How to pass multiple values from URL to r shiny checkbox input - r

Please see the sample code below, what I want is just pass multiple chk values from url as shiny check box input values; it works for single value like: http://127.0.0.1:3471/?chk=1
but it does not work for multiple values like http://127.0.0.1:3471/?chk=1,2.
Thanks in advance.
library(shiny)
shinyApp(
ui = shinyUI(fluidPage(
checkboxGroupInput("chk", "Check box", c("Monthly" = 1,
"Quarterly" = 2,
"Weekly" = 3,
"Daily" = 4))
)),
server = shinyServer(function(input, output,session) {
observe({
query <- parseQueryString(session$clientData$url_search)
if (!is.null(query[['chk']])) {
print(query[['chk']])
updateTextInput(session, "chk", value = query[['chk']])
}
})
})
)

I believe that you may want to use updateCheckboxGroupInput to update your checkboxes instead of updateTextInput.
The extracted query[['chk']] will be a string separated by comma containing elements you wish to update in your checkboxes. You can use strsplit to separate them (and unlist since result would be a list).
server = shinyServer(function(input, output,session) {
observe({
query <- parseQueryString(session$clientData$url_search)
if (!is.null(query[['chk']])) {
print(query[['chk']])
updateCheckboxGroupInput(session, "chk", selected = unlist(strsplit(query[['chk']], ",")))
}
})
})

Related

How to update a SelectizeInput depending on a textInput in Shiny

I have create one app that contains a textInput and a selectizeInput. Depending on the user's input and if the input can be found in one dataset, you will see all the possibilities according to that textInput in the selectizeInput.
In this way, if the user introduces a word that it is not in the dataset, the selectizeInput can't display any choice.
Everything works fine, but I found one problem. If the user starts writing a correct word, the user gets a dropdown list... and then, if the input is removed... the dropdown list is still there (the choices from selectizeInput are still there).
Here the code:
library(shiny)
library(dplyr)
library(stringr)
ui <- fluidPage(
textInput("my_input", "Introduce a word"),
selectizeInput(inputId = "dropdown_list", label = "Choose the variable:", choices=character(0)),
)
server <- function(input, output, session) {
my_list <- reactive({
req(input$my_input)
data <- as.data.frame(storms)
res <- subset(data, (grepl(pattern = str_to_sentence(input$my_input), data$name))) %>%
dplyr::select(name)
res <- as.factor(res$name)
return(res)
})
# This is to generate the choices (gene list) depending on the user's input.
observeEvent(input$my_input, {
updateSelectizeInput(
session = session,
inputId = "dropdown_list",
choices = my_list(), options=list(maxOptions = length(my_list())),
server = TRUE
)
})
}
shinyApp(ui, server)
Do you know how can I remove the choices from the selectizeInput if the user deletes the input?
Thanks very much in advance
Regards
The issue is the req(input$myinput). Hence, if the user deletes the input my_list() does not get updated. Instead of req you could use an if to check whether the input is equal to an empty string:
my_list <- reactive({
if (!input$my_input == "") {
data <- as.data.frame(storms)
res <- subset(data, grepl(pattern = str_to_sentence(input$my_input), data$name), name)
res <- as.factor(res$name)
return(res)
}
})

'Select All' checkbox for Shiny DT::renderDataTable

I want a checkbox that selects all the rows displayed (displayed is key as this differs between the filters you have applied and the entire data table) in a standard DT::renderDataTable in Shiny.
Is there any DT extension that already does this? My coding skills are basic so I cannot write an equivalent Java or HTML code.
