Related
Data:
ID
B
C
1
NA
x
2
x
NA
3
x
x
Results:
ID
Unified
1
C
2
B
3
B_C
I'm trying to combine colums B and C, using mutate and unify, but how would I scale up this function so that I can reuse this for multiple columns (think 100+), instead of having to write out the variables each time? Or is there a function that's already built in to do this?
My current solution is this:
library(tidyverse)
Data %>%
mutate(B = replace(B, B == 'x', 'B'), C = replace(C, C == 'x', 'C')) %>%
unite("Unified", B:C, na.rm = TRUE, remove= TRUE)
We may use across to loop over the column, replace the value that corresponds to 'x' with column name (cur_column())
library(dplyr)
library(tidyr)
Data %>%
mutate(across(B:C, ~ replace(., .== 'x', cur_column()))) %>%
unite(Unified, B:C, na.rm = TRUE, remove = TRUE)
-output
ID Unified
1 1 C
2 2 B
3 3 B_C
data
Data <- structure(list(ID = 1:3, B = c(NA, "x", "x"), C = c("x", NA,
"x")), class = "data.frame", row.names = c(NA, -3L))
Here are couple of options.
Using dplyr -
library(dplyr)
cols <- names(Data)[-1]
Data %>%
rowwise() %>%
mutate(Unified = paste0(cols[!is.na(c_across(B:C))], collapse = '_')) %>%
ungroup -> Data
Data
# ID B C Unified
# <int> <chr> <chr> <chr>
#1 1 NA x C
#2 2 x NA B
#3 3 x x B_C
Base R
Data$Unified <- apply(Data[cols], 1, function(x)
paste0(cols[!is.na(x)], collapse = '_'))
For example if I have this:
n = c(2, 3, 5)
s = c("aa", "bb", "cc")
b = c(TRUE, FALSE, TRUE)
df = data.frame(n, s, b)
n s b
1 2 aa TRUE
2 3 bb FALSE
3 5 cc TRUE
Then how do I combine the two columns n and s into a new column named x such that it looks like this:
n s b x
1 2 aa TRUE 2 aa
2 3 bb FALSE 3 bb
3 5 cc TRUE 5 cc
Use paste.
df$x <- paste(df$n,df$s)
df
# n s b x
# 1 2 aa TRUE 2 aa
# 2 3 bb FALSE 3 bb
# 3 5 cc TRUE 5 cc
For inserting a separator:
df$x <- paste(df$n, "-", df$s)
As already mentioned in comments by Uwe and UseR, a general solution in the tidyverse format would be to use the command unite:
library(tidyverse)
n = c(2, 3, 5)
s = c("aa", "bb", "cc")
b = c(TRUE, FALSE, TRUE)
df = data.frame(n, s, b) %>%
unite(x, c(n, s), sep = " ", remove = FALSE)
Using dplyr::mutate:
library(dplyr)
df <- mutate(df, x = paste(n, s))
df
> df
n s b x
1 2 aa TRUE 2 aa
2 3 bb FALSE 3 bb
3 5 cc TRUE 5 cc
Some examples with NAs and their removal using apply
n = c(2, NA, NA)
s = c("aa", "bb", NA)
b = c(TRUE, FALSE, NA)
c = c(2, 3, 5)
d = c("aa", NA, "cc")
e = c(TRUE, NA, TRUE)
df = data.frame(n, s, b, c, d, e)
paste_noNA <- function(x,sep=", ") {
gsub(", " ,sep, toString(x[!is.na(x) & x!="" & x!="NA"] ) ) }
sep=" "
df$x <- apply( df[ , c(1:6) ] , 1 , paste_noNA , sep=sep)
df
We can use paste0:
df$combField <- paste0(df$x, df$y)
If you do not want any padding space introduced in the concatenated field. This is more useful if you are planning to use the combined field as a unique id that represents combinations of two fields.
Instead of
paste (default spaces),
paste0 (force the inclusion of missing NA as character) or
unite (constrained to 2 columns and 1 separator),
I'd suggest an alternative as flexible as paste0 but more careful with NA: stringr::str_c
library(tidyverse)
