair2 = $pairs2[$j];
if ($pair1 === $pair2)
{
$intersection++;
unset($pairs2[$j]);
break;
}
}
}
return (2.0*$intersection)/$union;
}
}
This discussion has been really helpful, thanks. I converted the algorithm to VBA for use with Excel and wrote a few versions of a worksheet function, one for simple comparison of a pair of strings, the other for comparing one string to a range/array of strings. The strSimLookup version returns either the last best match as a string, array index, or similarity metric.
This implementation produces the same results listed in the Amazon example on Simon White's website with a few minor exceptions on low-scoring matches; not sure where the difference creeps in, could be VBA's Split function, but I haven't investigated as it's working fine for my purposes.
'Implements functions to rate how similar two strings are on
'a scale of 0.0 (completely dissimilar) to 1.0 (exactly similar)
'Source:  http://www.catalysoft.com/articles/StrikeAMatch.html
'Author: Bob Chatham, bob.chatham at gmail.com
'9/12/2010
Option Explicit
Public Function stringSimilarity(str1 As String, str2 As String) As Variant
'Simple version of the algorithm that computes the similiarity metric
'between two strings.
'NOTE: This verision is not efficient to use if you're comparing one string
'with a range of other values as it will needlessly calculate the pairs for the
'first string over an over again; use the array-optimized version for this case.
Dim sPairs1 As Collection
Dim sPairs2 As Collection
Set sPairs1 = New Collection
Set sPairs2 = New Collection
WordLetterPairs str1, sPairs1
WordLetterPairs str2, sPairs2
stringSimilarity = SimilarityMetric(sPairs1, sPairs2)
Set sPairs1 = Nothing
Set sPairs2 = Nothing
End Function
Public Function strSimA(str1 As Variant, rRng As Range) As Variant
'Return an array of string similarity indexes for str1 vs every string in input range rRng
Dim sPairs1 As Collection
Dim sPairs2 As Collection
Dim arrOut As Variant
Dim l As Long, j As Long
Set sPairs1 = New Collection
WordLetterPairs CStr(str1), sPairs1
l = rRng.Count
ReDim arrOut(1 To l)
For j = 1 To l
Set sPairs2 = New Collection
WordLetterPairs CStr(rRng(j)), sPairs2
arrOut(j) = SimilarityMetric(sPairs1, sPairs2)
Set sPairs2 = Nothing
Next j
strSimA = Application.Transpose(arrOut)
End Function
Public Function strSimLookup(str1 As Variant, rRng As Range, Optional returnType) As Variant
'Return either the best match or the index of the best match
'depending on returnTYype parameter) between str1 and strings in rRng)
' returnType = 0 or omitted: returns the best matching string
' returnType = 1 : returns the index of the best matching string
' returnType = 2 : returns the similarity metric
Dim sPairs1 As Collection
Dim sPairs2 As Collection
Dim metric, bestMetric As Double
Dim i, iBest As Long
Const RETURN_STRING As Integer = 0
Const RETURN_INDEX As Integer = 1
Const RETURN_METRIC As Integer = 2
If IsMissing(returnType) Then returnType = RETURN_STRING
Set sPairs1 = New Collection
WordLetterPairs CStr(str1), sPairs1
bestMetric = -1
iBest = -1
For i = 1 To rRng.Count
Set sPairs2 = New Collection
WordLetterPairs CStr(rRng(i)), sPairs2
metric = SimilarityMetric(sPairs1, sPairs2)
If metric > bestMetric Then
bestMetric = metric
iBest = i
End If
Set sPairs2 = Nothing
Next i
If iBest = -1 Then
strSimLookup = CVErr(xlErrValue)
Exit Function
End If
Select Case returnType
Case RETURN_STRING
strSimLookup = CStr(rRng(iBest))
Case RETURN_INDEX
strSimLookup = iBest
Case Else
strSimLookup = bestMetric
End Select
End Function
Public Function strSim(str1 As String, str2 As String) As Variant
Dim ilen, iLen1, ilen2 As Integer
iLen1 = Len(str1)
ilen2 = Len(str2)
If iLen1 >= ilen2 Then ilen = ilen2 Else ilen = iLen1
strSim = stringSimilarity(Left(str1, ilen), Left(str2, ilen))
End Function
Sub WordLetterPairs(str As String, pairColl As Collection)
'Tokenize str into words, then add all letter pairs to pairColl
Dim Words() As String
Dim word, nPairs, pair As Integer
Words = Split(str)
If UBound(Words) < 0 Then
Set pairColl = Nothing
Exit Sub
End If
For word = 0 To UBound(Words)
nPairs = Len(Words(word)) - 1
If nPairs > 0 Then
For pair = 1 To nPairs
pairColl.Add Mid(Words(word), pair, 2)
Next pair
End If
Next word
End Sub
Private Function SimilarityMetric(sPairs1 As Collection, sPairs2 As Collection) As Variant
'Helper function to calculate similarity metric given two collections of letter pairs.