This is my app so far, any csv file is compatible for the select all purpose. At the moment there is a clunky way of creating another table of all the selected rows (manually selected one by one) - this is difficult when you want to select 30 animals all with the same characteristic.
library(shiny)
library(shinyjs)
library(DT)
library(dplyr)
library(data.table)
ui = pageWithSidebar(
headerPanel(""),
#This is where the full animal information file is input, as a ".txt" file.
sidebarPanel(
fileInput("ani", "Upload Animal Information File", accept = ".csv"),
br(),
numericInput("groups","Number of Ewe Groups", value = 1 ),
#This is a list of the table headers. These headers can be indivdually selected to be part of the concatenated "Unique ID" single column.
uiOutput("choose_columns"),
width = 2),
mainPanel(
DT::dataTableOutput("ani1"),
DT::dataTableOutput("selectedEwes")
))
server = function(input, output, session) {
animalinformation <- reactive({
file1 <- input$ani
if (is.null(file1))
return(NULL)
#This removes the Ewes and Status non-zero Rams from the displayed data, so that only live/at hand Rams are shown for selection.
isolate({
anifile <- read.csv(file1$datapath, header = TRUE)
anifile <- as.data.frame(anifile)
})
anifile
})
output$choose_columns <- renderUI({
if (is.null(animalinformation()))
return()
colnames <- names(animalinformation())
# Create the checkboxes and select them all by default
checkboxGroupInput("columns", "Choose Columns",
choices = colnames,
selected = colnames)
})
#This line is repsonsible for creating the table for display.
output$ani1 = DT::renderDataTable({
if (is.null(animalinformation()))
return()
if (is.null(input$columns) || !(input$columns %in% names(animalinformation()))) { return() }
{ datatable(animalinformation()[, input$columns, drop = F], filter = "top") }
})
ani1_selected <- reactive({
ids <- input$ani1_rows_selected
animalinformation()[ids,]
})
#This displays the table of selected rows from the table of Rams. This table can be downloaded or printed, or copied using the buttons that appear above the table, thanks to the 'Buttons' extension.
output$selectedEwes <- DT::renderDataTable({
datatable(
ani1_selected(),
selection = list(mode = "none"),
caption = "Copy to clipboard, download a .csv or print the following table of selected Ewes, using the above buttons.", extensions = 'Buttons', options = list(dom = 'Bfrtip', buttons = c('copy', 'csv', 'excel', 'pdf', 'print'))
)
})
}
shinyApp(ui = ui, server = server)
Any help would be much appreciated thanks.
Here is the simplest implementation I can think of. It takes advantage of the fact that DT will return the filter row indexes back to R, which is input$dt_rows_all in the below example. Moreover, it uses the DT::dataTableProxy() to control the row selection. Finally, it works in both the client mode and the server-side processing mode.
By the way, I want to mention that using javascript to mimic the selecting / deselecting events in DT won't change the related shiny binding values in R (e.g., input$dt_rows_selected). It's because DT has its own implementation of row selections (may change in the future but not yet at the time of writing). See rstudio/DT#366 if you want to know more.
library(shiny)
ui <- tagList(
DT::DTOutput("dt"),
checkboxInput("dt_sel", "sel/desel all"),
h4("selected_rows:"),
verbatimTextOutput("selected_rows", TRUE)
)
server <- function(input, output, session) {
dat <- reactive({iris})
output$dt <- DT::renderDT(dat(), server = TRUE)
dt_proxy <- DT::dataTableProxy("dt")
observeEvent(input$dt_sel, {
if (isTRUE(input$dt_sel)) {
DT::selectRows(dt_proxy, input$dt_rows_all)
} else {
DT::selectRows(dt_proxy, NULL)
}
})
output$selected_rows <- renderPrint(print(input$dt_rows_selected))
}
shiny::runApp(list(ui = ui, server = server))

Render values of inputs in shiny so that these selections are deletable

To filter a data.frame with lots of variables I created a selectizeInput which allows you to select one of the columns of the data. This then creates another selectizeInput for the selected variable which can be used for subsetting the data. The selected value of the second selectizeInput is rendered below.
This is what it looks like
I want to render the selected values of these inputs so that these can be deleted by the user by clicking the black cross. Also a selection of var2 should not be deleted when the Filter selectizeInput is changed to var1.
So it should look like this (assuming the user previously selected value z in var2 and then value a in var1.
Anyone knows a good solution in shiny?