# check the missing value!!
df <- tibble(
n = c(2, 2, 8),
s = c("aa", "aa", NA_character_),
b = c(TRUE, FALSE, TRUE)
)
df %>%
mutate(
paste = paste(n,"-",s,".",b),
paste0 = paste0(n,"-",s,".",b),
str_c = str_c(n,"-",s,".",b)
) %>%
# convert missing value to ""
mutate(
s_2=str_replace_na(s,replacement = "")
) %>%
mutate(
str_c_2 = str_c(n,"-",s_2,".",b)
)
#> # A tibble: 3 x 8
#> n s b paste paste0 str_c s_2 str_c_2
#> <dbl> <chr> <lgl> <chr> <chr> <chr> <chr> <chr>
#> 1 2 aa TRUE 2 - aa . TRUE 2-aa.TRUE 2-aa.TRUE "aa" 2-aa.TRUE
#> 2 2 aa FALSE 2 - aa . FALSE 2-aa.FALSE 2-aa.FALSE "aa" 2-aa.FALSE
#> 3 8 <NA> TRUE 8 - NA . TRUE 8-NA.TRUE <NA> "" 8-.TRUE
Created on 2020-04-10 by the reprex package (v0.3.0)
extra note from str_c documentation
Like most other R functions, missing values are "infectious": whenever a missing value is combined with another string the result will always be missing. Use str_replace_na() to convert NA to "NA"
There are other great answers, but in the case where you don't know the column names or the number of columns you want to concatenate beforehand, the following is useful.
df = data.frame(x = letters[1:5], y = letters[6:10], z = letters[11:15])
colNames = colnames(df) # could be any number of column names here
df$newColumn = apply(df[, colNames, drop = F], MARGIN = 1, FUN = function(i) paste(i, collapse = ""))
I'd like to also propose a method for concatenating a large/unknown number of columns. The solution proposed by Ben Ernest can be pretty slow on large datasets.
Below is my proposed solution:
# setup data.frame - Making it large for the time benchmarking
n = rep(c(2, 3, 5), 1000000)
s = rep(c("aa", "bb", "cc"), 1000000)
b = rep(c(TRUE, FALSE, TRUE), 1000000)
df = data.frame(n, s, b)
# The proposed solution:
colNames = c("n", "s") # could be any number of column names here
df$x <- do.call(paste0, c(df[,colNames], sep=" "))
# running system.time on this yields:
# user system elapsed
# 1.861 0.005 1.865
# compare with alternative method:
df$x <- apply(df[, colNames, drop = F], MARGIN = 1,
FUN = function(i) paste(i, collapse = ""))
# running system.time on this yields:
# user system elapsed
# 16.127 0.147 16.304
I want to see whether the text column has elements outside the specified values of "a" and "b"
specified_value=c("a","b")
df=data.frame(key=c(1,2,3,4),text=c("a,b,c","a,d","1,2","a,b")
df_out=data.frame(key=c(1,2,3),text=c("c","d","1,2",NA))
This is what I have tried:
df=df%>%mutate(text_vector=strsplit(text, split=","),
extra=text_vector[which(!text_vector %in% specified_value)])
But this doesn't work, any suggestions?
We can split the 'text' by the delimiter , with separate_rows, grouped by 'key', get the elements that are not in 'specified_value' with setdiff and paste them together (toString), then do a join to get the other columns in the original dataset
library(dplyr) # >= 1.0.0
library(tidyr)
df %>%
separate_rows(text) %>%
group_by(key) %>%
summarise(extra = toString(setdiff(text, specified_value))) %>%
left_join(df) %>%
mutate(extra = na_if(extra, ""))
# A tibble: 4 x 3
# key extra text
# <dbl> <chr> <chr>
#1 1 c a,b,c
#2 2 d a,d
#3 3 1, 2 1,2
#4 4 <NA> a,b
Using setdiff.
df$outside <- sapply({
x <- lapply(strsplit(df$text, ","), setdiff, specified_value)
replace(x, lengths(x) == 0, NA)},
paste, collapse=",")
df
# key text outside
# 1 1 a,b,c c
# 2 2 a,d d
# 3 3 1,2 1,2
# 4 4 a,b NA
Data:
df <- structure(list(key = c(1, 2, 3, 4), text = c("a,b,c", "a,d",
"1,2", "a,b")), class = "data.frame", row.names = c(NA, -4L))
specified_value <- c("a", "b")
use stringi::stri_split_fixed
library(stringi)
!all(stri_split_fixed("a,b", ",", simplify=T) %in% specified_value) #FALSE
!all(stri_split_fixed("a,b,c", ",", simplify=T) %in% specified_value) #TRUE
An option using regex without splitting the data on comma :
#Collapse the specified_value in one string and remove from text
df$text1 <- gsub(paste0(specified_value, collapse = "|"), '', df$text)
#Remove extra commas
df$text1 <- gsub('(?<![a-z0-9]),', '', df$text1, perl = TRUE)
df
# key text text1
#1 1 a,b,c c
#2 2 a,d d
#3 3 1,2 1,2
#4 4 a,b
I have a variable x with character lists in each row:
dat <- data.frame(id = c(rep('a',2),rep('b',2),'c'),
x = c('f,o','f,o,o','b,a,a,r','b,a,r','b,a'),
stringsAsFactors = F)
I would like to reshape the data so that each row is a unique (id, x) pair such as:
dat2 <- data.frame(id = c(rep('a',2),rep('b',3),rep('c',2)),
x = c('f','o','a','b','r','a','b'))
> dat2
id x
1 a f
2 a o
3 b a
4 b b
5 b r
6 c a
7 c b
I've attempted to do this by splitting the character lists and keeping only the unique list values in each row:
dat$x <- sapply(strsplit(dat$x, ','), sort)
dat$x <- sapply(dat$x, unique)
dat <- unique(dat)
> dat
id x
1 a f, o
3 b a, b, r
5 c a, b
However, I'm not sure how to proceed with converting the row lists into individual row entries.
