Matix Exponential Layer (Custom: Keras in R) - r

I'm trying to make a layer in Keras (R) which (matrix) exponential a layer of shape (d,d).
ie.: Input to layer is a dxd matrix and the output is a dxd matrix which is the (matrix) exponential of the input matrix.
What I've Implemented to Date:
Here's what I've done (its a degree 4 approximation because I'm also not sure how to get the tensorflow matrix exponential command working in Keras):
# Matrix Exponential
Matrix_Exp<- R6::R6Class("KerasLayer",
inherit = KerasLayer,
public = list(
call = function(x, mask = NULL) {
# Initialize Tenor-like Object -> Tensor Objects
ord0 = k_eye((k_shape(x)[1]))
ord1 = x
ord2 = (1/2)*k_dot(x,x) # note x is square so this works
ord3 = (1/6)*k_dot(x,ord2)
ord4 = (1/24)*k_dot(x,ord3)
ord0+ord1+ord2 +ord3+ord4
},
compute_output_shape = function(input_shape) {
c(d,d)
}
)
)
# Create layer wrapper function
layer_Matrix_Exp <- function(object) {
create_layer(Matrix_Exp, object)
}
I'm plugging a model with this summary into the custom layer:
Model: "sequential_32"
_________________________________________________________________________________________________________________________________________________________________
Layer (type) Output Shape Param #
=================================================================================================================================================================
dense_63 (Dense) (None, 100) 400
_________________________________________________________________________________________________________________________________________________________________
dense_64 (Dense) (None, 4) 404
_________________________________________________________________________________________________________________________________________________________________
reshape_10 (Reshape) (None, 2, 2) 0
=================================================================================================================================================================
Total params: 804
Trainable params: 804
Non-trainable params: 0
_________________________________________________________________________________________________________________________________________________________________
Problem/Error:
But I run into this error when passing layers_NE %>% layer_Matrix_Exp
WARNING:tensorflow:Entity <function wrap_fn.<locals>.fn at 0x7fbdd0cf2b90> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Evaluation error: object 'size' not found.
Error in py_call_impl(callable, dots$args, dots$keywords) :
RuntimeError: in converted code:
/scratch/users/BIM/R/x86_64-redhat-linux-gnu-library/3.6/keras/python/kerastools/layer.py:30 call *
return self.r_call(inputs, mask)
<string>:4 fn
/scratch/users/BIM/R/x86_64-redhat-linux-gnu-library/3.6/reticulate/python/rpytools/call.py:21 python_function
raise RuntimeError(res[kErrorKey])
RuntimeError: Evaluation error: object 'size' not found.
Note:
The problem is coming from the identity part but I don't know how to fix this.
Question:
How to fix error.
How to replace the order 4 (manual) approximation to the matrix exponential with the keras equivalent to the tensorflow matrix exponential command.
Thanks in advance.

Related

Yolov5 Convert to ONNX

I am trying to convert Yolov5 that takes as input dynamic image shapes into onnx.
import torch
from app import onnx_tools
# This is an example of usage of onnx converter.
yolo5_layout = '/home/eirini/Downloads/best.pt'
model = torch.hub.load("ultralytics/yolov5", 'custom', path=yolo5_layout, source='local')
model.eval()
# Example case
dummy_input = torch.rand((1, 3, 224, 224))
# Passing a dictionary where you define that batch size dimension, width and height are dynamic
dynamic_axes_dict = {"actual_input": {0: "bs",
2: "img_x",
3: "img_y"},
"output": {0: "bs",
}}
# In this example, we told PyTorch to set the axes at indices 0, 2 and 3 of “actual_input” to be dynamic
# and to set the 0 index of “output” to be dynamic – where a dynamic shape is represented as an arbitrary
# string rather than a numerical value (e.g., `img_x` and `img_y` instead of 224 and 224).
torch.onnx.export(model= model,
args= dummy_input,
f = "mytest.onnx",
export_params= True,
verbose= False,
input_names=["actual_input"],
output_names=["output"],
opset_version=14,
dynamic_axes=dynamic_axes_dict)
The above code produces an onnx model. Then I try to load this model by passing a random example.
import numpy as np
import onnxruntime as ort
ort_session = ort.InferenceSession("mytest.onnx")
outputs = ort_session.run(
None,
{"actual_input": np.random.randn(10, 3, 960, 1200).astype(np.float32)},
)
print(outputs[0])
But I get the following error:
onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Non-zero status code returned while running Concat node. Name:'/model/model/model.12/Concat' Status Message: concat.cc:159 PrepareForCompute Non concat axis dimensions must match: Axis 3 has mismatched dimensions of 75 and 76`
It seems like I accepts 224,224 but the purpose of dynamic axes was to handle variant shapes

