I have census data of Male and Female populations organizaed by age group:
library(tidyverse)
url <- "https://www2.census.gov/programs-surveys/popest/datasets/2010-2018/counties/asrh/cc-est2018-alldata-54.csv"
if (!file.exists("./datafiles/cc-est2018-alldata-54.csv"))
download.file(url, destfile = "./datafiles/cc-est2018-alldata-54.csv", mode = "wb")
popSample <- read.csv("./datafiles/cc-est2018-alldata-54.csv") %>%
filter(AGEGRP != 0 & YEAR == 1) %>%
select("STNAME", "CTYNAME", "AGEGRP", "TOT_POP", "TOT_MALE", "TOT_FEMALE")
popSample$AGEGRP <- as.factor(popSample$AGEGRP)
I then plot the Male and Female population relationships, faceted by age group (1-18, which is currently treated as a int
g <- ggplot(popSample, aes(x=TOT_MALE, y=TOT_FEMALE)) +
geom_point(alpha = 0.5, colour="darkblue") +
scale_x_log10() +
scale_y_log10() +
facet_wrap(~AGEGRP) +
stat_smooth(method = "lm", col = "darkred", size=.75) +
labs(title = "F vs. M Population across all Age Groups", x = "Total Male (log10)", y = "Total Female (log10)") +
theme_light()
g
Which results in this plot: https://share.getcloudapp.com/v1ur6O4e
The problem: I am trying to convert the column AGEGRP from ‘int’ to ‘factor’, and change the factors labels from “1”, “2”, “3”, … “18” to "AgeGroup1", "AgeGroup2", "AgeGroup3", … "AgeGroup18"
When I try this code, my AGEGRP column's observation values are all replaced with NAs:popSample$AGEGRP <- factor(popSample$AGEGRP, levels = c("0 to 4", "5 to 9", "10 to 14", "15 to 19", "20 to 24", "25 to 29", "30 to 34", "35 to 39", "40 to 44", "45 to 49", "50 to 54", "55 to 59", "60 to 64", "65 to 69", "70 to 74", "75 to 79", "80 to 84", "85+"))
https://share.getcloudapp.com/qGuo1O4y
Thank you for your help,
popSample$AGEGRP <- factor( popSample$AGEGRP, levels = c("0 to 4", "5 to 9", "10 to 14", "15 to 19", "20 to 24", "25 to 29", "30 to 34", "35 to 39", "40 to 44", "45 to 49", "50 to 54", "55 to 59", "60 to 64", "65 to 69", "70 to 74", "75 to 79", "80 to 84", "85+"))
Need to add all levels though.
Alternatively
levels(popSample$AGEGRP) <- c("0 to 4", "5 to 9", "10 to 14", "15 to 19", "20 to 24", "25 to 29", "30 to 34", "35 to 39", "40 to 44", "45 to 49", "50 to 54", "55 to 59", "60 to 64", "65 to 69", "70 to 74", "75 to 79", "80 to 84", "85+")
should work as well.
Read in the csv again:
library(tidyverse)
url <- "https://www2.census.gov/programs-surveys/popest/datasets/2010-2018/counties/asrh/cc-est2018-alldata-54.csv"
popSample <- read.csv(url) %>%
filter(AGEGRP != 0 & YEAR == 1) %>%
select("STNAME", "CTYNAME", "AGEGRP", "TOT_POP", "TOT_MALE", "TOT_FEMALE")
If you just want to add a prefix "AgeGroup" to your facet labels, you do:
ggplot(popSample, aes(x=TOT_MALE, y=TOT_FEMALE)) +
geom_point(alpha = 0.5, colour="darkblue") +
scale_x_log10() +
scale_y_log10() +
facet_wrap(~AGEGRP,labeller=labeller(AGEGRP = function(i)paste0("AgeGroup",i))) +
stat_smooth(method = "lm", col = "darkred", size=.75) +
labs(title = "F vs. M Population across all Age Groups",
x = "Total Male (log10)", y = "Total Female (log10)") +
theme_light()
If there is a need for new factors, then you need to refactor (like #Annet's answer below):
lvls = c("0 to 4", "5 to 9", "10 to 14", "15 to 19",
"20 to 24", "25 to 29", "30 to 34", "35 to 39",
"40 to 44", "45 to 49", "50 to 54", "55 to 59",
"60 to 64", "65 to 69", "70 to 74", "75 to 79", "80 to 84", "85+")
#because you have factorize it
# if you can read the csv again, skip the factorization
popSample$AGEGRP = factor(lvls[popSample$AGEGRP],levels=lvls)
Then plot:
ggplot(popSample, aes(x=TOT_MALE, y=TOT_FEMALE)) +
geom_point(alpha = 0.5, colour="darkblue") +
scale_x_log10() +
scale_y_log10() +
facet_wrap(~AGEGRP) +
stat_smooth(method = "lm", col = "darkred", size=.75) +
labs(title = "F vs. M Population across all Age Groups",
x = "Total Male (log10)", y = "Total Female (log10)") +
theme_light()
To change all the factor labels with one function, you can use forcats::fct_relabel (forcats ships as part of the tidyverse, which you've already got loaded). The changed factor labels will carry over to the plot facets and the order stays the same.