This is the code:
library(shiny)
data <- data.frame(var1 = c("a", "b"), var2 = c("y", "z"))
ui <- fluidPage(
selectizeInput("filter", label = "Filter",
multiple = FALSE, choices = c("var1", "var2")),
uiOutput("filter_var"),
uiOutput("selected_filter_value")
)
server <- function(input, output) {
observeEvent(input$filter, {
# dynamically generate selectizeInput for filter
output$filter_var <- renderUI({
selectizeInput(input$filter, label = input$filter,
choices = data[input$filter], multiple = TRUE)
})
})
# show selected filter values
# selected filter values should stay when choosing new input filter variable
# these should be deletable
observeEvent(input[[input$filter]], {
output$selected_filter_value <- renderUI({
textOutput("text_out")
})
output$text_out <- renderText({
paste0(input$filter, ": ", input[[input$filter]])
})
})
}
shinyApp(ui, server)
Well, I had to rearrange quite a lot and this whole problem is more about finding the right implementation for your case.
You can probably deduct most of it just looking at the code at the end of this post.
Main things explained: You didn't actually say what deleting means to you. So I just assumed you wanted the cells to not appear in the select boxes anymore. For that, I excluded NAs and replaced cells with an NA to show that they are deleted.
I rearranged the select values, such that we actually can delete certain cells, giving row and column names instead of just their values.
And most important, the buttons you wanted to create are dynamic UI elements with dynamic observers, which are then addressed to delete the certain cell.
Note: This solution is not optimal, since I specifically aimed to stay just on the R side of shiny. You can achieve a much more elegant and resource saving solution if you use JavaScript and shiny's custom messages.
Also: I did not address your request to let the selected values visible if the first select box changes. But this is a rather small issue, if you reconsider your setup. And I didn't want to diverge too much from you original code to not be confusing.
Code now:
library(shiny)
data <- data.frame(var1 = c("a", "b"), var2 = c("y", "z"))
ui <- fluidPage(
selectizeInput("filter", label = "Filter",
multiple = FALSE, choices = c("var1", "var2")),
uiOutput("filter_var"),
uiOutput("selected_filter_value")
)
server <- function(input, output) {
# Pulled out from original observeEvent
makeSecondInput <- function() {
output$filter_var <- renderUI({
# Names are not enough when wanting to delete data.frame rows (because of duplicates).
# So we instead use row numbers and set the actual values as labels.
choiceData <- na.exclude(data[input$filter])
choices <- rownames(choiceData)
names(choices) <- choiceData[, input$filter]
selectizeInput(input$filter, label = input$filter, selected = input[[input$filter]],
choices = choices, multiple = TRUE)
})
}
observeEvent(input$filter, {
makeSecondInput()
})
# Install a manual trigger to redraw input field, when an option is killed.
trigger <- reactiveVal()
observeEvent(trigger(), ignoreNULL = TRUE, {
makeSecondInput()
})
# Keep track of created observers, so dynamic creation does not wildly stack them up.
observersCreated <- character()
makeButtonObserver <- function(buttonname, colname, rowname) {
# For each delete-button created, install observer to delete data.frame cell.
observeEvent(input[[buttonname]], {
data[rowname, colname] <<- NA
# Force re-evaluation of observer above.
trigger(runif(1))
})
# Track that this button is equipped. (And re-creation of the same button does not add another obs.)
# Note: Observers DON'T get automagically removed after actionButton is no longer in the UI.
observersCreated <<- c(observersCreated, buttonname)
}
observeEvent(input[[input$filter]], {
output$selected_filter_value <- renderUI({
# Could be a list, so splitting that up.
lapply(input[[input$filter]], function(v) {
buttonname <- paste("kill", input$filter, v, sep = "_")
if (!(buttonname %in% observersCreated)) {
makeButtonObserver(buttonname, input$filter, v)
}
span(
paste0(input$filter, ": ", data[v, input$filter]),
actionButton(buttonname, "x")
)
})
})
})
}
shinyApp(ui, server)
This is what I currently have. There are still some issues which I couldn't solve.