Error when implementing RBF kernel bandwidth differentiation in Pytorch

I'm implementing an RBF network by using some beginer examples from Pytorch Website. I have a problem when implementing the kernel bandwidth differentiation for the network. Also, Iwould like to know whether my attempt ti implement the idea is fine. This is a code sample to reproduce the issue. Thanks
# -*- coding: utf-8 -*-
import torch
from torch.autograd import Variable
def kernel_product(x,y, mode = "gaussian", s = 1.):
x_i = x.unsqueeze(1)
y_j = y.unsqueeze(0)
xmy = ((x_i-y_j)**2).sum(2)
if mode == "gaussian" : K = torch.exp( - xmy/s**2) )
elif mode == "laplace" : K = torch.exp( - torch.sqrt(xmy + (s**2)))
elif mode == "energy" : K = torch.pow( xmy + (s**2), -.25 )
return torch.t(K)
class MyReLU(torch.autograd.Function):
"""
We can implement our own custom autograd Functions by subclassing
torch.autograd.Function and implementing the forward and backward passes
which operate on Tensors.
"""
#staticmethod
def forward(ctx, input):
"""
In the forward pass we receive a Tensor containing the input and return
a Tensor containing the output. ctx is a context object that can be used
to stash information for backward computation. You can cache arbitrary
objects for use in the backward pass using the ctx.save_for_backward method.
"""
ctx.save_for_backward(input)
return input.clamp(min=0)
#staticmethod
def backward(ctx, grad_output):
"""
In the backward pass we receive a Tensor containing the gradient of the loss
with respect to the output, and we need to compute the gradient of the loss
with respect to the input.
"""
input, = ctx.saved_tensors
grad_input = grad_output.clone()
grad_input[input < 0] = 0
return grad_input
dtype = torch.cuda.FloatTensor
N, D_in, H, D_out = 64, 1000, 100, 10
# Create random Tensors to hold input and outputs, and wrap them in Variables.
x = Variable(torch.randn(N, D_in).type(dtype), requires_grad=False)
y = Variable(torch.randn(N, D_out).type(dtype), requires_grad=False)
# Create random Tensors for weights, and wrap them in Variables.
w1 = Variable(torch.randn(H, D_in).type(dtype), requires_grad=True)
w2 = Variable(torch.randn(H, D_out).type(dtype), requires_grad=True)
# I've created this scalar variable (the kernel bandwidth)
s = Variable(torch.randn(1).type(dtype), requires_grad=True)
learning_rate = 1e-6
for t in range(500):
# To apply our Function, we use Function.apply method. We alias this as 'relu'.
relu = MyReLU.apply
# Forward pass: compute predicted y using operations on Variables; we compute
# ReLU using our custom autograd operation.
# y_pred = relu(x.mm(w1)).mm(w2)
y_pred = relu(kernel_product(w1, x, s)).mm(w2)
# Compute and print loss
loss = (y_pred - y).pow(2).sum()
print(t, loss.data[0])
# Use autograd to compute the backward pass.
loss.backward()
# Update weights using gradient descent
w1.data -= learning_rate * w1.grad.data
w2.data -= learning_rate * w2.grad.data
# Manually zero the gradients after updating weights
w1.grad.data.zero_()
w2.grad.data.zero_()
However I get this error, which dissapears when I simply use a fixed scalar in the default input parameter of kernel_product():
RuntimeError: eq() received an invalid combination of arguments - got (str), but expected one of:
* (float other)
didn't match because some of the arguments have invalid types: (str)
* (Variable other)
didn't match because some of the arguments have invalid types: (str)
Well, you are calling kernel_product(w1, x, s) where w1, x and s are torch Variable while the definition of the function is: kernel_product(x,y, mode = "gaussian", s = 1.). Seems like s should be a string specifying the mode.