First few entries:
# before relabelling
popSample$AGEGRP[1:4]
#> [1] 1 2 3 4
#> Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# after relabelling
forcats::fct_relabel(popSample$AGEGRP, ~paste0("AgeGroup", .))[1:4]
#> [1] AgeGroup1 AgeGroup2 AgeGroup3 AgeGroup4
#> 18 Levels: AgeGroup1 AgeGroup2 AgeGroup3 AgeGroup4 AgeGroup5 ... AgeGroup18
Or with base R, reassign the levels:
levels(popSample$AGEGRP) <- paste0("AgeGroup", levels(popSample$AGEGRP))
popSample$AGEGRP[1:4]
#> [1] AgeGroup1 AgeGroup2 AgeGroup3 AgeGroup4
#> 18 Levels: AgeGroup1 AgeGroup2 AgeGroup3 AgeGroup4 AgeGroup5 ... AgeGroup18
Related
Is it possible to create a density plot using this population data? Age_group is a categorical variable. Does it have to be numeric to create a density plot?
library(tidyverse)
df <- structure(list(year = c(1971, 1971, 1971, 1971, 1971, 1971, 1971,
1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971, 1971
), age_group = structure(2:19, .Label = c("All ages", "0 to 4 years",
"5 to 9 years", "10 to 14 years", "15 to 19 years", "20 to 24 years",
"25 to 29 years", "30 to 34 years", "35 to 39 years", "40 to 44 years",
"45 to 49 years", "50 to 54 years", "55 to 59 years", "60 to 64 years",
"65 to 69 years", "70 to 74 years", "75 to 79 years", "80 to 84 years",
"85 to 89 years", "90 to 94 years", "95 to 99 years", "100 years and over",
"Median age"), class = "factor"), population = c(1836149, 2267794,
2329323, 2164092, 1976914, 1643264, 1342744, 1286302, 1284154,
1252545, 1065664, 964984, 785693, 626521, 462065, 328583, 206174,
101117)), class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA,
-18L))
You can convert the text to numeric ranges, e.g.:
library(tidyverse) # if not already loaded
df %>%
# These extract the 1st and 3rd "word" of age_group
# Uses stringr::word(), loaded as part of tidyverse
mutate(age_min = word(age_group, 1) %>% as.numeric,
age_max = word(age_group, 3) %>% as.numeric) %>%
head
# A tibble: 6 x 5
year age_group population age_min age_max
<dbl> <fct> <dbl> <dbl> <dbl>
1 1971 0 to 4 years 1836149 0 4
2 1971 5 to 9 years 2267794 5 9
3 1971 10 to 14 years 2329323 10 14
4 1971 15 to 19 years 2164092 15 19
5 1971 20 to 24 years 1976914 20 24
6 1971 25 to 29 years 1643264 25 29
From that, you could display in ggplot a bunch of ways:
... %>%
ggplot(aes(age_numeric, population)) +
geom_step()
... %>%
ggplot(aes(age_numeric, population)) +
geom_col()
... %>%
ggplot(aes(age_numeric, y = population)) +
geom_density(stat = "identity")
I want to convert the column $Annual.income saved as character in my dataframe to numeric. The code I use gives NA values although the new class is numeric.