Problems:
if I make some selections in input1, then switch from input1 to input2 and unclick one of the selections from input1 and then switch back to input1 these changes will be unmade
the checkboxes are rerendered when a new one is added and in this process sorted which changes the order
Code:
library(shiny)
library(shinyWidgets)
data <- data.frame(var1 = c("a", "b"), var2 = c("y", "z"))
ui <- fluidPage(
selectizeInput("filter", label = "Filter",
multiple = FALSE, choices = c("var1", "var2")),
uiOutput("filter_var"),
uiOutput("selected_filter_value")
)
server <- function(input, output, session) {
values <- reactiveValues(
filter_vals = list(var1 = list(), var2 = list()),
observers = NULL
)
# dynamically generate selectizeInput for variable selected in filter
# set selected values to previous selections
observeEvent(input$filter, {
output$filter_var <- renderUI({
selectInput(input$filter, label = input$filter,
selected = values$filter_vals[[input$filter]],
choices = data[input$filter], multiple = TRUE, selectize = TRUE)
})
})
# store selected values in list
observeEvent(input[[input$filter]], {
values$filter_vals[[input$filter]] <- input[[input$filter]]
})
# we need this because observeEvent is not triggered if input is empty after deleting all selections
observe({
if (is.null(input[[input$filter]])) {
values$filter_vals[[input$filter]] <- list()
}
})
# add an observer for newly created checkbox
# if checkbox is clicked delete entry in list
# keep a list of all existing observers
make_delete_observer <- function(name) {
observeEvent(input[[name]], {
req(input[[name]] == FALSE)
var <- stringr::str_split(name, "_")[[1]][1]
val <- as.integer(stringr::str_split(name, "_")[[1]][2])
values$filter_vals[[var]] <- intersect(values$filter_vals[[var]][-val],
values$filter_vals[[var]])
updateSelectInput(session, var, selected = values$filter_vals[[var]])
})
}
# render selected values which are stored in a list as checkboxes
# add an observeEvent for each checkbox
# store selected values in list
output$selected_filter_value <- renderUI({
req(values$filter_vals[[input$filter]])
req(any(sapply(values$filter_vals, length) > 0))
tag_list <- tagList()
for (i in seq_along(values$filter_vals)) {
for (j in seq_along(values$filter_vals[[i]])) {
new_input_name <- paste0(names(values$filter_vals)[i], "_", j)
new_input <- prettyCheckbox(
inputId = new_input_name, value = TRUE,
label = paste0(names(values$filter_vals)[i], ": ", values$filter_vals[[i]][j]),
icon = icon("close"), status = "danger", outline = FALSE, plain = TRUE
)
# create observer only if it does not exist yet
if (!(new_input_name %in% values$observers)) {
values$observers <- append(values$observers, new_input_name)
make_delete_observer(new_input_name)
}
tag_list <- tagAppendChild(tag_list, new_input)
}
}
tag_list
})
}
shinyApp(ui, server)

R Shiny: How to dynamically append arbitrary number of input widgets

The goal
I am working on a Shiny app that allows the user to upload their own data and focus on the entire data or a subset by providing data filtering widgets described by the below graph
The select input "Variable 1" will display all the column names of the data uploaded by the user and the selectize input "Value" will display all the unique values of the corresponding column selected in "Variable 1". Ideally, the user will be able to add as many such rows ("Variable X" + "Value") as possible by some sort of trigger, one possibility being clicking the "Add more" action button.
A possible solution
After looking up online, I've found one promising solution given by Nick Carchedi pasted below
ui.R
library(shiny)
shinyUI(pageWithSidebar(
# Application title
headerPanel("Dynamically append arbitrary number of inputs"),
# Sidebar with a slider input for number of bins
sidebarPanel(
uiOutput("allInputs"),
actionButton("appendInput", "Append Input")
),
# Show a plot of the generated distribution
mainPanel(
p("The crux of the problem is to dynamically add an arbitrary number of inputs
without resetting the values of existing inputs each time a new input is added.
For example, add a new input, set the new input's value to Option 2, then add
another input. Note that the value of the first input resets to Option 1."),
p("I suppose one hack would be to store the values of all existing inputs prior
to adding a new input. Then,", code("updateSelectInput()"), "could be used to
return inputs to their previously set values, but I'm wondering if there is a
more efficient method of doing this.")
