I'm trying to embed plot inside right panel of Splitter window, how to add plot inside splitter window. please find here the link for the dataset.
https://www.dropbox.com/s/ncy6dlpm79p578s/Dataset.zip?dl=0.
The file contains rows and columns of wavelength and reflectance.
import wx
from pylab import *
import asciitable
import matplotlib.pyplot as plt
import os
from wxmplot import ImageMatrixFrame
class RandomObj(object):
def __init__(self, name):
self.name = name
class SLI(wx.Frame):
def __init__(self):
wx.Frame.__init__(self, None, -1, size=(820, 450))
splitter = wx.SplitterWindow(self, style = wx.SP_BORDER)
leftPanel = wx.Panel(splitter, size=(400,100))
rightPanel = wx.Panel(splitter, size=(400,100))
####Tree Widget#####
self.tree = wx.TreeCtrl(leftPanel)
leftSizer = wx.BoxSizer(wx.VERTICAL)
leftSizer.Add(self.tree, 1, wx.EXPAND | wx.ALIGN_CENTER)
leftPanel.SetSizer(leftSizer)
rightSizer = wx.BoxSizer(wx.VERTICAL)
self.display = wx.StaticText(rightPanel, -1, '', (10, 10),
style=wx.ALIGN_CENTRE)
rightSizer.Add(self.display, -1, wx.EXPAND)
rightPanel.SetSizer(rightSizer)
splitter.SplitVertically(leftPanel, rightPanel)
##### Splitter ends ####
root = self.tree.AddRoot('Database')
self.tree.AppendItem(root, 'USGS')
files = []
self.dname = []
self.test = []
for dirname, dirnames, filenames in os.walk('.\USGS'):
for filename in filenames:
files.append(os.path.join(dirname, filename))
self.test.append(filename)
self.tree.AppendItem(self.tree.GetLastChild(root), filename)
self.dname = files[:]
self.tree.AppendItem(root,'ASTER')
for dirname, dirnames, filenames in os.walk('.\ASTER'):
for filename in filenames:
files.append(os.path.join(dirname, filename))
self.test.append(filename)
self.tree.AppendItem(self.tree.GetLastChild(root), filename)
self.dname = files[:]
self.Bind(wx.EVT_TREE_ITEM_ACTIVATED, self.ASTER, self.tree)
def ASTER(self, event):
self.item = event.GetItem()
value1 = self.tree.GetItemText(self.item)
value2 = 0
value3 = 1
self.item=None
for k in self.test:
if value1 == k:
value2 +=1
break
else:
value2 +=1
for i in self.dname:
if value3 == value2:
array =[]
f=open(i, 'r')
for j in xrange(27):
f.next()
for line in f:
array.append(line)
data = asciitable.read(array)
plot(data.col1, data.col2)
title(value1)
show()
break
else:
value3 +=1
app = wx.App(None)
frame = ImageMatrixFrame()
SLI().Show()
app.MainLoop()
how to insert plot window inside right panel of splitter.
I am not 100% sure I understand your code - there are some formatting and indentation problems for sure. I also am not familiar with asciitable. But, that said, a wxmplot.PlotPanel or ImagePanel can be embedded in a wxPython Frame that uses a Splitter. An example might look like the code below. I tried to make it short, but also tried to make it complete and using plain wxPython. For a more complete application, you'd probably want to put the reading of the datafiles into a separate class, etc. Anyway, this uses your Dataset folder, and should mostly work to show the concepts:
#!/usr/bin/env python
import os
import wx
from wxmplot import PlotPanel
# see https://gist.github.com/newville/e805a6454c4e4c0e010bf0b3cc796d52
from asciifile import read_ascii
LEFTSTYLE = wx.ALIGN_LEFT|wx.GROW|wx.ALL
def pack(window, sizer, expand=1.1):
"simple wxPython pack function"
tsize = window.GetSize()
msize = window.GetMinSize()
window.SetSizer(sizer)
sizer.Fit(window)
nsize = (int(1.1*max(msize[0], tsize[0])),
int(1.1*max(msize[1], tsize[1])))
window.SetSize(nsize)
class SpectraPlotterFrame(wx.Frame):
def __init__(self, data_folder):
wx.Frame.__init__(self, None, size=(800, 450))
self.SetTitle("Data File Plotter: {:s}".format(data_folder))
self.data_folder = data_folder
self.current_filename = None
splitter = wx.SplitterWindow(self, style=wx.SP_LIVE_UPDATE)
splitter.SetMinimumPaneSize(200)
# left side: ListBox of File Names
l_panel = wx.Panel(splitter)
l_sizer = wx.BoxSizer(wx.VERTICAL)
self.filelist = wx.ListBox(l_panel)
self.filelist.Bind(wx.EVT_LISTBOX, self.onFileChoice)
l_sizer.Add(self.filelist, 1, LEFTSTYLE, 5)
pack(l_panel, l_sizer)