'This function is designed to allow the pair collections to be set up separately as needed.
'NOTE: sPairs2 collection will be altered as pairs are removed; copy the collection
'if this is not the desired behavior.
'Also assumes that collections will be deallocated somewhere else
Dim Intersect As Double
Dim Union As Double
Dim i, j As Long
If sPairs1.Count = 0 Or sPairs2.Count = 0 Then
SimilarityMetric = CVErr(xlErrNA)
Exit Function
End If
Union = sPairs1.Count + sPairs2.Count
Intersect = 0
For i = 1 To sPairs1.Count
For j = 1 To sPairs2.Count
If StrComp(sPairs1(i), sPairs2(j)) = 0 Then
Intersect = Intersect + 1
sPairs2.Remove j
Exit For
End If
Next j
Next i
SimilarityMetric = (2 * Intersect) / Union
End Function
I'm sorry, the answer was not invented by the author. This is a well known algorithm that was first present by Digital Equipment Corporation and is often referred to as shingling.
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-TN-1997-015.pdf
I translated Simon White's algorithm to PL/pgSQL. This is my contribution.
<!-- language: lang-sql -->
create or replace function spt1.letterpairs(in p_str varchar)
returns varchar as
$$
declare
v_numpairs integer := length(p_str)-1;
v_pairs varchar[];
begin
for i in 1 .. v_numpairs loop
v_pairs[i] := substr(p_str, i, 2);
end loop;
return v_pairs;
end;
$$ language 'plpgsql';
--===================================================================
create or replace function spt1.wordletterpairs(in p_str varchar)
returns varchar as
$$
declare
v_allpairs varchar[];
v_words varchar[];
v_pairsinword varchar[];
begin
v_words := regexp_split_to_array(p_str, '[[:space:]]');
for i in 1 .. array_length(v_words, 1) loop
v_pairsinword := spt1.letterpairs(v_words[i]);
if v_pairsinword is not null then
for j in 1 .. array_length(v_pairsinword, 1) loop
v_allpairs := v_allpairs || v_pairsinword[j];
end loop;
end if;
end loop;
return v_allpairs;
end;
$$ language 'plpgsql';
--===================================================================
create or replace function spt1.arrayintersect(ANYARRAY, ANYARRAY)
returns anyarray as
$$
select array(select unnest($1) intersect select unnest($2))
$$ language 'sql';
--===================================================================
create or replace function spt1.comparestrings(in p_str1 varchar, in p_str2 varchar)
returns float as
$$
declare
v_pairs1 varchar[];
v_pairs2 varchar[];
v_intersection integer;
v_union integer;
begin
v_pairs1 := wordletterpairs(upper(p_str1));
v_pairs2 := wordletterpairs(upper(p_str2));
v_union := array_length(v_pairs1, 1) + array_length(v_pairs2, 1);
v_intersection := array_length(arrayintersect(v_pairs1, v_pairs2), 1);
return (2.0 * v_intersection / v_union);
end;
$$ language 'plpgsql';
A version in beautiful Scala:
def pairDistance(s1: String, s2: String): Double = {
def strToPairs(s: String, acc: List[String]): List[String] = {
if (s.size < 2) acc
else strToPairs(s.drop(1),
if (s.take(2).contains(" ")) acc else acc ::: List(s.take(2)))
}
val lst1 = strToPairs(s1.toUpperCase, List())
val lst2 = strToPairs(s2.toUpperCase, List())
(2.0 * lst2.intersect(lst1).size) / (lst1.size + lst2.size)
}
String Similarity Metrics contains an overview of many different metrics used in string comparison (Wikipedia has an overview as well). Much of these metrics is implemented in a library simmetrics.