)
))
server.R
library(shiny)
shinyServer(function(input, output) {
# Initialize list of inputs
inputTagList <- tagList()
output$allInputs <- renderUI({
# Get value of button, which represents number of times pressed
# (i.e. number of inputs added)
i <- input$appendInput
# Return if button not pressed yet
if(is.null(i) || i < 1) return()
# Define unique input id and label
newInputId <- paste0("input", i)
newInputLabel <- paste("Input", i)
# Define new input
newInput <- selectInput(newInputId, newInputLabel,
c("Option 1", "Option 2", "Option 3"))
# Append new input to list of existing inputs
inputTagList <<- tagAppendChild(inputTagList, newInput)
# Return updated list of inputs
inputTagList
})
})
The downside
As pointed by Nick Carchedi himself, all the existing input widgets will undesirably get reset every time when a new one is added.
A promising solution for data subsetting/filtering in Shiny
As suggested by warmoverflow, the datatable function in DT package provides a nice way to filter the data in Shiny. See below a minimal example with data filtering enabled.
library(shiny)
shinyApp(
ui = fluidPage(DT::dataTableOutput('tbl')),
server = function(input, output) {
output$tbl = DT::renderDataTable(
iris, filter = 'top', options = list(autoWidth = TRUE)
)
}
)
If you are going to use it in your Shiny app, there are some important aspects that are worth noting.
Filtering box type
For numeric/date/time columns: range sliders are used to filter rows within ranges
For factor columns: selectize inputs are used to display all possible categories
For character columns: ordinary search boxes are used
How to obtain the filtered data
Suppose the table output id is tableId, use input$tableId_rows_all as the indices of rows on all pages (after the table is filtered by the search strings). Please note that input$tableId_rows_all returns the indices of rows on all pages for DT (>= 0.1.26). If you use the DT version by regular install.packages('DT'), only the indices of the current page are returned
To install DT (>= 0.1.26), refer to its GitHub page
Column width
If the data have many columns, column width and filter box width will be narrow, which makes it hard to see the text as report here
Still to be solved
Despite some known issues, datatable in DT package stands as a promising solution for data subsetting in Shiny. The question itself, i.e. how to dynamically append arbitrary number of input widgets in Shiny, nevertheless, is interesting and also challenging. Until people find a good way to solve it, I will leave this question open :)
Thank you!
are you looking for something like this?
library(shiny)
LHSchoices <- c("X1", "X2", "X3", "X4")
#------------------------------------------------------------------------------#
# MODULE UI ----
variablesUI <- function(id, number) {
ns <- NS(id)
tagList(
fluidRow(
column(6,
selectInput(ns("variable"),
paste0("Select Variable ", number),
choices = c("Choose" = "", LHSchoices)
)
),
column(6,
numericInput(ns("value.variable"),
label = paste0("Value ", number),
value = 0, min = 0
)
)
)
)
}
#------------------------------------------------------------------------------#
# MODULE SERVER ----
variables <- function(input, output, session, variable.number){
reactive({
req(input$variable, input$value.variable)
# Create Pair: variable and its value
df <- data.frame(
"variable.number" = variable.number,
"variable" = input$variable,
"value" = input$value.variable,
stringsAsFactors = FALSE
)
return(df)
})
}
#------------------------------------------------------------------------------#
# Shiny UI ----
ui <- fixedPage(
verbatimTextOutput("test1"),
tableOutput("test2"),
variablesUI("var1", 1),
h5(""),
actionButton("insertBtn", "Add another line")
)
# Shiny Server ----
server <- function(input, output) {
add.variable <- reactiveValues()
add.variable$df <- data.frame("variable.number" = numeric(0),
"variable" = character(0),
"value" = numeric(0),
stringsAsFactors = FALSE)
var1 <- callModule(variables, paste0("var", 1), 1)
observe(add.variable$df[1, ] <- var1())
observeEvent(input$insertBtn, {
btn <- sum(input$insertBtn, 1)
insertUI(
selector = "h5",
where = "beforeEnd",
ui = tagList(
variablesUI(paste0("var", btn), btn)
)
)
newline <- callModule(variables, paste0("var", btn), btn)
observeEvent(newline(), {
add.variable$df[btn, ] <- newline()
})
})
output$test1 <- renderPrint({
print(add.variable$df)
})
output$test2 <- renderTable({
add.variable$df
})
}
#------------------------------------------------------------------------------#
shinyApp(ui, server)
Now, I think that I understand better the problem.