# right side: Panel to choose plot array labels, make plot
r_panel = wx.Panel(splitter)
r_sizer = wx.GridBagSizer(3, 3)
self.xarr = wx.Choice(r_panel, choices=[], size=(175, -1))
self.yarr = wx.Choice(r_panel, choices=[], size=(175, -1))
xlabel = wx.StaticText(r_panel, label='X:', style=LEFTSTYLE)
ylabel = wx.StaticText(r_panel, label='Y:', style=LEFTSTYLE)
plot_btn = wx.Button(r_panel, label='Show Plot', size=(125, -1))
plot_btn.Bind(wx.EVT_BUTTON, self.onPlot)
self.plotpanel = PlotPanel(r_panel, size=(650, 450))
r_sizer.Add(xlabel, (0, 0), (1, 1), LEFTSTYLE, 2)
r_sizer.Add(self.xarr, (0, 1), (1, 1), LEFTSTYLE, 2)
r_sizer.Add(ylabel, (0, 2), (1, 1), LEFTSTYLE, 2)
r_sizer.Add(self.yarr, (0, 3), (1, 1), LEFTSTYLE, 2)
r_sizer.Add(plot_btn, (0, 4), (1, 1), LEFTSTYLE, 2)
r_sizer.Add(self.plotpanel, (1, 0), (1, 6), LEFTSTYLE, 2)
pack(r_panel, r_sizer)
splitter.SplitVertically(l_panel, r_panel, 1)
sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(splitter, 1, LEFTSTYLE, 5)
pack(self, sizer)
wx.CallAfter(self.read_datafiles)
self.Show()
self.Raise()
def read_datafiles(self):
self.datasets = {}
dfolder = os.path.abspath(self.data_folder)
for fname in sorted(os.listdir(self.data_folder)):
try:
self.datasets[fname] = read_ascii(os.path.join(dfolder, fname))
except:
print("Could not read file {:s}".format(fname))
self.filelist.Append(fname)
def onFileChoice(self, event=None):
self.current_filename = fname = event.GetString()
for choice, default in ((self.xarr, 0), (self.yarr, 1)):
choice.Clear()
choice.AppendItems(self.datasets[fname].array_labels)
choice.SetSelection(default)
def onPlot(self, event=None):
x = self.xarr.GetSelection()
y = self.yarr.GetSelection()
xlab = self.xarr.GetStringSelection()
ylab = self.yarr.GetStringSelection()
if self.current_filename is not None:
dset = self.datasets[self.current_filename]
self.plotpanel.plot(dset.data[x], dset.data[y], xlabel=xlab,
ylabel=ylab, label=self.current_filename,
show_legend=True)
class SpectraPlotterApp(wx.App):
def __init__(self, data_folder='.', **kws):
self.data_folder = data_folder
wx.App.__init__(self, **kws)
def createApp(self):
frame = SpectraPlotterFrame(data_folder=self.data_folder)
self.SetTopWindow(frame)
def OnInit(self):
self.createApp()
return True
if __name__ == '__main__':
SpectraPlotterApp(data_folder='Dataset').MainLoop()
Related
I am running PyTorch implementation of this article (https://arxiv.org/pdf/1604.03650.pdf).
In the article, it says to initialize the deconv layers with bilinear interpolation which is not in the code. it is told that if in deconvolution, we are scaling the data by factor S, the initial weights are defined as:
enter image description here
Does anyone know how can I implement it?
This is the neural network model designed based on the article:
In another word, I don't know how to initialization the deconvolution layers (for example deconv1 layer in this code).
import torch
import torch.nn as nn
import numpy as np
import torchvision
import torch.nn.functional as F
cfg = [64, 128, 256, 512, 512]
class Deep3d(nn.Module):
def __init__(self, in_channels=3, out_channels=3, device=torch.device('cpu')):
super(Deep3d, self).__init__()
self.device = device
vgg16 = torchvision.models.vgg16_bn(pretrained=True)
modules = []
layer = []
for l in vgg16.features:
if isinstance(l, nn.MaxPool2d):
layer.append(l)
modules.append(layer)
layer = []
else:
layer.append(l)
scale = 1
deconv = []
layer = []
for m in range(len(modules)):
layer.append(nn.Conv2d(cfg[m], cfg[m], kernel_size=3, stride=1, padding=True))
layer.append(nn.ReLU(inplace=True))
layer.append(nn.Conv2d(cfg[m], cfg[m], kernel_size=3, stride=1, padding=True))
layer.append(nn.ReLU(inplace=True))
if(m==0):
layer.append(nn.ConvTranspose2d(cfg[m], 65, kernel_size=1, stride=1, padding=(0,0)))
else:
scale *=2
layer.append(nn.ConvTranspose2d(cfg[m], 65, kernel_size=scale*2, stride=scale, padding=(scale//2, scale//2)))
deconv.append(layer) # add blocks of layers to deconv part of the network
layer = []
self.module_1 = nn.Sequential(*modules[0])
self.module_2 = nn.Sequential(*modules[1])
self.module_3 = nn.Sequential(*modules[2])