Yet another example of metric, not included in the given overview is for example compression distance (attempting to approximate the Kolmogorov's complexity), which can be used for a bit longer texts than the one you presented.
You might also consider looking at a much broader subject of Natural Language Processing. These R packages can get you started quickly (or at least give some ideas).
And one last edit - search the other questions on this subject at SO, there are quite a few related ones.
A faster PHP version of the algorithm:
/**
*
* #param $str
* #return mixed
*/
private static function wordLetterPairs ($str)
{
$allPairs = array();
// Tokenize the string and put the tokens/words into an array
$words = explode(' ', $str);
// For each word
for ($w = 0; $w < count($words); $w ++) {
// Find the pairs of characters
$pairsInWord = self::letterPairs($words[$w]);
for ($p = 0; $p < count($pairsInWord); $p ++) {
$allPairs[$pairsInWord[$p]] = $pairsInWord[$p];
}
}
return array_values($allPairs);
}
/**
*
* #param $str
* #return array
*/
private static function letterPairs ($str)
{
$numPairs = mb_strlen($str) - 1;
$pairs = array();
for ($i = 0; $i < $numPairs; $i ++) {
$pairs[$i] = mb_substr($str, $i, 2);
}
return $pairs;
}
/**
*
* #param $str1
* #param $str2
* #return float
*/
public static function compareStrings ($str1, $str2)
{
$pairs1 = self::wordLetterPairs(mb_strtolower($str1));
$pairs2 = self::wordLetterPairs(mb_strtolower($str2));
$union = count($pairs1) + count($pairs2);
$intersection = count(array_intersect($pairs1, $pairs2));
return (2.0 * $intersection) / $union;
}
For the data I had (approx 2300 comparisons) I had a running time of 0.58sec with Igal Alkon solution versus 0.35sec with mine.
Posting marzagao's answer in C99, inspired by these algorithms
double dice_match(const char *string1, const char *string2) {
//check fast cases
if (((string1 != NULL) && (string1[0] == '\0')) ||
((string2 != NULL) && (string2[0] == '\0'))) {
return 0;
}
if (string1 == string2) {
return 1;
}
size_t strlen1 = strlen(string1);
size_t strlen2 = strlen(string2);
if (strlen1 < 2 || strlen2 < 2) {
return 0;
}
size_t length1 = strlen1 - 1;
size_t length2 = strlen2 - 1;
double matches = 0;
int i = 0, j = 0;
//get bigrams and compare
while (i < length1 && j < length2) {
char a[3] = {string1[i], string1[i + 1], '\0'};
char b[3] = {string2[j], string2[j + 1], '\0'};
int cmp = strcmpi(a, b);
if (cmp == 0) {
matches += 2;
}
i++;
j++;
}
return matches / (length1 + length2);
}
Some tests based on the original article:
#include <stdio.h>
void article_test1() {
char *string1 = "FRANCE";
char *string2 = "FRENCH";
printf("====%s====\n", __func__);
printf("%2.f%% == 40%%\n", dice_match(string1, string2) * 100);
}
void article_test2() {
printf("====%s====\n", __func__);
char *string = "Healed";
char *ss[] = {"Heard", "Healthy", "Help",
"Herded", "Sealed", "Sold"};
int correct[] = {44, 55, 25, 40, 80, 0};
for (int i = 0; i < 6; ++i) {
printf("%2.f%% == %d%%\n", dice_match(string, ss[i]) * 100, correct[i]);
}
}
void multicase_test() {
char *string1 = "FRaNcE";
char *string2 = "fREnCh";
printf("====%s====\n", __func__);
printf("%2.f%% == 40%%\n", dice_match(string1, string2) * 100);
}
void gg_test() {
char *string1 = "GG";
char *string2 = "GGGGG";
printf("====%s====\n", __func__);
printf("%2.f%% != 100%%\n", dice_match(string1, string2) * 100);
}
int main() {
article_test1();
article_test2();
multicase_test();
gg_test();
return 0;
}
Here is the R version:
get_bigrams <- function(str)