Suppose the user selects the datasets::airquality dataset (here, I'm showing only the first 10 rows):
The field 'Select Variable 1' shows all the possible variables based on the column names of said dataset:
Then, the user selects the condition and the value to filter the dataset by:
Then, we want to add a second filter (still maintaining the first one):
Finally, we get the dataset filtered by the two conditions:
If we want to add a third filter:
You can keep adding filters until you run out of data.
You can also change the conditions to accommodate factors or character variables. All you need to do is change the selectInput and numericInput to whatever you want.
If this is what you want, I've solved it using modules and by creating a reactiveValue (tmpFilters) that contains all selections (variable + condition + value). From it, I created a list with all filters (tmpList) and from it I created the proper filter (tmpListFilters) to use with subset.
This works because the final dataset is "constantly" being subset by this reactiveValue (the tmpFilters). At the beginning, tmpFilters is empty, so we get the original dataset. Whenever the user adds the first filter (and other filters after that), this reactiveValue gets updated and so does the dataset.
Here's the code for it:
library(shiny)
# > MODULE #####################################################################
## |__ MODULE UI ===============================================================
variablesUI <- function(id, number, LHSchoices) {
ns <- NS(id)
tagList(
fluidRow(
column(
width = 4,
selectInput(
inputId = ns("variable"),
label = paste0("Select Variable ", number),
choices = c("Choose" = "", LHSchoices)
)
),
column(
width = 4,
selectInput(
inputId = ns("condition"),
label = paste0("Select condition ", number),
choices = c("Choose" = "", c("==", "!=", ">", ">=", "<", "<="))
)
),
column(
width = 4,
numericInput(
inputId = ns("value.variable"),
label = paste0("Value ", number),
value = NA,
min = 0
)
)
)
)
}
## |__ MODULE SERVER ===========================================================
filter <- function(input, output, session){
reactive({
req(input$variable, input$condition, input$value.variable)
fullFilter <- paste0(
input$variable,
input$condition,
input$value.variable
)
return(fullFilter)
})
}
# Shiny ########################################################################
## |__ UI ======================================================================
ui <- fixedPage(
fixedRow(
column(
width = 5,
selectInput(
inputId = "userDataset",
label = paste0("Select dataset"),
choices = c("Choose" = "", ls("package:datasets"))
),
h5(""),
actionButton("insertBtn", "Add another filter")
),
column(
width = 7,
tableOutput("finalTable")
)
)
)
## |__ Server ==================================================================
server <- function(input, output) {
### \__ Get dataset from user selection ------------------------------------
originalDF <- reactive({
req(input$userDataset)
tmpData <- eval(parse(text = paste0("datasets::", input$userDataset)))
if (!class(tmpData) == "data.frame") {
stop("Please select a dataset of class data.frame")
}
tmpData
})
### \__ Get the column names -----------------------------------------------
columnNames <- reactive({
req(input$userDataset)
tmpData <- eval(parse(text = paste0("datasets::", input$userDataset)))
names(tmpData)
})
### \__ Create Reactive Filter ---------------------------------------------
tmpFilters <- reactiveValues()
### \__ First UI Element ---------------------------------------------------
### Add first UI element with column names
observeEvent(input$userDataset, {
insertUI(
