From axis values to coodinates pairs [duplicate] - r

I have two vectors of integers, say v1=c(1,2) and v2=c(3,4), I want to combine and obtain this as a result (as a data.frame, or matrix):
> combine(v1,v2) <--- doesn't exist
1 3
1 4
2 3
2 4
This is a basic case. What about a little bit more complicated - combine every row with every other row? E.g. imagine that we have two data.frames or matrices d1, and d2, and we want to combine them to obtain the following result:
d1
1 13
2 11
d2
3 12
4 10
> combine(d1,d2) <--- doesn't exist
1 13 3 12
1 13 4 10
2 11 3 12
2 11 4 10
How could I achieve this?

For the simple case of vectors there is expand.grid
v1 <- 1:2
v2 <- 3:4
expand.grid(v1, v2)
# Var1 Var2
#1 1 3
#2 2 3
#3 1 4
#4 2 4
I don't know of a function that will automatically do what you want to do for dataframes(See edit)
We could relatively easily accomplish this using expand.grid and cbind.
df1 <- data.frame(a = 1:2, b=3:4)
df2 <- data.frame(cat = 5:6, dog = c("a","b"))
expand.grid(df1, df2) # doesn't work so let's try something else
id <- expand.grid(seq(nrow(df1)), seq(nrow(df2)))
out <-cbind(df1[id[,1],], df2[id[,2],])
out
# a b cat dog
#1 1 3 5 a
#2 2 4 5 a
#1.1 1 3 6 b
#2.1 2 4 6 b
Edit: As Joran points out in the comments merge does this for us for data frames.
df1 <- data.frame(a = 1:2, b=3:4)
df2 <- data.frame(cat = 5:6, dog = c("a","b"))
merge(df1, df2)
# a b cat dog
#1 1 3 5 a
#2 2 4 5 a
#3 1 3 6 b
#4 2 4 6 b

Related

How to find duplicated values in two columns between two dataframes and remove non-duplicates in R?

So let's say I have two dataframes that look like this
df1 <- data.frame(ID = c("A","B","F","G","B","B","A","G","G","F","A","A","A","B","F"),
code = c(1,2,2,3,3,1,2,2,1,1,3,2,2,1,1),
class = c(2,4,5,5,2,3,2,5,1,2,4,5,3,2,1))
df2 <- data.frame(ID = c("G","F","C","F","B","A","F","C","A","B","A","B","C","A","G"),
code = c(1,2,2,3,3,1,2,2,1,1,3,2,2,1,1),
class = c(2,4,5,5,2,3,2,5,1,2,4,5,3,2,1))
I want to check the duplicates in df1$ID and df2$ID and remove all the rows from df2 if the IDs are not present in df1 so the new dataframe would look like this:
df3 <- data.frame(ID = c("G","F","F","B","A","F","A","B","A","B","A","G"),
code = c(1,2,3,3,1,2,1,1,3,2,1,1),
class = c(2,4,5,2,3,2,1,2,4,5,2,1))
With %in%:
df2[df2$ID %in% df1$ID, ]
ID code class
1 G 1 2
2 F 2 4
4 F 3 5
5 B 3 2
6 A 1 3
7 F 2 2
9 A 1 1
10 B 1 2
11 A 3 4
12 B 2 5
14 A 1 2
15 G 1 1
You can use the 'intersect' function to tackle the issue.
common_ids <- intersect(df1$ID, df2$ID)
df3 <- df2[df2$ID %in% common_ids, ]
ID code class
1 G 1 2
2 F 2 4
4 F 3 5
5 B 3 2
6 A 1 3
7 F 2 2
9 A 1 1
10 B 1 2
11 A 3 4
12 B 2 5
14 A 1 2
15 G 1 1
I want to throw semi_join in.
library(tidyverse)
df_test <- df2 |> semi_join(df1, by = "ID")
all.equal(df3, df_test)
#> [1] TRUE

How to interlacely merge two matrices?