{
lstr = tolower(str)
bigramlst = list()
for(i in 1:(nchar(str)-1))
{
bigramlst[[i]] = substr(str, i, i+1)
}
return(bigramlst)
}
str_similarity <- function(str1, str2)
{
pairs1 = get_bigrams(str1)
pairs2 = get_bigrams(str2)
unionlen = length(pairs1) + length(pairs2)
hit_count = 0
for(x in 1:length(pairs1)){
for(y in 1:length(pairs2)){
if (pairs1[[x]] == pairs2[[y]])
hit_count = hit_count + 1
}
}
return ((2.0 * hit_count) / unionlen)
}
Building on Michael La Voie's awesome C# version, as per the request to make it an extension method, here is what I came up with. The primary benefit of doing it this way is that you can sort a Generic List by the percent match. For example, consider you have a string field named "City" in your object. A user searches for "Chester" and you want to return results in descending order of match. For example, you want literal matches of Chester to show up before Rochester. To do this, add two new properties to your object:
public string SearchText { get; set; }
public double PercentMatch
{
get
{
return City.ToUpper().PercentMatchTo(this.SearchText.ToUpper());
}
}
Then on each object, set the SearchText to what the user searched for. Then you can sort it easily with something like:
zipcodes = zipcodes.OrderByDescending(x => x.PercentMatch);
Here's the slight modification to make it an extension method:
/// <summary>
/// This class implements string comparison algorithm
/// based on character pair similarity
/// Source: http://www.catalysoft.com/articles/StrikeAMatch.html
/// </summary>
public static double PercentMatchTo(this string str1, string str2)
{
List<string> pairs1 = WordLetterPairs(str1.ToUpper());
List<string> pairs2 = WordLetterPairs(str2.ToUpper());
int intersection = 0;
int union = pairs1.Count + pairs2.Count;
for (int i = 0; i < pairs1.Count; i++)
{
for (int j = 0; j < pairs2.Count; j++)
{
if (pairs1[i] == pairs2[j])
{
intersection++;
pairs2.RemoveAt(j);//Must remove the match to prevent "GGGG" from appearing to match "GG" with 100% success
break;
}
}
}
return (2.0 * intersection) / union;
}
/// <summary>
/// Gets all letter pairs for each
/// individual word in the string
/// </summary>
/// <param name="str"></param>
/// <returns></returns>
private static List<string> WordLetterPairs(string str)
{
List<string> AllPairs = new List<string>();
// Tokenize the string and put the tokens/words into an array
string[] Words = Regex.Split(str, #"\s");
// For each word
for (int w = 0; w < Words.Length; w++)
{
if (!string.IsNullOrEmpty(Words[w]))
{
// Find the pairs of characters
String[] PairsInWord = LetterPairs(Words[w]);
for (int p = 0; p < PairsInWord.Length; p++)
{
AllPairs.Add(PairsInWord[p]);
}
}
}
return AllPairs;
}
/// <summary>
/// Generates an array containing every
/// two consecutive letters in the input string
/// </summary>
/// <param name="str"></param>
/// <returns></returns>
private static string[] LetterPairs(string str)
{
int numPairs = str.Length - 1;
string[] pairs = new string[numPairs];
for (int i = 0; i < numPairs; i++)
{
pairs[i] = str.Substring(i, 2);
}
return pairs;
}
My JavaScript implementation takes a string or array of strings, and an optional floor (the default floor is 0.5). If you pass it a string, it will return true or false depending on whether or not the string's similarity score is greater than or equal to the floor. If you pass it an array of strings, it will return an array of those strings whose similarity score is greater than or equal to the floor, sorted by score.