I have looked for answer on forums but none of the questions answer my problem:
I do not have NAs in the column Annual.income, there are only numbers. All the data is formated so as to have "." instead of "," for decimals .
Here is the code I use.
data$Annual.income <- as.numeric(as.character(data$Annual.income))
******************************UPDATE********************************************
Here is the dput of the column Annual.income.
dput(data$Annual.income)
c("34 500", "51 400", "43 200", "40 100", "36 400", "39 100",
"41 900", "48 700", "45 500", "45 500", "49 100", "35 100", "34 500",
"29 200", "32 200", "36 300", "35 800", "31 500", "33 000", "34 600",
"32 100", "32 000", "31 400", "33 200", "42 600", "29 200", "34 600",
"29 200", "34 100", "30 600", "34 034", "33 600", "31 000", "35 500",
"30 600", "30 600", "30 600", "30 800", "34 034", "33 200", "32 900"
)
The following still gives me NAs.
data$Annual.income <- as.numeric(data$Annual.income))
I imported the data using the Import dataset command of the Environement and unchecked stringAsfactor, checked heading = YES. Seperator = Semicolon , decimal = Period.
Thanks
...
The white space causes the problem here, simply remove all white space characters with gsub(), e.g.
Annual.income <- c("34 500", "51 400", "43 200", "40 100", "36 400", "39 100",
"41 900", "48 700", "45 500", "45 500", "49 100", "35 100", "34 500",
"29 200", "32 200", "36 300", "35 800", "31 500", "33 000", "34 600",
"32 100", "32 000", "31 400", "33 200", "42 600", "29 200", "34 600",
"29 200", "34 100", "30 600", "34 034", "33 600", "31 000", "35 500",
"30 600", "30 600", "30 600", "30 800", "34 034", "33 200", "32 900"
)
as.numeric(gsub("\\s", "", Annual.income))
#> [1] 34500 51400 43200 40100 36400 39100 41900 48700 45500 45500 49100
#> [12] 35100 34500 29200 32200 36300 35800 31500 33000 34600 32100 32000
#> [23] 31400 33200 42600 29200 34600 29200 34100 30600 34034 33600 31000
#> [34] 35500 30600 30600 30600 30800 34034 33200 32900
Created on 2019-05-17 by the reprex package (v0.2.1)
I have problems with the output after I bin the a numerical vector.
I am trying to bin the length of stay, which was calculated beforehand with difftime function. It does not make sense to provide the whole code since this is only the background. Yet, when I bin, I do not get the right answer.
Here is the length of stay assigned it with los.
dput(los)
c(61.0416666666667, 61.0416666666667, 61.0416666666667, 2, 2, 3, 3)
Here are my breaks. I used na.rm inside as tried several methods. I passed na.rm with TRUE, FALSE and took it out of my breaks.
breaks <- c(0, 0.8, 0.16,
1.0, 1.8, 1.16,
2.0, 2.8, 2.16,
3.0, 3.8, 3.16,
4.0, 4.8, 4.16,
5.0, 5.8, 5.16,
6.0, 6.8, 6.16,
7.0, 14.0, 21.0, 28.0, max(los)) #, , na.rm = FALSE
Nevertheless, the next code tried
dt_los$losbinned <- cut(dt_los$LOS,
breaks = breaks,
labels = c("0hrs", "8hrs", "16hrs", "1 d",
"1 d 8hrs", "1 d 16hrs", "2 d",
"2 d 8hrs", "2 d 16hrs", "3 d",
"3 d 8hrs", "3 d 16hrs", "4 d",
"4 d 8hrs", "4 d 16hrs", "5 d",
"5 d 8hrs", "5 d 16hrs", "6 d",
"6 d 8hrs","6 d 16hrs", "7 - 14 d",
"14 - 21 d", "21 - 28 d", "> 28 d"),
right = FALSE)#
with different parameters passed for the 'right' gives me this:
when right = FALSE I do not get LOS for 61.04 binned for the category ">28 d". BBut do get the right bins for the other ones 2.00 and 3.00.