Error in running a Python code from R with the package rPithon

I would like to run this Python code from R:
>>> import nlmpy
>>> nlm = nlmpy.mpd(nRow=50, nCol=50, h=0.75)
>>> nlmpy.exportASCIIGrid("raster.asc", nlm)
Nlmpy is a Python package to build neutral landscape models. The example comes from the website
To run this Python code from R, I 'm trying to use the package rPithon. However, I obtain this error message:
if (pithon.available())
{
nRow <- 50
nCol <- 50
h <- 0.75
# this file contains the definition of function concat
pithon.load("C:/Users/Anaconda2/Lib/site-packages/nlmpy/nlmpy.py")
pithon.call( "mpd", nRow, nCol, h)
} else {
print("Unable to execute python")
}
Error in pithon.get("_r_call_return", instance.name = instname) :
Couldn't retrieve variable: Traceback (most recent call last):
File "C:/Users/Documents/R/win-library/3.3/rPithon/pythonwrapperscript.py", line 110, in <module>
reallyReallyLongAndUnnecessaryPrefix.data = json.dumps([eval(reallyReallyLongAndUnnecessaryPrefix.argData)])
File "C:\Users\ANACON~1\lib\json\__init__.py", line 244, in dumps
return _default_encoder.encode(obj)
File "C:\Users\ANACON~1\lib\json\encoder.py", line 207, in encode
chunks = self.iterencode(o, _one_shot=True)
File "C:\Users\ANACON~1\lib\json\encoder.py", line 270, in iterencode
return _iterencode(o, 0)
File "C:\Users\ANACON~1\lib\json\encoder.py", line 184, in default
raise TypeError(repr(o) + " is not JSON serializable")
TypeError: array([[ 0.36534654, 0.31962481, 0.44229946, ..., 0.11513079,
0.07156331, 0.00286971], [ 0.41534291, 0.41333479, 0.48118995, ..., 0.19203674,
0.04192771, 0.03679473], [ 0.5188
Is this error caused by a syntax issue in my code ? I work with the Anaconda 4.2.0 platform for Windows which uses the Python 2.7 version.
I haven't used the nlmpy package hence, I am not sure what would be your expected output. However, this code successfully communicates between R and Python.
There are two files,
nlmpyInR.R
command ="python"
path2script="path_to_your_pythoncode/nlmpyInPython.py"
nRow <-50
nCol <-50
h <- 0.75
# Build up args in a vector
args = c(nRow, nCol, h)
# Add path to script as first arg
allArgs = c(path2script, args)
Routput = system2(command, args=allArgs, stdout=TRUE)
#The command would be python nlmpyInPython.py 50 50 0.75
print(paste("The Output is:\n", Routput))
nlmpyInPython.py
import sys
import nlmpy
#Getting the arguments from the command line call
nRow = sys.argv[1]
nCol = sys.argv[2]
h = sys.argv[3]
nlm = nlmpy.mpd(nRow, nCol, h)
pyhtonOutput = nlmpy.exportASCIIGrid("raster.asc", nlm)
#Whatever you print will get stored in the R's output variable.
print pyhtonOutput
The cause of the error that you're getting is hinted at by the
"is not JSON serializable" line. Your R code calls the mpd
function with certain arguments, and that function itself will
execute correctly. The rPithon library will then try to send the
return value of the function back to R, and to do this it will try
to create a JSON object
that describes the return value.
This works well for integers, floating point values, arrays, etc,
but not every kind of Python object can be converted to such a
JSON representation. And because rPithon can't convert the return value
of mpd this way, an error is generated.
You can still use rPithon to call the mpd function though. The following
code creates a new Python function that performs two steps: first
it calls the mpd function with the specified parameters, and then it
exports the result to a file, of which the filename is also an argument.
Using rPithon, the new function is then called from R. Because myFunction doesn't return anything, representing the return value in JSON format will not be a problem.
library("rPithon")
pythonCode = paste("import nlmpy.nlmpy as nlmpy",
"",
"def myFunction(nRow, nCol, h, fileName):",
" nlm = nlmpy.mpd(nRow, nCol, h)",
" nlmpy.exportASCIIGrid(fileName, nlm)",
sep = "\n")
pithon.exec(pythonCode)
nRow <- 50
nCol <- 50
h <- 0.75
pithon.call("myFunction", nRow, nCol, h, "outputraster.asc")
Here, the Python code defined as an R string, and executed using
pithon.exec. You could also put that Python code in a separate file
and use pithon.load to process the code so that the myFunction
function is known.

