Related
I'm currently working on constructing a zero-inflated negative binomial model in JAGS to model yearly change in abundance using count data and am currently a bit lost on how best to specify the model. I've included an example of the base model I'm using below. The main issue I'm struggling with is that in the model output I'm getting poor convergence (high Rhat values, low Neff values) and the 95% credible intervals are huge. I realize that without seeing/running the actual data there's probably not much anyone can help with but I thought I'd at least try and see if there are any obvious errors in the way I have the basic model specified. I also tried fitting a variety of other model types (regular negative binomial, Poisson, and zero-inflated Poisson) but decided to go with the ZINB since it had the lowest DIC scores of all the models and also makes the most intuitive sense to me, given my data structure.
library(R2jags)
# Create example dataframe
years <- c(1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2)
sites <- c(1,1,1,2,2,2,3,3,3,1,1,1,2,2,2,3,3,3)
months <- c(1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3)
# Count data
day1 <- floor(runif(18,0,7))
day2 <- floor(runif(18,0,7))
day3 <- floor(runif(18,0,7))
day4 <- floor(runif(18,0,7))
day5 <- floor(runif(18,0,7))
df <- as.data.frame(cbind(years, sites, months, day1, day2, day3, day4, day5))
# Put count data into array
y <- array(NA,dim=c(2,3,3,5))
for(m in 1:2){
for(k in 1:3){
sel.rows <- df$years == m &
df$months==k
y[m,k,,] <- as.matrix(df)[sel.rows,4:8]
}
}
# JAGS model
sink("model1.txt")
cat("
model {
# PRIORS
for(m in 1:2){
r[m] ~ dunif(0,50)
}
t.int ~ dlogis(0,1)
b.int ~ dlogis(0,1)
p.det ~ dunif(0,1)
# LIKELIHOOD
# ECOLOGICAL SUBMODEL FOR TRUE ABUNDANCE
for (m in 1:2) {
zero[m] ~ dbern(pi[m])
pi[m] <- ilogit(mu.binary[m])
mu.binary[m] <- t.int
for (k in 1:3) {
for (i in 1:3) {
N[m,k,i] ~ dnegbin(p[m,k,i], r)
p[m,k,i] <- r[m] / (r[m] + (1 - zero[m]) * lambda.count[m,k,i]) - 1e-10 * zero[m]
lambda.count[m,k,i] <- exp(mu.count[m,k,i])
log(mu.count[m,k,i]) <- b.int
# OBSERVATIONAL SUBMODEL FOR DETECTION
for (j in 1:5) {
y[m,k,i,j] ~ dbin(p.det, N[m,k,i])
}#j
}#i
}#k
}#m
}#END", fill=TRUE)
sink()
win.data <- list(y = y)
Nst <- apply(y,c(1,2,3),max)+1
inits <- function()list(N = Nst)
params <- c("N")
nc <- 3
nt <- 1
ni <- 50000
nb <- 5000
out <- jags(win.data, inits, params, "model1.txt",
n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb,
working.directory = getwd())
print(out)
Tried fitting a ZINB model in JAGS using the code specified above but am having issues with model convergence.
The way that I have tended to specify zero-inflated models is to model the data as being Poisson distributed with mean that is either zero if that individual is part of the zero-inflated group, or distributed according to a gamma distribution otherwise. Something like:
Obs[i] ~ dpois(lambda[i] * is_zero[i])
is_zero[i] ~ dbern(zero_prob)
lambda[i] ~ dgamma(k, k/mean)
Something similar to this was first used in this paper: https://www.researchgate.net/publication/5231190_The_distribution_of_the_pathogenic_nematode_Nematodirus_battus_in_lambs_is_zero-inflated
These models usually converge OK, although the performance is not as good as for simpler models of course. You also need to make sure to supply initial values for is_zero so that the model starts with all individuals with positive counts in the appropriate group.
In your case, you have multiple timepoints, so you need to decide if the zero-inflation is fixed over time points (i.e. an individual cannot switch to or from zero-inflated group over time), or if each observation is completely independent with respect to zero-inflation status. You also need to decide if you want to have co-variates of year/month/site affecting the mean count (i.e. the gamma part) or the probability of a positive count (i.e. the zero-inflation part). For the former, you need to index mean (in my formulation) by i and then use a GLM-like formula (probably using log link) to relate this to the appropriate covariates. For the latter, you need to index zero_prob by i and then use a GLM-like formula (probably using logit link) to relate this to the appropriate covariates. It is also possible to do both, but if you try to use the same covariates in both parts then you can expect convergence problems!