structure(list(IDcol = 101:107, Admissions = structure(c(1539160200,
1539160200, 1539160200, 1539154800, 1539154800, 1539154800, 1539154800
), class = c("POSIXct", "POSIXt"), tzone = "Europe/London"),
Discharges = structure(c(1544434200, 1544434200, 1544434200,
1539327600, 1539327600, 1539414000, 1539414000), class = c("POSIXct",
"POSIXt"), tzone = "Europe/London"), Admission_type = c("Elective",
"Emergency", "Emergency", "Elective", "Emergency", "Elective",
"Emergency"), LOS = c(61.0416666666667, 61.0416666666667,
61.0416666666667, 2, 2, 3, 3), Ward_code = c("DSN", "DSN",
"DNA", "NAS", "BAS", "BAS", "BAS"), Same_day_discharge = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), Spell_type = c("Elective",
"Emergency", "Emergency", "Elective", "Emergency", "Elective",
"Emergency"), Adm_period = c(TRUE, TRUE, TRUE, TRUE, TRUE,
TRUE, TRUE), losbinned = structure(c(NA, NA, NA, 7L, 7L,
10L, 10L), .Label = c("0hrs", "8hrs", "16hrs", "1 d", "1 d 8hrs",
"1 d 16hrs", "2 d", "2 d 8hrs", "2 d 16hrs", "3 d", "3 d 8hrs",
"3 d 16hrs", "4 d", "4 d 8hrs", "4 d 16hrs", "5 d", "5 d 8hrs",
"5 d 16hrs", "6 d", "6 d 8hrs", "6 d 16hrs", "7 - 14 d",
"14 - 21 d", "21 - 28 d", "> 28 d"), class = "factor")), row.names = c(NA,
-7L), class = c("tbl_df", "tbl", "data.frame"))
when I pass right = TRUE, the output for 61.04 is binning into ">28 d" which is the desired answer, yet, I do not get the right bins for 2.0 and 3.0, which are bbinned in 1 d 16hrs for 2.0 and 2 d 16 hrs for 3. And again, these shall be binned in 2, respectively 3.
structure(list(IDcol = 101:107, Admissions = structure(c(1539160200,
1539160200, 1539160200, 1539154800, 1539154800, 1539154800, 1539154800
), class = c("POSIXct", "POSIXt"), tzone = "Europe/London"),
Discharges = structure(c(1544434200, 1544434200, 1544434200,
1539327600, 1539327600, 1539414000, 1539414000), class = c("POSIXct",
"POSIXt"), tzone = "Europe/London"), Admission_type = c("Elective",
"Emergency", "Emergency", "Elective", "Emergency", "Elective",
"Emergency"), LOS = c(61.0416666666667, 61.0416666666667,
61.0416666666667, 2, 2, 3, 3), Ward_code = c("DSN", "DSN",
"DNA", "NAS", "BAS", "BAS", "BAS"), Same_day_discharge = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), Spell_type = c("Elective",
"Emergency", "Emergency", "Elective", "Emergency", "Elective",
"Emergency"), Adm_period = c(TRUE, TRUE, TRUE, TRUE, TRUE,
TRUE, TRUE), losbinned = structure(c(25L, 25L, 25L, 6L, 6L,
9L, 9L), .Label = c("0hrs", "8hrs", "16hrs", "1 d", "1 d 8hrs",
"1 d 16hrs", "2 d", "2 d 8hrs", "2 d 16hrs", "3 d", "3 d 8hrs",
"3 d 16hrs", "4 d", "4 d 8hrs", "4 d 16hrs", "5 d", "5 d 8hrs",
"5 d 16hrs", "6 d", "6 d 8hrs", "6 d 16hrs", "7 - 14 d",
"14 - 21 d", "21 - 28 d", "> 28 d"), class = "factor")), row.names = c(NA,
-7L), class = c("tbl_df", "tbl", "data.frame"))
The actual and expected results should the the right bins assigned for my length of stay. For 61.04 -> ">28d", for 2 -> "2 d", for 3 -> "3 d".
If this can be done with tidyverse that would be amazing. But respecting the bins I have assigned. However, I am aware this isn't done yet. Therefore, okay with the corrected code I have came up with, but corrected.