Resetting default graph does not remove variables

I am looking for a way to quickly change a graph within an interactive session in Jupyter in order to test different structures. Initially I wanted to simple delete existing variables and recreate them with a different initializer. This does not seem to be possible [1].
I then found [2] and am now attempting to simply discard and recreate the default graph. But this does not seem to work. This is what I do:
a. Start a session
import tensorflow as tf
import math
sess = tf.InteractiveSession()
b. Create a variable in the default graph
IMAGE_PIXELS = 32 * 32
HIDDEN1 = 200
BATCH_SIZE = 100
NUM_POINTS = 30
images_placeholder = tf.placeholder(tf.float32, shape=(BATCH_SIZE, IMAGE_PIXELS))
points_placeholder = tf.placeholder(tf.float32, shape=(BATCH_SIZE, NUM_POINTS))
# Hidden 1
with tf.name_scope('hidden1'):
weights_init = tf.truncated_normal([IMAGE_PIXELS, HIDDEN1], stddev=1.0 / math.sqrt(float(IMAGE_PIXELS)))
weights = tf.Variable(weights_init, name='weights')
biases_init = tf.zeros([HIDDEN1])
biases = tf.Variable(biases_init, name='biases')
hidden1 = tf.nn.relu(tf.matmul(images_placeholder, weights) + biases)
c. Use the variable
# Add the variable initializer Op.
init = tf.initialize_all_variables()
# Run the Op to initialize the variables.
sess.run(init)
d. Reset the graph
tf.reset_default_graph()
e. Recreate the variable
with tf.name_scope('hidden1'):
weights = tf.get_variable(name='weights', shape=[IMAGE_PIXELS, HIDDEN1],
initializer=tf.contrib.layers.xavier_initializer())
biases_init = tf.zeros([HIDDEN1])
biases = tf.Variable(biases_init, name='biases')
hidden1 = tf.nn.relu(tf.matmul(images_placeholder, weights) + biases)
However, I get an exception (see below). So my question is: is it possible to reset/remove the graph and recreate it as before? If so, how?
Appreciate any pointers.
TIA,
Refs
Change initializer of Variable in Tensorflow
Remove nodes from graph or reset entire default graph
Exception
ValueError Traceback (most recent call last)
<ipython-input-5-e98a82c45473> in <module>()
5 biases_init = tf.zeros([HIDDEN1])
6 biases = tf.Variable(biases_init, name='biases')
----> 7 hidden1 = tf.nn.relu(tf.matmul(images_placeholder, weights) + biases)
8
/home/hmf/my_py3/lib/python3.4/site-packages/tensorflow/python/ops/math_ops.py in matmul(a, b, transpose_a, transpose_b, a_is_sparse, b_is_sparse, name)
1323 A `Tensor` of the same type as `a`.
1324 """
-> 1325 with ops.op_scope([a, b], name, "MatMul") as name:
1326 a = ops.convert_to_tensor(a, name="a")
1327 b = ops.convert_to_tensor(b, name="b")
/usr/lib/python3.4/contextlib.py in __enter__(self)
57 def __enter__(self):
58 try:
---> 59 return next(self.gen)
60 except StopIteration:
61 raise RuntimeError("generator didn't yield") from None
/home/hmf/my_py3/lib/python3.4/site-packages/tensorflow/python/framework/ops.py in op_scope(values, name, default_name)
4014 ValueError: if neither `name` nor `default_name` is provided.
4015 """
-> 4016 g = _get_graph_from_inputs(values)
4017 n = default_name if name is None else name
4018 if n is None:
/home/hmf/my_py3/lib/python3.4/site-packages/tensorflow/python/framework/ops.py in _get_graph_from_inputs(op_input_list, graph)
3812 graph = graph_element.graph
3813 elif original_graph_element is not None:
-> 3814 _assert_same_graph(original_graph_element, graph_element)
3815 elif graph_element.graph is not graph:
3816 raise ValueError(
/home/hmf/my_py3/lib/python3.4/site-packages/tensorflow/python/framework/ops.py in _assert_same_graph(original_item, item)
3757 if original_item.graph is not item.graph:
3758 raise ValueError(
-> 3759 "%s must be from the same graph as %s." % (item, original_item))
3760
3761
ValueError: Tensor("weights:0", shape=(1024, 200), dtype=float32_ref) must be from the same graph as Tensor("Placeholder:0", shape=(100, 1024), dtype=float32).`
When you reset the default graph, you do not remove the previous Tensors created. When calling tf.reset_default_graph(), a new graph is created and set to default.
Here is an example to illustrate:
x = tf.constant(1)
print tf.get_default_graph() == x.graph # prints True
tf.reset_default_graph()
print tf.get_default_graph() == x.graph # prints False
The error you had indicates that two tensors must be from the same graph, which means you are still using some tensors from the previous graph AND from the current default graph.
The easy fix is to create again the two placeholders images_placeholder and points_placeholder