It would arguably be better to replace the separate Poisson-Gamma distributions with a single Negative Binomial distribution using the 'ecology parameterisation' with mean and k. This is not currently implemented in JAGS, but I will add it for the next update.
I'm teaching a modeling class in R. The students are all SAS users, and I have to create course materials that exactly match (when possible) SAS output. I'm working on the Poisson regression section and trying to match PROC GENMOD, with a "dscale" option that modifies the dispersion index so that the deviance/df==1.
Easy enough to do, but I need confidence intervals. I'd like to show the students how to do it without hand calculating them. Something akin to confint_default() or confint()
Data
skin_cancer <- data.frame(CASES=c(1,16,30,71,102,130,133,40,4,38,
119,221,259,310,226,65),
CITY=c(rep(0,8),rep(1,8)),
N=c(172875, 123065,96216,92051,72159,54722,
32185,8328,181343,146207,121374,111353,
83004,55932,29007,7583),
agegp=c(1:8,1:8))
skin_cancer$ln_n = log(skin_cancer$N)
The model
fit <- glm(CASES ~ CITY, family="poisson", offset=ln_n, data=skin_cancer)
Changing the dispersion index
summary(fit, dispersion= deviance(fit) / df.residual(fit)))
That gets me the "correct" standard errors (correct according to SAS). But obviously I can't run confint() on a summary() object.
Any ideas? Bonus points if you can tell me how to change the dispersion index within the model so I don't have to do it within the summary() call.
Thanks.
This is an interesting question, and slightly deeper than it seems.
The simplest potential answer is to use family="quasipoisson" instead of poisson:
fitQ <- update(fit, family="quasipoisson")
confint(fitQ)
However, this won't let you adjust the dispersion to be whatever you want; it specifically changes the dispersion to the estimate R calculates in summary.glm, which is based on the Pearson chi-squared (sum of squared Pearson residuals) rather than the deviance, i.e.
sum((object$weights * object$residuals^2)[object$weights > 0])/df.r
You should be aware that stats:::confint.glm() (which actually uses MASS:::confint.glm) computes profile confidence intervals rather than Wald confidence intervals (i.e., this is not just a matter of adjusting the standard deviations).
If you're satisfied with Wald confidence intervals (which are generally less accurate) you could hack stats::confint.default() as follows (note that the dispersion title is a little bit misleading, as this function basically assumes that the original dispersion of the model is fixed to 1: this won't work as expected if you use a model that estimates dispersion).
confint_wald_glm <- function(object, parm, level=0.95, dispersion=NULL) {
cf <- coef(object)
pnames <- names(cf)
if (missing(parm))
parm <- pnames
else if (is.numeric(parm))
parm <- pnames[parm]
a <- (1 - level)/2
a <- c(a, 1 - a)
pct <- stats:::format.perc(a, 3)
fac <- qnorm(a)
ci <- array(NA, dim = c(length(parm), 2L), dimnames = list(parm,
pct))
ses <- sqrt(diag(vcov(object)))[parm]
if (!is.null(dispersion)) ses <- sqrt(dispersion)*ses
ci[] <- cf[parm] + ses %o% fac
ci
}
confint_wald_glm(fit)
confint_wald_glm(fit,dispersion=2)
I am attempting to use R for model selection based on the AIC statistic. When comparing linear models with or without weighting, my code in R informs me that weighting is preferable compared to no-weighting, and these results are confirmed in other software (GraphPad Prism). I have sample code using real data from a standard curve:
#Linear Curve Fitting
a <- c(0.137, 0.412, 1.23, 3.7, 11.1 ,33.3)
b <- c(0.00198, 0.00359, 0.00816, 0.0220, 0.0582, 0.184)
m1 <- lm(b ~ poly(a,1))
m2 <- lm(b ~ poly(a,1), weight=1/a)
n1 <- 6 #Number of observations
k1 <- 2 #Number of parameters
When I calculate AIC using either the internal function in R or via manual calculation in which:
AIC = n + n log 2π + n log(RSS/n) + 2(k + 1) with n observations and k parameters
I get equivalent AIC values for the non-weighted model. When I analyze the effect of weighting, the manual AIC value is lower, however the end result is that both the internal and manual AIC suggest that weighting is preferred.