The cut function's bins are exclusive to inclusive.
From the cut function's help: The factor level labels are constructed as "(b1, b2]", "(b2, b3]" etc. for right = TRUE and as "[b1, b2)"
In order to include the lowest value (or highest value in this case), the include.lowest=TRUE option in required. This will make the first bin exclusive to exclusive, "[b1, b2]".
Try:
labels<-c("0hrs", "8hrs", "16hrs", "1 d",
"1 d 8hrs", "1 d 16hrs", "2 d",
"2 d 8hrs", "2 d 16hrs", "3 d",
"3 d 8hrs", "3 d 16hrs", "4 d",
"4 d 8hrs", "4 d 16hrs", "5 d",
"5 d 8hrs", "5 d 16hrs", "6 d",
"6 d 8hrs","6 d 16hrs", "7 - 14 d",
"14 - 21 d", "21 - 28 d", "> 28 d")
dt_los$losbinned <- cut(los, breaks=breaks, labels=labels, right=FALSE, include.lowest = TRUE)
I want to combine two dataframes T2 and T4 by variable "Industry" and the columns of each data set with one main heading. So in the final output table I want columns Industry, three columns of T2 under one column heading "Executive" and three other columns of T4 as sub-columns of one heading "management".
T2
Industry percentage_Yes percentage_No Total_responses
1 ALL 94 % 6 % 117
2 Banking/Financial Services 83 % 17 % 6
3 Chemicals 100 % 0 % 5
4 Consumer Goods 75 % 25 % 8
5 Energy 89 % 11 % 9
6 High Tech 100 % 0 % 8
7 Insurance/Reinsurance 100 % 0 % 14
8 Life Sciences 100 % 0 % 11
9 Logistics -- -- 3
10 Mining & Metals -- -- 1
11 Other Manufacturing 100 % 0 % 11
12 Other Non-Manufacturing -- -- 3
13 Retail & Wholesale 100 % 0 % 12
14 Services (Non-Financial) 88 % 12 % 24
15 Transportation Equipment -- -- 2
16 <NA> -- -- 0
T4
Industry percentage_Yes percentage_No Total_responses
1 ALL 96 % 4 % 121
2 Banking/Financial Services 86 % 14 % 7
3 Chemicals 100 % 0 % 5
4 Consumer Goods 100 % 0 % 8
5 Energy 100 % 0 % 9
6 High Tech 100 % 0 % 9
7 Insurance/Reinsurance 93 % 7 % 15
8 Life Sciences 91 % 9 % 11
9 Logistics -- -- 3
10 Mining & Metals -- -- 1
11 Other Manufacturing 100 % 0 % 12
12 Other Non-Manufacturing -- -- 3
13 Retail & Wholesale 100 % 0 % 12
14 Services (Non-Financial) 92 % 8 % 24
15 Transportation Equipment -- -- 2
16 <NA> -- -- 0
> dput(T2)
structure(list(Industry = c("ALL", "Banking/Financial Services",
"Chemicals", "Consumer Goods", "Energy", "High Tech", "Insurance/Reinsurance",
"Life Sciences", "Logistics", "Mining & Metals", "Other Manufacturing",
"Other Non-Manufacturing", "Retail & Wholesale", "Services (Non-Financial)",
"Transportation Equipment", NA), percentage_Yes = c("94 %", "83 %",
"100 %", "75 %", "89 %", "100 %", "100 %", "100 %", "--", "--",
"100 %", "--", "100 %", "88 %", "--", "--"), percentage_No = c("6 %",
"17 %", "0 %", "25 %", "11 %", "0 %", "0 %", "0 %", "--", "--",
"0 %", "--", "0 %", "12 %", "--", "--"), Total_responses = c(117,
6, 5, 8, 9, 8, 14, 11, 3, 1, 11, 3, 12, 24, 2, 0)), class = "data.frame", row.names = c(NA,
-16L), .Names = c("Industry", "percentage_Yes", "percentage_No",
"Total_responses"))
> dput(T4)