Tensorflow : how to insert custom input to existing graph?

I have downloaded a tensorflow GraphDef that implements a VGG16 ConvNet, which I use doing this :
Pl['images'] = tf.placeholder(tf.float32,
[None, 448, 448, 3],
name="images") #batch x width x height x channels
with open("tensorflow-vgg16/vgg16.tfmodel", mode='rb') as f:
fileContent = f.read()
graph_def = tf.GraphDef()
graph_def.ParseFromString(fileContent)
tf.import_graph_def(graph_def, input_map={"images": Pl['images']})
Besides, I have image features that are homogeneous to the output of the "import/pool5/".
How can I tell my graph that don't want to use his input "images", but the tensor "import/pool5/" as input ?
Thank's !
EDIT
OK I realize I haven't been very clear. Here is the situation:
I am trying to use this implementation of ROI pooling, using a pre-trained VGG16, which I have in the GraphDef format. So here is what I do:
First of all, I load the model:
tf.reset_default_graph()
with open("tensorflow-vgg16/vgg16.tfmodel",
mode='rb') as f:
fileContent = f.read()
graph_def = tf.GraphDef()
graph_def.ParseFromString(fileContent)
graph = tf.get_default_graph()
Then, I create my placeholders
images = tf.placeholder(tf.float32,
[None, 448, 448, 3],
name="images") #batch x width x height x channels
boxes = tf.placeholder(tf.float32,
[None,5], # 5 = [batch_id,x1,y1,x2,y2]
name = "boxes")
And I define the output of the first part of the graph to be conv5_3/Relu
tf.import_graph_def(graph_def,
input_map={'images':images})
out_tensor = graph.get_tensor_by_name("import/conv5_3/Relu:0")
So, out_tensor is of shape [None,14,14,512]
Then, I do the ROI pooling:
[out_pool,argmax] = module.roi_pool(out_tensor,
boxes,
7,7,1.0/1)
With out_pool.shape = N_Boxes_in_batch x 7 x 7 x 512, which is homogeneous to pool5. I would then like to feed out_pool as an input to the op that comes just after pool5, so it would look like
tf.import_graph_def(graph.as_graph_def(),
input_map={'import/pool5':out_pool})
But it doesn't work, I have this error:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-89-527398d7344b> in <module>()
5
6 tf.import_graph_def(graph.as_graph_def(),
----> 7 input_map={'import/pool5':out_pool})
8
9 final_out = graph.get_tensor_by_name("import/Relu_1:0")
/usr/local/lib/python3.4/dist-packages/tensorflow/python/framework/importer.py in import_graph_def(graph_def, input_map, return_elements, name, op_dict)
333 # NOTE(mrry): If the graph contains a cycle, the full shape information
334 # may not be available for this op's inputs.
--> 335 ops.set_shapes_for_outputs(op)
336
337 # Apply device functions for this op.
/usr/local/lib/python3.4/dist-packages/tensorflow/python/framework/ops.py in set_shapes_for_outputs(op)
1610 raise RuntimeError("No shape function registered for standard op: %s"
1611 % op.type)
-> 1612 shapes = shape_func(op)
1613 if len(op.outputs) != len(shapes):
1614 raise RuntimeError(
/home/hbenyounes/vqa/roi_pooling_op_grad.py in _roi_pool_shape(op)
13 channels = dims_data[3]
14 print(op.inputs[1].name, op.inputs[1].get_shape())
---> 15 dims_rois = op.inputs[1].get_shape().as_list()
16 num_rois = dims_rois[0]
17