selector = "h5",
where = "beforeEnd",
ui = tagList(variablesUI(paste0("var", 1), 1, columnNames()))
)
})
### Update Reactive Filter with first filter
filter01 <- callModule(filter, paste0("var", 1))
observe(tmpFilters[['1']] <- filter01())
### \__ Other UI Elements --------------------------------------------------
### Add other UI elements with column names and update the filter
observeEvent(input$insertBtn, {
btn <- sum(input$insertBtn, 1)
insertUI(
selector = "h5",
where = "beforeEnd",
ui = tagList(variablesUI(paste0("var", btn), btn, columnNames()))
)
newFilter <- callModule(filter, paste0("var", btn))
observeEvent(newFilter(), {
tmpFilters[[paste0("'", btn, "'")]] <- newFilter()
})
})
### \__ Dataset with Filtered Results --------------------------------------
resultsFiltered <- reactive({
req(filter01())
tmpDF <- originalDF()
tmpList <- reactiveValuesToList(tmpFilters)
if (length(tmpList) > 1) {
tmpListFilters <- paste(tmpList, "", collapse = "& ")
} else {
tmpListFilters <- unlist(tmpList)
}
tmpResult <- subset(tmpDF, eval(parse(text = tmpListFilters)))
tmpResult
})
### \__ Print the Dataset with Filtered Results ----------------------------
output$finalTable <- renderTable({
req(input$userDataset)
if (is.null(tmpFilters[['1']])) {
head(originalDF(), 10)
} else {
head(resultsFiltered(), 10)
}
})
}
#------------------------------------------------------------------------------#
shinyApp(ui, server)
# End
If you are looking for a data subsetting/filtering in Shiny Module :
filterData from package shinytools can do the work. It returns an expression as a call but it can also return the data (if your dataset is not too big).
library(shiny)
# remotes::install_github("ardata-fr/shinytools")
library(shinytools)
ui <- fluidPage(
fluidRow(
column(
3,
filterDataUI(id = "ex"),
actionButton("AB", label = "Apply filters")
),
column(
3,
tags$strong("Expression"),
verbatimTextOutput("expression"),
tags$br(),
DT::dataTableOutput("DT")
)
)
)
server <- function(input, output) {
x <- reactive({iris})
res <- callModule(module = filterDataServer, id = "ex", x = x, return_data = FALSE)
output$expression <- renderPrint({
print(res$expr)
})
output$DT <- DT::renderDataTable({
datatable(data_filtered())
})
data_filtered <- eventReactive(input$AB, {
filters <- eval(expr = res$expr, envir = x())
x()[filters,]
})
}
shinyApp(ui, server)
You can also use lazyeval or rlang to evaluate the expression :
filters <- lazyeval::lazy_eval(res$expr, data = x())
filters <- rlang::eval_tidy(res$expr, data = x())
You need to check for existing input values and use them if available:
# Prevent dynamic inputs from resetting
newInputValue <- "Option 1"
if (newInputId %in% names(input)) {
newInputValue <- input[[newInputId]]
}
# Define new input
newInput <- selectInput(newInputId, newInputLabel, c("Option 1", "Option 2", "Option 3"), selected=newInputValue)
A working version of the gist (without the reset problem) can be found here: https://gist.github.com/motin/0d0ed0d98fb423dbcb95c2760cda3a30
Copied below:
ui.R
library(shiny)
shinyUI(pageWithSidebar(
# Application title
headerPanel("Dynamically append arbitrary number of inputs"),
# Sidebar with a slider input for number of bins
sidebarPanel(
uiOutput("allInputs"),
actionButton("appendInput", "Append Input")
),
# Show a plot of the generated distribution
mainPanel(
p("This shows how to add an arbitrary number of inputs
without resetting the values of existing inputs each time a new input is added.
For example, add a new input, set the new input's value to Option 2, then add
another input. Note that the value of the first input does not reset to Option 1.")