Examples:
'Healed'.fuzzy('Sealed'); // returns true
'Healed'.fuzzy('Help'); // returns false
'Healed'.fuzzy('Help', 0.25); // returns true
'Healed'.fuzzy(['Sold', 'Herded', 'Heard', 'Help', 'Sealed', 'Healthy']);
// returns ["Sealed", "Healthy"]
'Healed'.fuzzy(['Sold', 'Herded', 'Heard', 'Help', 'Sealed', 'Healthy'], 0);
// returns ["Sealed", "Healthy", "Heard", "Herded", "Help", "Sold"]
Here it is:
(function(){
var default_floor = 0.5;
function pairs(str){
var pairs = []
, length = str.length - 1
, pair;
str = str.toLowerCase();
for(var i = 0; i < length; i++){
pair = str.substr(i, 2);
if(!/\s/.test(pair)){
pairs.push(pair);
}
}
return pairs;
}
function similarity(pairs1, pairs2){
var union = pairs1.length + pairs2.length
, hits = 0;
for(var i = 0; i < pairs1.length; i++){
for(var j = 0; j < pairs2.length; j++){
if(pairs1[i] == pairs2[j]){
pairs2.splice(j--, 1);
hits++;
break;
}
}
}
return 2*hits/union || 0;
}
String.prototype.fuzzy = function(strings, floor){
var str1 = this
, pairs1 = pairs(this);
floor = typeof floor == 'number' ? floor : default_floor;
if(typeof(strings) == 'string'){
return str1.length > 1 && strings.length > 1 && similarity(pairs1, pairs(strings)) >= floor || str1.toLowerCase() == strings.toLowerCase();
}else if(strings instanceof Array){
var scores = {};
strings.map(function(str2){
scores[str2] = str1.length > 1 ? similarity(pairs1, pairs(str2)) : 1*(str1.toLowerCase() == str2.toLowerCase());
});
return strings.filter(function(str){
return scores[str] >= floor;
}).sort(function(a, b){
return scores[b] - scores[a];
});
}
};
})();
The Dice coefficient algorithm (Simon White / marzagao's answer) is implemented in Ruby in the
pair_distance_similar method in the amatch gem
https://github.com/flori/amatch
This gem also contains implementations of a number of approximate matching and string comparison algorithms: Levenshtein edit distance, Sellers edit distance, the Hamming distance, the longest common subsequence length, the longest common substring length, the pair distance metric, the Jaro-Winkler metric.
A Haskell version—feel free to suggest edits because I haven't done much Haskell.
import Data.Char
import Data.List
-- Convert a string into words, then get the pairs of words from that phrase
wordLetterPairs :: String -> [String]
wordLetterPairs s1 = concat $ map pairs $ words s1
-- Converts a String into a list of letter pairs.
pairs :: String -> [String]
pairs [] = []
pairs (x:[]) = []
pairs (x:ys) = [x, head ys]:(pairs ys)
-- Calculates the match rating for two strings
matchRating :: String -> String -> Double
matchRating s1 s2 = (numberOfMatches * 2) / totalLength
where pairsS1 = wordLetterPairs $ map toLower s1
pairsS2 = wordLetterPairs $ map toLower s2
numberOfMatches = fromIntegral $ length $ pairsS1 `intersect` pairsS2
totalLength = fromIntegral $ length pairsS1 + length pairsS2
Clojure:
(require '[clojure.set :refer [intersection]])
(defn bigrams [s]
(->> (split s #"\s+")
(mapcat #(partition 2 1 %))
(set)))
(defn string-similarity [a b]
(let [a-pairs (bigrams a)
b-pairs (bigrams b)
total-count (+ (count a-pairs) (count b-pairs))
match-count (count (intersection a-pairs b-pairs))
similarity (/ (* 2 match-count) total-count)]
similarity))
Here is another version of Similarity based in Sørensen–Dice index (marzagao's answer), this one written in C++11:
/*
* Similarity based in Sørensen–Dice index.
*
* Returns the Similarity between _str1 and _str2.