I am facing with the other problem in coding with R-Studio. I have two dataframes (with the same number of rows and colunms). Now I want to merge them two into one, but the 6 columns of dataframe 1 would be columns 1,3,5,7,9.11 in the new matrix; while those of data frame 2 would be 2,4,6,8,10,12 in the new merged dataframe.
I can do it with for loop but is there any smarter way/function to do it? Thank you in advance ; )
You can cbind them and then reorder the columns accordingly:
df1 <- as.data.frame(sapply(LETTERS[1:6], function(x) 1:3))
df2 <- as.data.frame(sapply(letters[1:6], function(x) 1:3))
cbind(df1, df2)[, matrix(seq_len(2*ncol(df1)), 2, byrow=T)]
# A a B b C c D d E e F f
# 1 1 1 1 1 1 1 1 1 1 1 1 1
# 2 2 2 2 2 2 2 2 2 2 2 2 2
# 3 3 3 3 3 3 3 3 3 3 3 3 3
The code below will produce your required result, and will also work if one data frame has more columns than the other
# create sample data
df1 <- data.frame(
a1 = 1:10,
a2 = 2:11,
a3 = 3:12,
a4 = 4:13,
a5 = 5:14,
a6 = 6:15
)
df2 <- data.frame(
b1=11:20,
b2=12:21,
b3=13:22,
b4=14:23,
b5=15:24,
b6=16:25
)
# join by interleaving columns
want <- cbind(df1,df2)[,order(c(1:length(df1),1:length(df2)))]
Explanation:
cbind(df1,df2) combines the data frames with all the df1 columns first, then all the df2 columns.
The [,...] element re-orders these columns.
c(1:length(df1),1:length(df2)) gives 1 2 3 4 5 6 1 2 3 4 5 6 - i.e. the order of the columns in df1, followed by the order in df2
order() of this gives 1 7 2 8 3 9 4 10 5 11 6 12 which is the required column order
So [, order(c(1:length(df1), 1:length(df2)] re-orders the columns so that the columns of the original data frames are interleaved as required.

cumulative product in R across column

I have a dataframe in the following format
> x <- data.frame("a" = c(1,1),"b" = c(2,2),"c" = c(3,4))
> x
a b c
1 1 2 3
2 1 2 4
I'd like to add 3 new columns which is a cumulative product of the columns a b c, however I need a reverse cumulative product i.e. the output should be
row 1:
result_d = 1*2*3 = 6 , result_e = 2*3 = 6, result_f = 3
and similarly for row 2
The end result will be
a b c result_d result_e result_f
1 1 2 3 6 6 3
2 1 2 4 8 8 4
the column names do not matter this is just an example. Does anyone have any idea how to do this?
as per my comment, is it possible to do this on a subset of columns? e.g. only for columns b and c to return:
a b c results_e results_f
1 1 2 3 6 3
2 1 2 4 8 4
so that column "a" is effectively ignored?
One option is to loop through the rows and apply cumprod over the reverse of elements and then do the reverse
nm1 <- paste0("result_", c("d", "e", "f"))
x[nm1] <- t(apply(x, 1,
function(x) rev(cumprod(rev(x)))))
x
# a b c result_d result_e result_f
#1 1 2 3 6 6 3
#2 1 2 4 8 8 4
Or a vectorized option is rowCumprods
library(matrixStats)
x[nm1] <- rowCumprods(as.matrix(x[ncol(x):1]))[,ncol(x):1]
temp = data.frame(Reduce("*", x[NCOL(x):1], accumulate = TRUE))
setNames(cbind(x, temp[NCOL(temp):1]),
c(names(x), c("res_d", "res_e", "res_f")))
# a b c res_d res_e res_f
#1 1 2 3 6 6 3
#2 1 2 4 8 8 4

Strsplit on a column of a data frame [duplicate]