> AIC(m1); n1+(n1*log(2*pi))+n1*(log(deviance(m1)/n1))+(2*(k1+1))
[1] -54.83171
[1] -54.83171
> AIC(m2); n1+(n1*log(2*pi))+n1*(log(deviance(m2)/n1))+(2*(k1+1))
[1] -64.57691
[1] -69.13025
When I try the same analysis using a nonlinear model, the difference in AIC between the internal function and manual calculation is more profound. Below is a code of examplar Michaelis-Menten kinetic data:
c <- c(0.5, 1, 5, 10, 30, 100, 300)
d <- c(3, 5, 20, 50, 75, 200, 250)
m3 <- nls(d ~ (V * c)/(K + c), start=list(V=10, K=1))
m4 <- nls(d ~ (V * c)/(K + c), start=list(V=10, K=1), weight=1/d^2)
n2 <- 7
k2 <- 2
The AIC are calculated as indicated for the first two models:
> AIC(m3); n2+(n2*log(2*pi))+n2*(log(deviance(m3)/n2))+(2*(k2+1))
[1] 58.48839
[1] 58.48839
> AIC(m4); n2+(n2*log(2*pi))+n2*(log(deviance(m4)/n2))+(2*(k2+1))
[1] 320.7105
[1] 0.1538546
Similar to the linear example, the internal AIC and manual AIC values are the same when data are not weighted (m3). The problem occurs with weighting (m4) as the manual AIC estimate is much lower. This situation is similar to what was asked in a related problem AIC with weighted nonlinear regression (nls).
I earlier mentioned GraphPad Prism, which for both the models and datasets given above showed lower AICs when weighting was used. My question then is why is there such a difference in the internal vs. manual AIC estimates in R when weighting the data (for which the outcome is different for nonlinear model compared to a linear one)? Ultimately, should I regard the internal AIC value or the manual value as being more correct, or am I using a wrong equation?
The discrepancy you are seeing is from using the unweighted log-likelihood formula in the manual calculations for a weighted model. For example, you can replicate the AIC results for m2 and m4 with the following adjustments:
In the case of m2, you simply need to subract sum(log(m2$weights)) from your calculation:
AIC(m2); n1+(n1*log(2*pi))+n1*(log(deviance(m2)/n1))+(2*(k1+1)) - sum(log(m2$weights))
[1] -64.57691
[1] -64.57691
In the case of m4, you would have to swap the deviance call with a weighted residuals calculation, and subtract n2 * sum(log(m4$weights)) from your results:
AIC(m4); n2+(n2*log(2*pi))+n2*(log(sum(m4$weights * m4$m$resid()^2)/n2))+(2*(k2+1)) - n2 * sum(log(m4$weights))
[1] 320.7105
[1] 320.7105
I believe the derivation for the formula used by logLikin m2 is pretty straight forward and correct, but I am not as sure about m4. From reading some other threads about logLik.nls() (example 1, example 2), it seems like there is some confusion about the correct approach for the nls estimate. To summarize, I believe AIC is correct for m2; I was not able to verify the math for the weighted nls model and would lean towards using the m2 formula again in that case (but replace deviance calculation with weighted residuals), or (maybe better) not use AIC for the nls model
So I'm using the quantreg package in R to conduct quantile regression analyses to test how the effects of my predictors vary across the distribution of my outcome.
FML <- as.formula(outcome ~ VAR + c1 + c2 + c3)
quantiles <- c(0.25, 0.5, 0.75)
q.Result <- list()
for (i in quantiles){
i.no <- which(quantiles==i)
q.Result[[i.no]] <- rq(FML, tau=i, data, method="fn", na.action=na.omit)
}
Then i call anova.rq which runs a Wald test on all the models and outputs a pvalue for each covariate telling me whether the effects of each covariate vary significantly across the distribution of my outcome.
anova.Result <- anova(q.Result[[1]], q.Result[[2]], q.Result[[3]], joint=FALSE)
Thats works just fine. However, for my particular data (and in general?), bootstrapping my estimates and their error is preferable. Which i conduct with a slight modification of the code above.
q.Result <- rqs(FML, tau=quantiles, data, method="fn", na.action=na.omit)
q.Summary <- summary(Q.mod, se="boot", R=10000, bsmethod="mcmb",
covariance=TRUE)
Here's where i get stuck. The quantreg currently cannot peform the anova (Wald) test on boostrapped estimates. The information files on the quantreg packages specifically states that "extensions of the methods to be used in anova.rq should be made" regarding the boostrapping method.