*/
double similarity_sorensen_dice(const std::string& _str1, const std::string& _str2) {
// Base case: if some string is empty.
if (_str1.empty() || _str2.empty()) {
return 1.0;
}
auto str1 = upper_string(_str1);
auto str2 = upper_string(_str2);
// Base case: if the strings are equals.
if (str1 == str2) {
return 0.0;
}
// Base case: if some string does not have bigrams.
if (str1.size() < 2 || str2.size() < 2) {
return 1.0;
}
// Extract bigrams from str1
auto num_pairs1 = str1.size() - 1;
std::unordered_set<std::string> str1_bigrams;
str1_bigrams.reserve(num_pairs1);
for (unsigned i = 0; i < num_pairs1; ++i) {
str1_bigrams.insert(str1.substr(i, 2));
}
// Extract bigrams from str2
auto num_pairs2 = str2.size() - 1;
std::unordered_set<std::string> str2_bigrams;
str2_bigrams.reserve(num_pairs2);
for (unsigned int i = 0; i < num_pairs2; ++i) {
str2_bigrams.insert(str2.substr(i, 2));
}
// Find the intersection between the two sets.
int intersection = 0;
if (str1_bigrams.size() < str2_bigrams.size()) {
const auto it_e = str2_bigrams.end();
for (const auto& bigram : str1_bigrams) {
intersection += str2_bigrams.find(bigram) != it_e;
}
} else {
const auto it_e = str1_bigrams.end();
for (const auto& bigram : str2_bigrams) {
intersection += str1_bigrams.find(bigram) != it_e;
}
}
// Returns similarity coefficient.
return (2.0 * intersection) / (num_pairs1 + num_pairs2);
}
Why not for a JavaScript implementation, I also explained the algorithm.
Algorithm
Input : France and French.
Map them both to their upper case characters (making the algorithm insensitive to case differences), then split them up into their character pairs:
FRANCE: {FR, RA, AN, NC, CE}
FRENCH: {FR, RE, EN, NC, CH}
Find there intersection:
Result:
Implementation
function similarity(s1, s2) {
const
set1 = pairs(s1.toUpperCase()), // [ FR, RA, AN, NC, CE ]
set2 = pairs(s2.toUpperCase()), // [ FR, RE, EN, NC, CH ]
intersection = set1.filter(x => set2.includes(x)); // [ FR, NC ]
// Tips: Instead of `2` multiply by `200`, To get percentage.
return (intersection.length * 2) / (set1.length + set2.length);
}
function pairs(input) {
const tokenized = [];
for (let i = 0; i < input.length - 1; i++)
tokenized.push(input.substring(i, 2 + i));
return tokenized;
}
console.log(similarity("FRANCE", "FRENCH"));
Ranking Results By ( Word - Similarity )
Sealed - 80%
Healthy - 55%
Heard - 44%
Herded - 40%
Help - 25%
Sold - 0%
From same original source.
What about Levenshtein distance, divided by the length of the first string (or alternatively divided my min/max/avg length of both strings)? That has worked for me so far.
Hey guys i gave this a try in javascript, but I'm new to it, anyone know faster ways to do it?
function get_bigrams(string) {
// Takes a string and returns a list of bigrams
var s = string.toLowerCase();
var v = new Array(s.length-1);
for (i = 0; i< v.length; i++){
v[i] =s.slice(i,i+2);
}
return v;
}
function string_similarity(str1, str2){
/*
Perform bigram comparison between two strings
and return a percentage match in decimal form
*/
var pairs1 = get_bigrams(str1);
var pairs2 = get_bigrams(str2);
var union = pairs1.length + pairs2.length;
var hit_count = 0;
for (x in pairs1){
for (y in pairs2){
if (pairs1[x] == pairs2[y]){
hit_count++;
}
}
}
return ((2.0 * hit_count) / union);
}
var w1 = 'Healed';
var word =['Heard','Healthy','Help','Herded','Sealed','Sold']
for (w2 in word){
console.log('Healed --- ' + word[w2])
console.log(string_similarity(w1,word[w2]));
}
I was looking for pure ruby implementation of the algorithm indicated by #marzagao's answer. Unfortunately, link indicated by #marzagao is broken. In #s01ipsist answer, he indicated ruby gem amatch where implementation is not in pure ruby. So I searchd a little and found gem fuzzy_match which has pure ruby implementation (though this gem use amatch) at here. I hope this will help someone like me.
