Specify range from -x to x - jupyter-notebook

I want my code to count up to a number n and then down to where it started, for example of n=4:
1
2
3
4
3
2
1
I've used range() to get from 1-4, and then reversed(range()) to get to 4-1, but they're two seperate blocks (and I'd get two 4's) and I'm sure there is a better and cleaner way. I've tried to specify the range from -n to n, but I honestly have no idea if I should use length, range or slices or whatever. I'm very new to programming.

You are missing the abs function as well to figure this out.
Try something like the following
n = 4;
for i in map(lambda x: n - abs(x),range(0-n+1, n)):
print(i)
Output should be like the following,
1
2
3
4
3
2
1
You could also wrap this and return an enumerator like the following,
def riseAndFall(n):
for i in map(lambda x: n - abs(x),range(0-n+1, n)):
yield i
for i in riseAndFall(4):
print(i)

Related

Incrementation with a for loop

x <- c(2,5,4,3,9,8,11,6)
count <- 0
for (val in x) {
if (val %% 2 == 0) {
count <- count + 1
}
} print(count)
# [1] 4
I do not get why it is 4 and not 5, could someone give me a hint?
So from x <-c(2,5,4,3,9,8,11,6), there are only four numbers in which the remainder will be 0 when divided by 2.
Knowing that, let's look at what each part of the code does. You are defining a variable count and assigning it the value of 0. Already from the beginning, count starts at 0. The next line is a for loop. What the loop does is go through each value of x (recall that x <-c(2,5,4,3,9,8,11,6)). Now, the if statement says that for each value of x, if the value is divisible by 2 and has no remainder, add 1 to count (which is why you have the line count <- count + 1, you are adding 1 to count, which started at zero, and reassigning the new value to count - think of it as rewriting the value of count, replacing it). Now there are four values in x that are divisible by 2 and have a remainder of zero, so doing the math: 0 + 4 = 4. You should get:
print(count)
[1] 4
Hope this helps explain every aspect of the code. I highly recommend you understand and read about for loops, if statements, and overall just any R basics. There are several tutorials online explaining all these components.

Function in R does not return vector

I am sure this is a really dumb question with a simple answer, but I have been banging my head against the desk for an hour now. The goal is to write a simple function that returns a vector of n length consisting of integers spaces as evenly as possible, from 1 to k. So:
place_in_groups <- function(n, k){
rate = (n - 1) / (k - 1)
vect <- round(seq(from = 1, to = n, by = rate), 0)
return(vect)
}
When I run the lines inside the function on the outside of the function, it does what I want it to do: creates a vector with the appropriate values. But when I run it inside the vector, I get the actual values, not the vector:
place_in_groups(4,5)
[1] 1 2 2 3 4
As I said, I'm sure it is something obvious I'm doing wrong, but it is also something I'm obviously in need of learning.
I'm not shure I undestand the question correctly. Try str() on your results. What you are getting is a vector.
vect <- place_in_groups(4,5)
str(vect)
num [1:5] 1 2 2 3 4
What do you want to do with the vector, or what is your challenge?

How to split a sequence in k homogeneous parts?

I'd like to split a sequence into k parts, and optimize the homogeneity of these sub-parts.
Example : 0 0 0 0 0 1 1 2 3 3 3 2 2 3 2 1 0 0 0
Result : 0 0 0 0 0 | 1 1 2 | 3 3 3 2 2 3 2 | 1 0 0 0 when you ask for 4 parts (k = 4)
Here, the algorithm did not try to split in fixed-length parts, but instead tried to make sure elements in the same parts are as homogeneous as possible.
What algorithm should I use ? Is there an implementation of it in R ?
Maybe you can use Expectation-maximization algorithm. Your points would be (value, position). In your example, this would be something like:
With the E-M algorithm, the result would be something like (by hand):
This is the desired output, so you can consider using this, and if it really works in all your scenarios. An annotation, you must assign previously the number of clusters you want, but I think it's not a problem for you, as you have set out your question.
Let me know if this worked ;)
Edit:
See this picture, is what you talked about. With k-means you should control the delta value, this is, how the position increment, to have its value to the same scale that value. But with E-M this doesn't matter.
Edit 2:
Ok I was not correct, you need to control the delta value. It is not the same if you increment position by 1 or by 3: (two clusters)
Thus, as you said, this algorithm could decide to cluster points that are not neighbours if their position is far but their value is close. You need to guarantee this not to happen, with a high increment of delta. I think that with a increment of 2 * (max - min) values of your sequence this wouldn't happen.
Now, your points would have the form (value, delta * position).