This question already has answers here:
Split comma-separated strings in a column into separate rows
(6 answers)
Closed 6 years ago.
I have a data.frame where one of the variables is a vector (or a list), like this:
MyColumn <- c("A, B,C", "D,E", "F","G")
MyDF <- data.frame(group_id=1:4, val=11:14, cat=MyColumn)
# group_id val cat
# 1 1 11 A, B,C
# 2 2 12 D,E
# 3 3 13 F
# 4 4 14 G
I'd like to have a new data frame with as many rows as the vector
FlatColumn <- unlist(strsplit(MyColumn,split=","))
which looks like this:
MyNewDF <- data.frame(group_id=c(rep(1,3),rep(2,2),3,4), val=c(rep(11,3),rep(12,2),13,14), cat=FlatColumn)
# group_id val cat
# 1 1 11 A
# 2 1 11 B
# 3 1 11 C
# 4 2 12 D
# 5 2 12 E
# 6 3 13 F
# 7 4 14 G
In essence, for every factor which is an element of the list of MyColumn (the letters A to G), I want to assign the corresponding values of the list. Every factor appears only once in MyColumn.
Is there a neat way for this kind of reshaping/unlisting/merging? I've come up with a very cumbersome for-loop over the rows of MyDF and the length of the corresponding element of strsplit(MyColumn,split=","). I'm very sure that there has to be a more elegant way.
You can use separate_rows from tidyr:
tidyr::separate_rows(MyDF, cat)
# group_id val cat
# 1 1 11 A
# 2 1 11 B
# 3 1 11 C
# 4 2 12 D
# 5 2 12 E
# 6 3 13 F
# 7 4 14 G
How about
lst <- strsplit(MyColumn, split = ",")
k <- lengths(lst) ## expansion size
FlatColumn <- unlist(lst, use.names = FALSE)
MyNewDF <- data.frame(group_id = rep.int(MyDF$group_id, k),
val = rep.int(MyDF$val, k),
cat = FlatColumn)
# group_id val cat
#1 1 11 A
#2 1 11 B
#3 1 11 C
#4 2 12 D
#5 2 12 E
#6 3 13 F
#7 4 14 G
We can use cSplit from splitstackshape
library(splitstackshape)
cSplit(MyDF, "cat", ",", "long")
# group_id val cat
#1: 1 11 A
#2: 1 11 B
#3: 1 11 C
#4: 2 12 D
#5: 2 12 E
#6: 3 13 F
#7: 4 14 G
We can also use do with base R with strsplit to split the 'cat' column into a list, replicate the sequence of rows of 'MyDF' with the lengths of 'lst', and create the 'cat' column by unlisting the 'lst'.
lst <- strsplit(as.character(MyDF$cat), ",")
transform(MyDF[rep(1:nrow(MyDF), lengths(lst)),-3], cat = unlist(lst))

R Sum columns by index

I need to find a way to sum columns by their index,I'm working on a bigread.csv file, I'll show here a sample of the problem; I'd like for example to sum from the 2nd to the 5th and from the 6th to the 7h the following matrix:
a 1 3 3 4 5 6
b 2 1 4 3 4 1
c 1 3 2 1 1 5
d 2 2 4 3 1 3
The result has to be like this:
a 11 11
b 10 5
c 7 6
d 8 4
The columns have all different names
We can use rowSums on the subset of columns i.e 2:5 and 6:7 separately and then create a new data.frame with the output.
data.frame(df1[1], Sum1=rowSums(df1[2:5]), Sum2=rowSums(df1[6:7]))
# id Sum1 Sum2
#1 a 11 11
#2 b 10 5
#3 c 7 6
#4 d 11 4
The package dplyr has a function exactly made for that purpose:
require(dplyr)
df1 = data.frame(a=c(1,2,3,4,3,3),b=c(1,2,3,2,1,2),c=c(1,2,3,21,2,3))
df2 = df1 %>% transmute(sum1 = a+b , sum2 = b+c)
df2 = df1 %>% transmute(sum1 = .[[1]]+.[[2]], sum2 = .[[2]]+.[[3]])

Resources