How would I accomplish this? Or is there a more efficient way of converting a list of strings to reshape the data as described?
You can use tidytext::unnest_tokens:
library(tidytext)
library(dplyr)
dat %>%
unnest_tokens(x1, x) %>%
distinct()
id x1
1 a f
2 a o
3 b b
4 b a
5 b r
6 c b
7 c a
A base R method with two lines is
#get list of X potential vars
x <- strsplit(dat$x, ",")
# construct full data.frame, then use unique to return desired rows
unique(data.frame(id=rep(dat$id, lengths(x)), x=unlist(x)))
This returns
id x
1 a f
2 a o
6 b b
7 b a
9 b r
13 c b
14 c a
If you don't want to write out the variable names yourself, you can use setNames.
setNames(unique(data.frame(rep(dat$id, lengths(x)), unlist(x))), names(dat))
We could use separate_rows
library(tidyverse)
dat %>%
separate_rows(x) %>%
distinct()
# id x
#1 a f
#2 a o
#3 b b
#4 b a
#5 b r
#6 c b
#7 c a
A solution can be achieved using splitstackshape::cSplit to split x column into mulltiple columns. Then gather and filter will help to achieve desired output.
library(tidyverse)
library(splitstackshape)
dat %>% cSplit("x", sep=",") %>%
mutate_if(is.factor, as.character) %>%
gather(key, value, -id) %>%
filter(!is.na(value)) %>%
select(-key) %>% unique()
# id value
# 1 a f
# 3 b b
# 5 c b
# 6 a o
# 8 b a
# 10 c a
# 13 b r
Base solution:
temp <- do.call(rbind, apply( dat, 1,
function(z){ data.frame(
id=z[1],
x = scan(text=z['x'], what="",sep=","),
stringsAsFactors=FALSE)} ) )
Read 2 items
Read 3 items
Read 4 items
Read 3 items
Read 2 items
Warning messages:
1: In data.frame(id = z[1], x = scan(text = z["x"], what = "", sep = ",")) :
row names were found from a short variable and have been discarded
2: In data.frame(id = z[1], x = scan(text = z["x"], what = "", sep = ",")) :
row names were found from a short variable and have been discarded
3: In data.frame(id = z[1], x = scan(text = z["x"], what = "", sep = ",")) :
row names were found from a short variable and have been discarded
4: In data.frame(id = z[1], x = scan(text = z["x"], what = "", sep = ",")) :
row names were found from a short variable and have been discarded
5: In data.frame(id = z[1], x = scan(text = z["x"], what = "", sep = ",")) :
row names were found from a short variable and have been discarded
temp[!duplicated(temp),]
#------
id x
1 a f
2 a o
6 b b
7 b a
9 b r
13 c b
14 c a
To get rid of all the messages and warnings:
temp <- do.call(rbind, apply( dat, 1,
function(z){ suppressWarnings(data.frame(id=z[1],
x = scan(text=z['x'], what="",sep=",", quiet=TRUE), stringsAsFactors=FALSE)
)} ) )
temp[!duplicated(temp),]
For example if I have this:
n = c(2, 3, 5)
s = c("aa", "bb", "cc")
b = c(TRUE, FALSE, TRUE)
df = data.frame(n, s, b)
n s b
1 2 aa TRUE
2 3 bb FALSE
3 5 cc TRUE
Then how do I combine the two columns n and s into a new column named x such that it looks like this:
n s b x
1 2 aa TRUE 2 aa
2 3 bb FALSE 3 bb
3 5 cc TRUE 5 cc
Use paste.