Looking at the details of the anova.rq method. I can see that it requires 2 components not present in the quantile model when bootstrapping.
1) Hinv (Inverse Hessian Matrix). The package information files specifically states "note that for se = "boot" there is no way to split the estimated covariance matrix into its sandwich constituent parts."
2) J which, according to the information files, is "Unscaled Outer product of gradient matrix returned if cov=TRUE and se != "iid". The Huber sandwich is cov = tau (1-tau) Hinv %*% J %*% Hinv. as for the Hinv component, there is no J component when se == "boot". (Note that to make the Huber sandwich you need to add the tau (1-tau) mayonnaise yourself.)"
Can i calculate or estimate Hinv and J from the bootstrapped estimates? If not what is the best way to proceed?
Any help on this much appreciated. This my first timing posting a question here, though I've greatly benefited from the answers to other peoples questions in the past.
For question 2: You can use R = for resampling. For example:
anova(object, ..., test = "Wald", joint = TRUE, score =
"tau", se = "nid", R = 10000, trim = NULL)
Where R is the number of resampling replications for the anowar form of the test, used to estimate the reference distribution for the test statistic.
Just a heads up, you'll probably get a better response to your questions if you only include 1 question per post.
Consulted with a colleague, and he confirmed that it was unlikely that Hinv and J could be 'reverse' computed from bootstrapped estimates. However we resolved that estimates from different taus could be compared using Wald test as follows.
From object rqs produced by
q.Summary <- summary(Q.mod, se="boot", R=10000, bsmethod="mcmb", covariance=TRUE)
you extract the bootstrapped Beta values for variable of interest in this case VAR, the first covariate in FML for each tau
boot.Bs <- sapply(q.Summary, function (x) x[["B"]][,2])
B0 <- coef(summary(lm(FML, data)))[2,1] # Extract liner estimate data linear estimate
Then compute wald statistic and get pvalue with number of quantiles for degrees of freedom
Wald <- sum(apply(boot.Bs, 2, function (x) ((mean(x)-B0)^2)/var(x)))
Pvalue <- pchisq(Wald, ncol(boot.Bs), lower=FALSE)
You also want to verify that bootstrapped Betas are normally distributed, and if you're running many taus it can be cumbersome to check all those QQ plots so just sum them by row
qqnorm(apply(boot.Bs, 1, sum))
qqline(apply(boot.Bs, 1, sum), col = 2)
This seems to be working, and if anyone can think of anything wrong with my solution, please share
Suppose I have x values, y values, and expected y values f (from some nonlinear best fit curve).
How can I compute R^2 in R? Note that this function is not a linear model, but a nonlinear least squares (nls) fit, so not an lm fit.
You just use the lm function to fit a linear model:
x = runif(100)
y = runif(100)
spam = summary(lm(x~y))
> spam$r.squared
[1] 0.0008532386
Note that the r squared is not defined for non-linear models, or at least very tricky, quote from R-help:
There is a good reason that an nls model fit in R does not provide
r-squared - r-squared doesn't make sense for a general nls model.
One way of thinking of r-squared is as a comparison of the residual
sum of squares for the fitted model to the residual sum of squares for
a trivial model that consists of a constant only. You cannot
guarantee that this is a comparison of nested models when dealing with
an nls model. If the models aren't nested this comparison is not
terribly meaningful.
So the answer is that you probably don't want to do this in the first
place.
If you want peer-reviewed evidence, see this article for example; it's not that you can't compute the R^2 value, it's just that it may not mean the same thing/have the same desirable properties as in the linear-model case.
Sounds like f are your predicted values. So the distance from them to the actual values devided by n * variance of y
so something like
1-sum((y-f)^2)/(length(y)*var(y))
should give you a quasi rsquared value, so long as your model is reasonably close to a linear model and n is pretty big.