structure(list(Industry = c("ALL", "Banking/Financial Services",
"Chemicals", "Consumer Goods", "Energy", "High Tech", "Insurance/Reinsurance",
"Life Sciences", "Logistics", "Mining & Metals", "Other Manufacturing",
"Other Non-Manufacturing", "Retail & Wholesale", "Services (Non-Financial)",
"Transportation Equipment", NA), percentage_Yes = c("96 %", "86 %",
"100 %", "100 %", "100 %", "100 %", "93 %", "91 %", "--", "--",
"100 %", "--", "100 %", "92 %", "--", "--"), percentage_No = c("4 %",
"14 %", "0 %", "0 %", "0 %", "0 %", "7 %", "9 %", "--", "--",
"0 %", "--", "0 %", "8 %", "--", "--"), Total_responses = c(121,
7, 5, 8, 9, 9, 15, 11, 3, 1, 12, 3, 12, 24, 2, 0)), class = "data.frame", row.names = c(NA,
-16L), .Names = c("Industry", "percentage_Yes", "percentage_No",
"Total_responses"))
I have tried tabular but then m getting Industry column 2 times:
library("tables")
st<-rbind(data.frame(T2, Employee_Level = 'Exe', what = factor(rownames(T2), levels = rownames(T2)),
row.names= NULL, check.names = FALSE),
data.frame(T4,Employee_Level = 'Mgmt',what = factor(rownames(T4), levels = rownames(T4)),
row.names = NULL,check.names = FALSE))
mytable <- tabular(Heading()*what ~ Employee_Level*(`Industry`+`percentage_Yes`+`percentage_No`+`Total_responses`)*Heading()*(identity),data=st)
latex(mytable)
Here's one way using (my) huxtable package:
library(huxtable)
my_data <- cbind(T2, T4)[, c(1:4, 6:8)]
my_hux <- as_hux(my_data, add_colnames = TRUE)
my_hux <- insert_row(my_hux, rep("", 7))
my_hux[1, 2] <- "Executive"
my_hux[1, 5] <- "Management"
colspan(my_hux)[1, 2] <- 3
colspan(my_hux)[1, 5] <- 3
my_hux[2, 2:7] <- rep(c("% yes", "% no", "Total responses"), 2)
number_format(my_hux) <- 0
# This should look like what you want:
my_hux
This vector of date ranges is included in a dataframe of mine with class 'character'. The formats vary depending on whether the date range crosses into a different month:
dput(pollingdata$dates)
c("Nov. 1-7", "Nov. 1-7", "Oct. 24-Nov. 6", "Oct. 4-Nov. 6",
"Oct. 30-Nov. 6", "Oct. 25-31", "Oct. 7-27", "Oct. 21-Nov. 3",
"Oct. 20-24", "Jul. 19", "Oct. 29-Nov. 4", "Oct. 28-Nov. 3",
"Oct. 27-Nov. 2", "Oct. 20-28", "Sep. 30-Oct. 20", "Oct. 15-19",
"Oct. 26-Nov. 1", "Oct. 25-31", "Oct. 24-30", "Oct. 18-26",
"Oct. 10-14", "Oct. 4-9", "Sep. 23-Oct. 6", "Sep. 16-29", "Sep. 2-22",
"Oct. 21-Nov. 2", "Oct. 17-25", "Sep. 30-Oct. 13", "Sep. 27-Oct. 3",
"Sep. 21-26", "Sep. 14-20", "Aug. 26-Sep. 15", "Sep. 7-13",
"Aug. 19-Sep. 8", "Aug. 31-Sep. 6", "Aug. 12-Sep. 1", "Aug. 9-Sep. 1",
"Aug. 24-30", "Aug. 5-25", "Aug. 17-23", "Jul. 29-Aug. 18",
"Aug. 10-16", "Jan. 12")
I would like to convert this vector into two separate columns in my dataframe, 1. startdate and 2. enddate, for the beginning and end of the range. Both columns should be saved as class 'Date', this will make it easier for me to use the data in my project. Does anyone know an easy way to do this manipulation? I have been struggling with it.