df$x <- paste(df$n,df$s)
df
# n s b x
# 1 2 aa TRUE 2 aa
# 2 3 bb FALSE 3 bb
# 3 5 cc TRUE 5 cc
For inserting a separator:
df$x <- paste(df$n, "-", df$s)
As already mentioned in comments by Uwe and UseR, a general solution in the tidyverse format would be to use the command unite:
library(tidyverse)
n = c(2, 3, 5)
s = c("aa", "bb", "cc")
b = c(TRUE, FALSE, TRUE)
df = data.frame(n, s, b) %>%
unite(x, c(n, s), sep = " ", remove = FALSE)
Using dplyr::mutate:
library(dplyr)
df <- mutate(df, x = paste(n, s))
df
> df
n s b x
1 2 aa TRUE 2 aa
2 3 bb FALSE 3 bb
3 5 cc TRUE 5 cc
Some examples with NAs and their removal using apply
n = c(2, NA, NA)
s = c("aa", "bb", NA)
b = c(TRUE, FALSE, NA)
c = c(2, 3, 5)
d = c("aa", NA, "cc")
e = c(TRUE, NA, TRUE)
df = data.frame(n, s, b, c, d, e)
paste_noNA <- function(x,sep=", ") {
gsub(", " ,sep, toString(x[!is.na(x) & x!="" & x!="NA"] ) ) }
sep=" "
df$x <- apply( df[ , c(1:6) ] , 1 , paste_noNA , sep=sep)
df
We can use paste0:
df$combField <- paste0(df$x, df$y)
If you do not want any padding space introduced in the concatenated field. This is more useful if you are planning to use the combined field as a unique id that represents combinations of two fields.
Instead of
paste (default spaces),
paste0 (force the inclusion of missing NA as character) or
unite (constrained to 2 columns and 1 separator),
I'd suggest an alternative as flexible as paste0 but more careful with NA: stringr::str_c
library(tidyverse)
# check the missing value!!
df <- tibble(
n = c(2, 2, 8),
s = c("aa", "aa", NA_character_),
b = c(TRUE, FALSE, TRUE)
)
df %>%
mutate(
paste = paste(n,"-",s,".",b),
paste0 = paste0(n,"-",s,".",b),
str_c = str_c(n,"-",s,".",b)
) %>%
# convert missing value to ""
mutate(
s_2=str_replace_na(s,replacement = "")
) %>%
mutate(
str_c_2 = str_c(n,"-",s_2,".",b)
)
#> # A tibble: 3 x 8
#> n s b paste paste0 str_c s_2 str_c_2
#> <dbl> <chr> <lgl> <chr> <chr> <chr> <chr> <chr>
#> 1 2 aa TRUE 2 - aa . TRUE 2-aa.TRUE 2-aa.TRUE "aa" 2-aa.TRUE
#> 2 2 aa FALSE 2 - aa . FALSE 2-aa.FALSE 2-aa.FALSE "aa" 2-aa.FALSE
#> 3 8 <NA> TRUE 8 - NA . TRUE 8-NA.TRUE <NA> "" 8-.TRUE
Created on 2020-04-10 by the reprex package (v0.3.0)
extra note from str_c documentation
Like most other R functions, missing values are "infectious": whenever a missing value is combined with another string the result will always be missing. Use str_replace_na() to convert NA to "NA"
There are other great answers, but in the case where you don't know the column names or the number of columns you want to concatenate beforehand, the following is useful.
df = data.frame(x = letters[1:5], y = letters[6:10], z = letters[11:15])
colNames = colnames(df) # could be any number of column names here
df$newColumn = apply(df[, colNames, drop = F], MARGIN = 1, FUN = function(i) paste(i, collapse = ""))
I'd like to also propose a method for concatenating a large/unknown number of columns. The solution proposed by Ben Ernest can be pretty slow on large datasets.
Below is my proposed solution:
# setup data.frame - Making it large for the time benchmarking
n = rep(c(2, 3, 5), 1000000)
s = rep(c("aa", "bb", "cc"), 1000000)
b = rep(c(TRUE, FALSE, TRUE), 1000000)
df = data.frame(n, s, b)
# The proposed solution:
colNames = c("n", "s") # could be any number of column names here
df$x <- do.call(paste0, c(df[,colNames], sep=" "))
# running system.time on this yields:
# user system elapsed
# 1.861 0.005 1.865
# compare with alternative method:
df$x <- apply(df[, colNames, drop = F], MARGIN = 1,
FUN = function(i) paste(i, collapse = ""))
# running system.time on this yields:
# user system elapsed
# 16.127 0.147 16.304