i not showing up as number in loop

so I have a loop that finds the position in the matrix where there is the largest difference in consecutive elements. For example, if thematrix[8] and thematrix[9] have the largest difference between any two consecutive elements, the number given should be 8.
I made the loop in a way that it will ignore comparisons where one of the elements is NaN (because I have some of those in my data). The loop I made looks like this.
thenumber = 0 #will store the difference
for (i in 1:nrow(thematrix) - 1) {
if (!is.na(thematrix[i]) & !is.na(thematrix[i + 1])) {
if (abs(thematrix[i] - thematrix[i + 1]) > thenumber) {
thenumber = i
}
}
}
This looks like it should work but whenever I run it
Error in if (!is.na(thematrix[i]) & !is.na(thematrix[i + 1])) { :
argument is of length zero
I tried this thing but with a random number in the brackets instead of i and it works. For some reason it only doesn't work when I use the i specified in the beginning of the for-loop. It doesn't recognize that i represents a number. Why doesn't R recognize i?
Also, if there's a better way to do this task I'd appreciate it greatly if you could explain it to me
You are pretty close but when you call i in 1:nrow(thematrix) - 1 R evaluates this to make i = 0 which is what causes this issue. I would suggest either calling i in 1:nrow(thematrix) or i in 2:nrow(thematrix) - 1 to start your loop at i = 1. I think your approach is generally pretty intuitive but one suggestion would be to frequently use the print() function to evaluate how i changes over the course of your function.
The issue is that the : operator has higher precedence than -; you just need to use parentheses around (nrow(thematrix)-1). For example,
thematrix <- matrix(1:10, nrow = 5)
##
wrong <- 1:nrow(thematrix) - 1
right <- 1:(nrow(thematrix) - 1)
##
R> wrong
#[1] 0 1 2 3 4
R> right
#[1] 1 2 3 4
Where the error message is coming from trying to access the zero-th element of thematrix:
R> thematrix[0]
integer(0)
The other two answers address your question directly, but I must say this is about the worst possible way to solve this problem in R.
set.seed(1) # for reproducible example
x <- sample(1:10,10) # numbers 1:10 in random order
x
# [1] 3 4 5 7 2 8 9 6 10 1
which.max(abs(diff(x)))
# [1] 9
The diff(...) function calculates sequential differences, and which.max(...) identifies the element number of the maximum value in a vector.

How do I calculate the number of permutations in base 3 combinatorics?