/usr/local/lib/python3.4/dist-packages/tensorflow/python/framework/tensor_shape.py in as_list(self)
745 A list of integers or None for each dimension.
746 """
--> 747 return [dim.value for dim in self._dims]
748
749 def as_proto(self):
TypeError: 'NoneType' object is not iterable
Any clue ?
It is usually very convenient to use tf.train.export_meta_graph to store the whole MetaGraph. Then, upon restoring you can use tf.train.import_meta_graph, because it turns out that it passes all additional arguments to the underlying import_scoped_meta_graph which has the input_map argument and utilizes it when it gets to it's own invocation of import_graph_def.
It is not documented, and took me waaaay toooo much time to find it, but it works!
What I would do is something along those lines:
-First retrieve the names of the tensors representing the weights and biases of the 3 fully connected layers coming after pool5 in VGG16.
To do that I would inspect [n.name for n in graph.as_graph_def().node].
(They probably look something like import/locali/weight:0, import/locali/bias:0, etc.)
-Put them in a python list:
weights_names=["import/local1/weight:0" ,"import/local2/weight:0" ,"import/local3/weight:0"]
biases_names=["import/local1/bias:0" ,"import/local2/bias:0" ,"import/local3/bias:0"]
-Define a function that look something like:
def pool5_tofcX(input_tensor, layer_number=3):
flatten=tf.reshape(input_tensor,(-1,7*7*512))
tmp=flatten
for i in xrange(layer_number):
tmp=tf.matmul(tmp, graph.get_tensor_by_name(weights_name[i]))
tmp=tf.nn.bias_add(tmp, graph.get_tensor_by_name(biases_name[i]))
tmp=tf.nn.relu(tmp)
return tmp
Then define the tensor using the function:
wanted_output=pool5_tofcX(out_pool)
Then you are done !
Jonan Georgiev provided an excellent answer here. The same approach was also described with little fanfare at the end of this git issue: https://github.com/tensorflow/tensorflow/issues/3389
Below is a copy/paste runnable example of using this approach to switch out a placeholder for a tf.data.Dataset get_next tensor.
import tensorflow as tf
my_placeholder = tf.placeholder(dtype=tf.float32, shape=1, name='my_placeholder')
my_op = tf.square(my_placeholder, name='my_op')
# Save the graph to memory
graph_def = tf.get_default_graph().as_graph_def()
print('----- my_op before any remapping -----')
print([n for n in graph_def.node if n.name == 'my_op'])
tf.reset_default_graph()
ds = tf.data.Dataset.from_tensors(1.0)
next_tensor = tf.data.make_one_shot_iterator(ds).get_next(name='my_next_tensor')
# Restore the graph with a custom input mapping
tf.graph_util.import_graph_def(graph_def, input_map={'my_placeholder': next_tensor}, name='')
print('----- my_op after remapping -----')
print([n for n in tf.get_default_graph().as_graph_def().node if n.name == 'my_op'])
Output, where we can clearly see that the input to the square operation has changed.
----- my_op before any remapping -----
[name: "my_op"
op: "Square"
input: "my_placeholder"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
]
----- my_op after remapping -----
[name: "my_op"
op: "Square"
input: "my_next_tensor"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
]

Resources