)
))
server.R
library(shiny)
shinyServer(function(input, output) {
output$allInputs <- renderUI({
# Get value of button, which represents number of times pressed (i.e. number of inputs added)
inputsToShow <- input$appendInput
# Return if button not pressed yet
if(is.null(inputsToShow) || inputsToShow < 1) return()
# Initialize list of inputs
inputTagList <- tagList()
# Populate the list of inputs
lapply(1:inputsToShow,function(i){
# Define unique input id and label
newInputId <- paste0("input", i)
newInputLabel <- paste("Input", i)
# Prevent dynamic inputs from resetting
newInputValue <- "Option 1"
if (newInputId %in% names(input)) {
newInputValue <- input[[newInputId]]
}
# Define new input
newInput <- selectInput(newInputId, newInputLabel, c("Option 1", "Option 2", "Option 3"), selected=newInputValue)
# Append new input to list of existing inputs
inputTagList <<- tagAppendChild(inputTagList, newInput)
})
# Return updated list of inputs
inputTagList
})
})
(The solution was guided on Nick's hints in the original gist from where you got the code of the promising solution)

How do you deal with IDs in Shiny Dropdown lists?

Typically in a web interface if you have a dropdown populated from a database that display's some text and you want to use that selected text in the dropdown and pass it back to a database. But a lot of times you want to pass an ID instead of the actual text displayed.
In my example below I have a global.R file that returns the data for the dropdowns. This simulates data returned from a database. For each dropdown there is a text field that is displayed in the dropdowns and an "id" field that is not displayed BUT I have to somehow access the "id" fields of the dropdowns. How is this done in Shiny?... Because the selectInputs don't allow you to store the ids so you can access them like input$DisplayName$id
In the example below I just want to print the "id" of the "DisplayName" selectInput so if "Mary" is in the input$DisplayName then "20" should be printed in the RenderText call.
Here is code to run:
require(shiny)
runApp(list(
ui = basicPage(
sidebarPanel(
selectInput("Department", "Select a department", choices = as.character(GetDepartments()$Department), selected = as.character(GetDepartments()$Department[1])),
uiOutput("DisplayName")
),
mainPanel(textOutput("Text") )
),
server = function(input, output, session) {
output$DisplayName<-renderUI({
Department <- input$Department
print(Department)
selectInput("DisplayName", 'DisplayName:', choices = as.character(GetDisplayName(Department)$DisplayName), selected =as.character(GetDisplayName(Department)$DisplayName[1] ))
})
output$Text <- renderText({
# Here I want to simulate accessing the "id" field of the input$DisplayName
#in my app I need to pass the id to a database query
#If Mary is in input$DisplayName how can I access her id of "20"?
print("in render text")
return( ??? How do I access the id = 20???)
})
}
))
Here is the global.r file that simulates code that returns stuff from a database
GetDepartments<- function(){
df<- data.frame(Department= c("Dept A", "Dept B"), id = c(1,2))
return(df)
}
GetDisplayName<- function(Dept){
if(Dept == "Dept A")
{
df<- data.frame(DisplayName= c("Bob", "Fred"), id = c(4,6))
return(df)
}else
{
df<- data.frame(DisplayName= c("George", "Mary"), id = c(10,20))
return(df)
}
}
This is very similar to your other question here. As #nrussel suggests, this is just a simple subsetting problem. Just pull up your department and index on the name. Here is a working example.
EDIT*** - make dataset reactive to avoid repetition.
As per the documentation:
Reactive expressions are a smarter than regular R functions. They cache results and only update when they become obsolete. The first time that you run a reactive expression, the expression will save its result in your computer’s memory. The next time you call the reactive expression, it can return this saved result without doing any computation (which will make your app faster). The reactive expression will use this new copy until it too becomes out of date.
runApp(list(
ui = basicPage(
sidebarPanel(
selectInput("Department", "Select a department",
choices = as.character(GetDepartments()$Department),
selected = as.character(GetDepartments()$Department[1])),
uiOutput("DisplayName")
),
mainPanel(textOutput("Text") )
),
server = function(input, output, session) {
myData <- reactive({
GetDisplayName(input$Department)
})
output$DisplayName<-renderUI({
Department <- input$Department
print(Department)
myData <- myData()
selectInput("DisplayName", 'DisplayName:', choices = as.character(myData$DisplayName),
selected =as.character(myData$DisplayName[1] ))
})
output$Text <- renderText({
print("in render text")
myData <- myData()
code <- as.character(myData[myData$DisplayName == input$DisplayName,2])
return(code)
})
}
))

Resources