As a direct answer to the question asked (rather than argue that R2/pseudo R2 aren't useful) the nagelkerke function in the rcompanion package will report various pseudo R2 values for nonlinear least square (nls) models as proposed by McFadden, Cox and Snell, and Nagelkerke, e.g.
require(nls)
data(BrendonSmall)
quadplat = function(x, a, b, clx) {
ifelse(x < clx, a + b * x + (-0.5*b/clx) * x * x,
a + b * clx + (-0.5*b/clx) * clx * clx)}
model = nls(Sodium ~ quadplat(Calories, a, b, clx),
data = BrendonSmall,
start = list(a = 519,
b = 0.359,
clx = 2304))
nullfunct = function(x, m){m}
null.model = nls(Sodium ~ nullfunct(Calories, m),
data = BrendonSmall,
start = list(m = 1346))
nagelkerke(model, null=null.model)
The soilphysics package also reports Efron's pseudo R2 and adjusted pseudo R2 value for nls models as 1 - RSS/TSS:
pred <- predict(model)
n <- length(pred)
res <- resid(model)
w <- weights(model)
if (is.null(w)) w <- rep(1, n)
rss <- sum(w * res ^ 2)
resp <- pred + res
center <- weighted.mean(resp, w)
r.df <- summary(model)$df[2]
int.df <- 1
tss <- sum(w * (resp - center)^2)
r.sq <- 1 - rss/tss
adj.r.sq <- 1 - (1 - r.sq) * (n - int.df) / r.df
out <- list(pseudo.R.squared = r.sq,
adj.R.squared = adj.r.sq)
which is also the pseudo R2 as calculated by the accuracy function in the rcompanion package. Basically, this R2 measures how much better your fit becomes compared to if you would just draw a flat horizontal line through them. This can make sense for nls models if your null model is one that allows for an intercept only model. Also for particular other nonlinear models it can make sense. E.g. for a scam model that uses stricly increasing splines (bs="mpi" in the spline term), the fitted model for the worst possible scenario (e.g. where your data was strictly decreasing) would be a flat line, and hence would result in an R2 of zero. Adjusted R2 then also penalize models with higher nrs of fitted parameters. Using the adjusted R2 value would already address a lot of the criticisms of the paper linked above, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892436/ (besides if one swears by using information criteria to do model selection the question becomes which one to use - AIC, BIC, EBIC, AICc, QIC, etc).
Just using
r.sq <- max(cor(y,yfitted),0)^2
adj.r.sq <- 1 - (1 - r.sq) * (n - int.df) / r.df
I think would also make sense if you have normal Gaussian errors - i.e. the correlation between the observed and fitted y (clipped at zero, so that a negative relationship would imply zero predictive power) squared, and then adjusted for the nr of fitted parameters in the adjusted version. If y and yfitted go in the same direction this would be the R2 and adjusted R2 value as reported for a regular linear model. To me this would make perfect sense at least, so I don't agree with outright rejecting the usefulness of pseudo R2 values for nls models as the answer above seems to imply.
For non-normal error structures (e.g. if you were using a GAM with non-normal errors) the McFadden pseudo R2 is defined analogously as
1-residual deviance/null deviance
See here and here for some useful discussion.
Another quasi-R-squared for non-linear models is to square the correlation between the actual y-values and the predicted y-values. For linear models this is the regular R-squared.
As an alternative to this problem I used at several times the following procedure:
compute a fit on data with the nls function
using the resulting model make predictions
Trace (plot...) the data against the values predicted by the model (if the model is good, points should be near the bissectrix).
Compute the R2 of the linear régression.
Best wishes to all. Patrick.
With the modelr package
modelr::rsquare(nls_model, data)
nls_model <- nls(mpg ~ a / wt + b, data = mtcars, start = list(a = 40, b = 4))
modelr::rsquare(nls_model, mtcars)
# 0.794
This gives essentially the same result as the longer way described by Tom from the rcompanion resource.
Longer way with nagelkerke function
nullfunct <- function(x, m){m}
null_model <- nls(mpg ~ nullfunct(wt, m),
data = mtcars,
start = list(m = mean(mtcars$mpg)))
nagelkerke(nls_model, null_model)[2]
# 0.794 or 0.796
Lastly, using predicted values
lm(mpg ~ predict(nls_model), data = mtcars) %>% broom::glance()
# 0.795
Like they say, it's only an approximation.