What does permutedims() do when called upon a multidimensional array?
From its name, it is evident it has something to do with the dimentions of the array. However, when running the code below, the output is unexpected and not clear.
A = Array{Int64}(undef, 100,100,100)
B = permutedims(A, (1,2,3))
println(A == B)
Output:
`true`
So does it create a copy of the original array? and what is the use of the tuple passed?
The docs of Julia sometimes do not have a complete explanation on a given topic.
permutedims(A::AbstractArray, perm)
perms is a tuple specifying the new order for the dimensions of A, where 1 corresponds to the first dimension (rows), 2 corresponds to the second dimension (columns), 3 corresponds to pages, and so on i.e. this function will return a copy of the array with its dimensions according to the specified perms.
What happened in the code in the question is that by passing the tuple (1,2,3), we were telling Julia that place the first dim of A in the place of the first dim of B and the second in the place of second and so on. This basically created a copy of the array A.
USE CASE EXAMPLE
A = ones(10,20,30) # Creates an array full of 1 of the size (10,20,30)
B = permutedims(A, (3,1,2))
println(A == B)
println(size(B))
OUTPUT
false
(30, 10, 20)
There are a few ways of using permutedims. It is useful as a non-recursive version of LinearAlgebra.transpose. When you want to convert a vector to a row vector or vice-versa, and the vector elements are simple (not other vectors or arrays), do this:
julia> v = [1, 2]
2-element Array{Int64,1}:
1
2
julia> v_row = permutedims(v)
1×2 Array{Int64,2}:
1 2
To transpose a matrix where the elements are simple, do this:
julia> m = [ 1 2
3 4 ]
2×2 Array{Int64,2}:
1 2
3 4
julia> permutedims(m, (2,1))
2×2 Array{Int64,2}:
1 3
2 4
julia> m = [ 1 2 3
4 5 6 ]
2×3 Array{Int64,2}:
1 2 3
4 5 6
julia> permutedims(m, (2,1))
3×2 Array{Int64,2}:
1 4
2 5
3 6
To permute the values of an n-dimensional array by each dimension, use permutedims(array, (newfirst_dim, newsecond_dim, ..)), where newfirst_dim, newsecond_dim
... are each one of the available dimensions 1:n and all dimensions are used:
julia> a = reshape(Vector(1:(2*3*4)), (2,3,4))
2×3×4 Array{Int64,3}:
[:, :, 1] =
1 3 5
2 4 6
[:, :, 2] =
7 9 11
8 10 12
[:, :, 3] =
13 15 17
14 16 18
[:, :, 4] =
19 21 23
20 22 24
julia> permutedims(a, (1,2,3)) # identity
2×3×4 Array{Int64,3}:
[:, :, 1] =
1 3 5
2 4 6
[:, :, 2] =
7 9 11
8 10 12
[:, :, 3] =
13 15 17
14 16 18
[:, :, 4] =
19 21 23
20 22 24
julia> permutedims(a, (3,2,1)) # reverse the dims
4×3×2 Array{Int64,3}:
[:, :, 1] =
1 3 5
7 9 11
13 15 17
19 21 23
[:, :, 2] =
2 4 6
8 10 12
14 16 18
20 22 24
julia> # the new last dimension is the old first dimension (length=2)
Related
That's it. My program generates a vector of Int64s, and each time I need to stack each Vector into a M by N Matrix
Everything. e.g.
Push, Append, hcat [], (), {}, even ¯_(ツ)_/¯
If this is a new matrix use hcat:
julia> hcat([1,2,3],[4,5,6])
3×2 Matrix{Int64}:
1 4
2 5
3 6
This will also work with vector of vectors:
julia> vecs = [[1,2,3],[4,5,6],[7,8,9]];
julia> a = hcat(vecs...)
3×3 Matrix{Int64}:
1 4 7
2 5 8
3 6 9
If performance is an issue reduce combined with hcat will be more verbose but much faster:
reduce(hcat, vecs)
To put data into a column use broadcasted assignment:
julia> a[:,2] .= [40,50,60];
julia> a
3×3 Matrix{Int64}:
1 40 7
2 50 8
3 60 9
I'd like to know how can I operate with CartesianIndex. For example I have array
julia> A = rand(1:5, 10, 2)
10×2 Array{Int64,2}:
2 5
1 1
4 5
4 1
2 1
4 1
2 4
1 5
2 5
4 4
and I want to save all numbers which stay near (in pair) with number 1. I can use c=findall(x->x==1, A), but I will have a cartensian indexes of "1".
There is function x=getindex.(c, [1 2]) it makes an array which I can change, but I don't know how to convert it back to CartesianIndex. And I think that must be a better way to do this.
A[view(A.==1,:,[2,1])]
This literally returns "all numbers which stay in pair with number 1".