**I've converted marzagao's answer to Java.**
import org.apache.commons.lang3.StringUtils; //Add a apache commons jar in pom.xml
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class SimilarityComparator {
public static void main(String[] args) {
String str0 = "Nischal";
String str1 = "Nischal";
double v = compareStrings(str0, str1);
System.out.println("Similarity betn " + str0 + " and " + str1 + " = " + v);
}
private static double compareStrings(String str1, String str2) {
List<String> pairs1 = wordLetterPairs(str1.toUpperCase());
List<String> pairs2 = wordLetterPairs(str2.toUpperCase());
int intersection = 0;
int union = pairs1.size() + pairs2.size();
for (String s : pairs1) {
for (int j = 0; j < pairs2.size(); j++) {
if (s.equals(pairs2.get(j))) {
intersection++;
pairs2.remove(j);
break;
}
}
}
return (2.0 * intersection) / union;
}
private static List<String> wordLetterPairs(String str) {
List<String> AllPairs = new ArrayList<>();
String[] Words = str.split("\\s");
for (String word : Words) {
if (StringUtils.isNotBlank(word)) {
String[] PairsInWord = letterPairs(word);
Collections.addAll(AllPairs, PairsInWord);
}
}
return AllPairs;
}
private static String[] letterPairs(String str) {
int numPairs = str.length() - 1;
String[] pairs = new String[numPairs];
for (int i = 0; i < numPairs; i++) {
try {
pairs[i] = str.substring(i, i + 2);
} catch (Exception e) {
pairs[i] = str.substring(i, numPairs);
}
}
return pairs;
}
}
Here's another c++ implementation that follows the original article, that minimizes dynamic memory allocations.
It obtains the same matching values in the examples, but I think it's better to take into account also the single character words.
//---------------------------------------------------------------------------
// Similarity based on Sørensen–Dice index
double calc_similarity( const std::string_view s1, const std::string_view s2 )
{
// Check banal cases
if( s1.empty() || s2.empty() )
{// Empty string is never similar to another
return 0.0;
}
else if( s1==s2 )
{// Perfectly equal
return 1.0;
}
else if( s1.length()==1 || s2.length()==1 )
{// Single (not equal) characters have zero similarity
return 0.0;
}
/////////////////////////////////////////////////////////////////////////
// Represents a pair of adjacent characters
class charpair_t final
{
public:
charpair_t(const char a, const char b) noexcept : c1(a), c2(b) {}
[[nodiscard]] bool operator==(const charpair_t& other) const noexcept { return c1==other.c1 && c2==other.c2; }
private:
char c1, c2;
};
/////////////////////////////////////////////////////////////////////////
// Collects and access a sequence of adjacent characters (skipping spaces)
class charpairs_t final
{
public:
charpairs_t(const std::string_view s)
{
assert( !s.empty() );
const std::size_t i_last = s.size()-1;
std::size_t i = 0;
chpairs.reserve(i_last);
while( i<i_last )
{
// Accepting also single-character words (the second is a space)
//if( !std::isspace(s[i]) ) chpairs.emplace_back( std::tolower(s[i]), std::tolower(s[i+1]) );
// Skipping single-character words (as in the original article)
if( std::isspace(s[i]) ) ; // Skip
else if( std::isspace(s[i+1]) ) ++i; // Skip also next
else chpairs.emplace_back( std::tolower(s[i]), std::tolower(s[i+1]) );
++i;
}
}
[[nodiscard]] auto size() const noexcept { return chpairs.size(); }
[[nodiscard]] auto cbegin() const noexcept { return chpairs.cbegin(); }
[[nodiscard]] auto cend() const noexcept { return chpairs.cend(); }
auto erase(std::vector<charpair_t>::const_iterator i) { return chpairs.erase(i); }
private:
std::vector<charpair_t> chpairs;
};
charpairs_t chpairs1{s1},
chpairs2{s2};
const double orig_avg_bigrams_count = 0.5 * static_cast<double>(chpairs1.size() + chpairs2.size());
std::size_t matching_bigrams_count = 0;
for( auto ib1=chpairs1.cbegin(); ib1!=chpairs1.cend(); ++ib1 )
{
for( auto ib2=chpairs2.cbegin(); ib2!=chpairs2.cend(); )
{
if( *ib1==*ib2 )
{
++matching_bigrams_count;
ib2 = chpairs2.erase(ib2); // Avoid to match the same character pair multiple times
break;
}
else ++ib2;
}
}
return static_cast<double>(matching_bigrams_count) / orig_avg_bigrams_count;
}

Resources