I've never been much for math and I'm hoping that someone can help me out with the following.
I have 5 boxes:
1 2 3 4 5
[ ] [ ] [ ] [ ] [ ]
The boxes can either be white, gray, or black (or think of it as 0, 1, 2)
How many possible states can the box set be in?
What is the pseudocode (or in any language) to generate all the possible outcomes??
ie...
00000
00001
00011
00111
etc, etc...
I really appreciate any help anyone can give me with this.
the answer for the number of combinations is: 3x3x3x3x3 (3^5) since each box can have 3 possible colors.
As for generating the outcomes, see if you can figure it out using this matrix with 0, 1, or 2 to represent the color of the box. On a smaller scale (lets assume 3 boxes) it would look like this:
0 0 0
0 0 1
0 0 2
0 1 0
0 1 1
0 1 2
0 2 0
0 2 1
0 2 2
1 0 0
1 0 1
1 0 2
1 1 0
1 1 1
1 1 2
1 2 0
1 2 1
1 2 2
2 0 0
2 0 1
2 0 2
2 1 0
2 1 1
2 1 2
2 2 0
2 2 1
2 2 2
This is a classic permutation generation problem. You have 3 possibilities for each position, and 5 positions. The total number of generated string is 3^5 = 243.
You need recursion if you want a general solution (a simple iterative loop only works for a single instance of the problem).
Here's a quick example:
public static void Main(string[] args){
Generate("", 5);
}
private void Generate(string s, int limit)
{
if (s.Length == limit)
Console.WriteLine(s);
else
{
Generate(s+"0", limit);
Generate(s+"1", limit);
Generate(s+"2", limit);
}
}
To answer your first question, what would the answer be if the boxes could contain only one of two values? So, what's the answer if the boxes contain one of three values?
To answer your second question, what pseudocode generates all possible outcomes of one box? Now, pseudocode generates all possible outcomes of two boxes?
I'd recommend solving the problem on paper first. Try to solve it with a smaller number of boxes (maybe three), and list all possibilities. Then, think of how your reasoning went, or how you'd explain what you did to a small child.
This seems like a homework problem. I'll just give you some help as to the solution then.
What you are saying is that each box has three states, which are all independent. One box would have 3 solutions, and two boxes would have 3 * 3 solutions - for each state of the first box the second box would have three states as well. Extend that to 5 boxes.
To generate each solution, you can just cycle through it. It is easy to make nested for loops for each box, and multiplying by powers of 10 can let you show the number at once.
You can generalize the code for multiple boxes in a similar way.
Thank you all for your answers, at least those of you who actually gave me one.
While I can appreciate that the question sounded like it was pulled straight out of Computer Science 101, it wasn't. The irony of the matter is that it was for real life on a real deadline and I didn't have time to hearken back to when I was being taught this stuff and said to myself, "when am I ever going to need this crap"
If I wanted to be patronized and treated like a school boy I would go back to my elementary school and ask my 5th grade teacher if I can go to the bathroom
Thanks again
the number of states is 3^5.
pseudocode is
for value from 0 to 3^5-1
print base3(value)
where base3 is a function that repeatedly takes modulo 3 to get a digit, then removes that digit (by dividing by 3)
Hint: imagine that each box is a position in a number and each colour is a different digit. In the real world, how many combinations (including zero) do you get with 2 positions and 10 possible digits? What about 3 positions? What's the relationship between adding an extra position and the number of combinations, given the number of digits you have available?
Unique number of combinations: 3^5=243
Code:
n = 0
for i = 0 to 3^5-1
{
s = ""
for j = 1 to 5
{
d = n mod 3
s = toascii(d) . s
n = n / 3
}
println s
i = i + 1
}
Here's how I first learned to do this: first think about how many choices you are making. You are making five choices, one for each box. So write down five blank lines with multiplication signs:
__ x __ x __ x __ x __ = ?
In each blank, write the number of objects you have to choose from for that box. Since you have 3 numbers to choose from for each box, you write a 3 in every blank:
3 x 3 x 3 x 3 x 3 = 243
This gives you the total number of permutations for those choices.
The number of possibilities is 3 to the power 5
If you loop from 0 to that number minus 1 and express it in base 3 you will have all the possibilities (remember to prepend 0s where necessary)
In Ruby:
number_of_possibilities = 3**5-1
for i in (0..number_of_possibilities)
base_3_number = i.to_s(3)
puts "%05d" % base_3_number # number formatting used to prepend 0s where necessary
end
Can I ask what about this you don't understand or whats tripping you up? I see that everyone here has simply answered the question, but if you've copied their answers, you've learned nothing, and thus completely missed the point of the homework. Assuming your next lesson builds upon this one, you're just going to fall further behind.
If you either worked for me or were in my class I'd simply ask the following...
"How do you think the problem should be solved?" The answer to which might reveal where you're getting hung up. A wise professor of mine at CMU once said "I can't help you understand this until you know what you don't understand" I never did figure out what I didn't understand and I dropped his class, but the lesson stuck with me.
I know its probably too late, but for these homework questions I really think we should be helping the person learn as opposed to simply providing an answer and doing their homework for them.
Your problem needs nothing more than the rule of product in combinatorics.
You can choose the state of the first box in 3 ways, and the state of the second box in 3 ways, and ... and the state of the 5th box in 3 ways. The number of ways in which you can set the state of all the boxes is the product of all the five (equal) numbers of ways, i.e. 3x3x3x3x3 = 35.
Similar question: how many numbers can you form with 5 digits in the decimal system, counting the leading zeros? That is, how many numbers are there from 00000 to 99999? You can choose the first digit in 10 ways (0...9), and so on and so on, and the answer is 10x10x10x10x10 = 100000, as you already know.
Don't even try to write code to answer this! The reason is that you need some very large numbers (factorials) to calculate it. These create numbers much larger than any base type in the CLR. You can use this opensource library to do the calculation.
void solve(int p=0,int n=5,int d=0)
{
if (n==p)
{
int rev=d;
int i=0;
while (i<5) {
cout << rev%10;
rev /= 10;
i++;## Heading ##
}
cout << endl;
return;
}
for(int i=0; i<3 ; i++)
{
solve(p+1,n, d*10 + i);
}
}

Resources