The order of returned numbers is columnar. If you want to return it by rows:
A'[view(A.==1,:,[2,1])']
Example:
julia> A = rand(1:5, 10, 2)
10×2 Array{Int64,2}:
1 4
3 3
1 3
3 3
5 1
1 5
2 1
3 3
1 3
2 3
julia> A'[view(A.==1,:,[2,1])']
6-element Array{Int64,1}:
4
3
5
5
2
3
If you rather want full rows than use filter!:
julia> filter!((x)->(1 in x), collect(eachrow(A)))
6-element Array{SubArray{Int64,1,Array{Int64,2},Tuple{Int64,Base.Slice{Base.OneTo{Int64}}},true},1}:
[1, 4]
[1, 3]
[5, 1]
[1, 5]
[2, 1]
[1, 3]
Given the array:
arr = [1 2; 3 4; 5 6]
3×2 Array{Int64,2}:
1 2
3 4
5 6
which is flattened flat_arr = collect(Iterators.flatten(arr))
6-element Array{Int64,1}:
1
3
5
2
4
6
I sometimes need to go between both index formats. For example, if I got the sorted indices of flat_arr, I may want to iterate over arr using these sorted indices. In Python, this is typically done with np.unravel_index. How is this done in Julia? Do I just need to write my own function?
vec() creates a 1-d view of the array. Hence you can have both pointers to the array in the memory and use whichever one you need in any minute (they point to the same array):
julia> arr = [1 2; 3 4; 5 6]
3×2 Array{Int64,2}:
1 2
3 4
5 6
julia> arr1d = vec(arr)
6-element Array{Int64,1}:
1
3
5
2
4
6
julia> arr1d[4] = 99
99
julia> arr
3×2 Array{Int64,2}:
1 99
3 4
5 6
Note that in Julia arrays are stored in column major order and hence the fourth value is the first value in the second column
This can be accomplished using CartesianIndices.
c_i = CartesianIndices(arr)
flat_arr[2] == arr[c_i[2]]) == 3
If I want to create 2D array with 1 row by 5 columns.
I could do this
julia> a = [1 2 3 4 5]
1×5 Array{Int64,2}:
1 2 3 4 5
But to create 2D array with 5 rows by 1 column. I have tried
julia> b = [1; 2; 3; 4; 5]
5-element Array{Int64,1}:
1
2
3
4
5
But I got back a 1D array which is NOT what I wanted
The only way to get it to work is
julia> b=reshape([1 2 3 4 5],5,1)
5×1 Array{Int64,2}:
1
2
3
4
5
Perhaps I am missing some crucial information here.
You could also do a = [1 2 3 4 5]'.
On a side note, for Julia versions > 0.6 the type of a wouldn't be Array{Int64, 2} but a LinearAlgebra.Adjoint{Int64,Array{Int64,2}} as conjugate transpose is lazy in this case. One can get <= 0.6 behavior by a = copy([1 2 3 4 5]').
AFAIK there is no syntactic sugar for it.
I usually write:
hcat([1, 2, 3, 4, 5])
which is short and I find it easy to remember.
If you use reshape you can replace one dimension with : which means you do not have to count (it is useful e.g. when you get an input vector as a variable):
reshape([1 2 3 4 5], :, 1)
Finally you could use:
permutedims([1 2 3 4 5])
If the two Int arrays are, a = [1;2;3] and b = [4;5;6], how do we concatenate the two arrays in both the dimensions? The expected outputs are,
julia> out1
6-element Array{Int64,1}:
1
2
3
4
5
6
julia> out2
3x2 Array{Int64,2}:
1 4
2 5
3 6
Use the vcat and hcat functions:
julia> a, b = [1;2;3], [4;5;6]
([1,2,3],[4,5,6])
help?> vcat
Base.vcat(A...)
Concatenate along dimension 1
julia> vcat(a, b)
6-element Array{Int64,1}:
1
2
3
4
5
6
help?> hcat
Base.hcat(A...)
Concatenate along dimension 2
julia> hcat(a, b)
3x2 Array{Int64,2}:
1 4
2 5
3 6
Square brackets can be used for concatenation:
julia> a, b = [1;2;3], [4;5;6]
([1,2,3],[4,5,6])
julia> [a; b]
6-element Array{Int64,1}:
1
2
3
4
5
6
julia> [a b]
3×2 Array{Int64,2}:
1 4
2 5
3 6
You can use the cat function to concatenate any number of arrays along any dimension. The first input is the dimension over which to perform the concatenation; the remaining inputs are all of the arrays you wish to concatenate together
a = [1;2;3]
b = [4;5;6]
## Concatenate 2 arrays along the first dimension
cat(1,a,b)
6-element Array{Int64,1}:
1
2
3
4
5
6
## Concatenate 2 arrays along the second dimension
cat(2,a,b)
3x2 Array{Int64,2}:
1 4
2 5
3 6
## Concatenate 2 arrays along the third dimension
cat(3,a,b)
3x1x2 Array{Int64,3}:
[:, :, 1] =
1
2
3
[:, :, 2] =
4
5
6
when encountered Array{Array,1}, the grammer is a little bit different, like this:
julia> a=[[1,2],[3,4]]
2-element Array{Array{Int64,1},1}:
[1, 2]
[3, 4]
julia> vcat(a)
2-element Array{Array{Int64,1},1}:
[1, 2]
[3, 4]
julia> hcat(a)
2×1 Array{Array{Int64,1},2}:
[1, 2]
[3, 4]
julia> vcat(a...)
4-element Array{Int64,1}:
1
2
3
4
julia> hcat(a...)
2×2 Array{Int64,2}:
1 3
2 4
ref:
... combines many arguments into one argument in function definitions
In the context of function definitions, the ... operator is used to combine many different arguments into a single argument. This use of ... for combining many different arguments into a single argument is called slurping
Functional way to concatanate 2 arrays is to use reduce function.
a = rand(10, 1)
b = rand(10, 1)
c = reduce(hcat, [ a, b])