Thanks in advance,
We can split the vector by - into a list, replace the elements that have only numbers at the end by pasteing the month substring, append NA for those having less than 2 elements using (length<-) and convert to data.frame (with do.call(rbind.data.frame)
lst <- lapply(strsplit(v1, "-"), function(x) {
i1 <- grepl("^[0-9]+", x[length(x)])
if(i1) {
x[length(x)] <- paste(substr(x[1], 1, 4), x[length(x)])
x} else x})
d1 <- do.call(rbind.data.frame, lapply(lst, `length<-`, max(lengths(lst))))
colnames(d1) <- c("Start_Date", "End_Date")
As per the OP's post, we need to convert to Date class, but Date class follows the format of %Y-%m-%d. In the vector, there is no year, not sure we can paste the current year and convert to Date class. If that is permissible, then
d1[] <- lapply(d1, function(x) as.Date(paste(x, 2017), "%b. %d %Y"))
head(d1)
# Start_Date End_Date
#1 2017-11-01 2017-11-07
#2 2017-11-01 2017-11-07
#3 2017-10-24 2017-11-06
#4 2017-10-04 2017-11-06
#5 2017-10-30 2017-11-06
#6 2017-10-25 2017-10-31
You may use library stringr function "str_split_fixed" to split the fields and then process the data. Map the library stringr and process as below:
library(stringr)
dat <- data.frame(date=c("Nov. 1-7", "Nov. 1-7", "Oct. 24-Nov. 6", "Oct. 4-Nov. 6",
"Oct. 30-Nov. 6", "Oct. 25-31", "Oct. 7-27", "Oct. 21-Nov. 3",
"Oct. 20-24", "Jul. 19", "Oct. 29-Nov. 4", "Oct. 28-Nov. 3",
"Oct. 27-Nov. 2", "Oct. 20-28", "Sep. 30-Oct. 20", "Oct. 15-19",
"Oct. 26-Nov. 1", "Oct. 25-31", "Oct. 24-30", "Oct. 18-26",
"Oct. 10-14", "Oct. 4-9", "Sep. 23-Oct. 6", "Sep. 16-29", "Sep. 2-22",
"Oct. 21-Nov. 2", "Oct. 17-25", "Sep. 30-Oct. 13", "Sep. 27-Oct. 3",
"Sep. 21-26", "Sep. 14-20", "Aug. 26-Sep. 15", "Sep. 7-13",
"Aug. 19-Sep. 8", "Aug. 31-Sep. 6", "Aug. 12-Sep. 1", "Aug. 9-Sep. 1",
"Aug. 24-30", "Aug. 5-25", "Aug. 17-23", "Jul. 29-Aug. 18",
"Aug. 10-16", "Jan. 12"))
Output processing:
#spliting with space and dash
dt <- data.frame(str_split_fixed(dat$date, "[-]|\\s",4))
names(dt) <- c("stdt1","stdt2","endt1","endt2")
##Removing dot(.) and replacing with ""
dt1 <- data.frame(sapply(dt,function(x)gsub("[.]","",x)))
dt1$stdt <- as.Date(paste0(dt1$stdt2,dt1$stdt1,"2016"),format="%d%b%Y")
dt1$endt <- ifelse(dt1$endt2=="",paste0(dt1$endt1,dt1$stdt1,"2016"),
paste0(dt1$endt2,dt1$endt1,"2016"))
dt1$endt <-as.Date(ifelse(nchar(dt1$endt)==7,paste0(dt1$stdt2,dt1$endt),dt1$endt),"%d%b%Y")
Assumptions:
1) No year provided , hence I have taken year as 2016.
2) On 10th row and 43rd row, there is no info on end date "day",hence I have assumed the same day as start date.
Answer:
> dt1
stdt1 stdt2 endt1 endt2 stdt endt
1 Nov 1 7 2016-11-01 2016-11-07
2 Nov 1 7 2016-11-01 2016-11-07
3 Oct 24 Nov 6 2016-10-24 2016-11-06
4 Oct 4 Nov 6 2016-10-04 2016-11-06
5 Oct 30 Nov 6 2016-10-30 2016-11-06
6 Oct 25 31 2016-10-25 2016-10-31
7 Oct 7 27 2016-10-07 2016-10-27
8 Oct 21 Nov 3 2016-10-21 2016-11-03
9 Oct 20 24 2016-10-20 2016-10-24
10 Jul 19 2016-07-19 2016-07-19