self.module_4 = nn.Sequential(*modules[3])
self.module_5 = nn.Sequential(*modules[4])
self.deconv_1 = nn.Sequential(*deconv[0])
self.deconv_2 = nn.Sequential(*deconv[1])
self.deconv_3 = nn.Sequential(*deconv[2])
self.deconv_4 = nn.Sequential(*deconv[3])
self.deconv_5 = nn.Sequential(*deconv[4])
self.linear_module = nn.Sequential(*[nn.Linear(15360,4096), # hyperparam choice
nn.ReLU(inplace=True),
nn.Dropout(p=0.5),
nn.Linear(4096,1950)]) # 1950=65(disparity range)*10*3(10*3 is feature map size)
self.deconv_6 = nn.Sequential(*[nn.ConvTranspose2d(65,65,kernel_size=scale*2,stride=scale,padding=(scale//2,scale//2))])
self.upconv_final = nn.Sequential(*[nn.ConvTranspose2d(65,65,kernel_size=(4,4),stride=2,padding=(1,1)),
nn.ReLU(inplace=True),
nn.Conv2d(65,65,kernel_size=(3,3),stride=1,padding=(1,1)),
nn.Softmax(dim=1)])
for block in [self.deconv_1,self.deconv_2,self.deconv_3,self.deconv_4,self.deconv_5,self.deconv_6,self.linear_module,self.upconv_final]:
for m in block:
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def forward(self, orig_x, x):
x_copy = orig_x
pred = []
out_1 = self.module_1(x)
out_2 = self.module_2(out_1)
out_3 = self.module_3(out_2)
out_4 = self.module_4(out_3)
out_5 = self.module_5(out_4)
# print(out_5.shape)
out_5_flatten = out_5.view(x_copy.shape[0],-1)
out_6 = self.linear_module(out_5_flatten)
p1 = self.deconv_1(out_1)
p2 = self.deconv_2(out_2)
p3 = self.deconv_3(out_3)
p4 = self.deconv_4(out_4)
p5 = self.deconv_5(out_5)
# print(p5.shape)
p6 = self.deconv_6(out_6.view(x_copy.shape[0],65,3,10))
pred.append(p1)
pred.append(p2)
pred.append(p3)
pred.append(p4)
pred.append(p5)
pred.append(p6)
out = torch.zeros(pred[0].shape).to(self.device)
for p in pred:
out = torch.add(out, p)
out = self.upconv_final(out) # to be elt wise multiplied with shifted left views
out = F.interpolate(out,scale_factor=4,mode='bilinear') # upscale to match left input size
new_right_image = torch.zeros(x_copy.size()).to(self.device)
stacked_shifted_view = None
stacked_out = None
for depth_map_idx in range(-33,32):
shifted_input_view = torch.zeros(x_copy.size()).to(self.device)
if depth_map_idx<0:
shifted_input_view[:,:,:,:depth_map_idx] = x_copy[:,:,:,-depth_map_idx:]
elif depth_map_idx==0:
shifted_input_view = x_copy
else:
shifted_input_view[:,:,:,depth_map_idx:] = x_copy[:,:,:,:-depth_map_idx]
if stacked_shifted_view is None:
stacked_shifted_view = shifted_input_view.unsqueeze(1)
else:
stacked_shifted_view = torch.cat((stacked_shifted_view,shifted_input_view.unsqueeze(1)),dim=1)
if stacked_out is None:
stacked_out = out[:,depth_map_idx+33:depth_map_idx+34,:,:].unsqueeze(1)
else:
stacked_out = torch.cat((stacked_out,out[:,depth_map_idx+33:depth_map_idx+34,:,:].unsqueeze(1)),dim=1)
softmaxed_stacked_shifted_view = stacked_shifted_view
mult_soft_shift_out = torch.mul(stacked_out,softmaxed_stacked_shifted_view)
final_rt_image = torch.sum(mult_soft_shift_out,dim=1)
return final_rt_image
# if(__name__=='__main__'):
# vgg16 = torchvision.models.vgg16(pretrained=True)
# model = Deep3d().to(torch.device('cpu'))
# out = model(torch.randn(10,3,384,1280),torch.randn(10,3,96,320))
I am attempting to develop a slider which will limit the number of nodes visible in a network graph based on the value of a node's attribute. The below Pandas DataFrame (df) represents the nodes, and the node's associated attributes (count information).
source target source_count target_count
A C 15 10
A D 15 20
A E 15 30
B F 25 10
B G 25 20
B H 25 30
I have used the following code to generate a network graph for the nodes and their associated attributes.
import pandas as pd
from bokeh.layouts import column, widgetbox,layout,
from bokeh.plotting import figure, show, output_file,
from bokeh.models import HoverTool, value,PanTool, LabelSet, Legend, ColumnDataSource,Circle,Plot, Range1d, MultiLineBoxSelectTool,ResetTool,LassoSelectTool,Slider
from bokeh.models.callbacks import CustomJS
from bokeh.models.graphs import from_networkx, NodesAndLinkedEdges, EdgesAndLinkedNodes
df = pd.DataFrame({
"source":["A", "A", "A", "B", "B","B"],
"target":["C", "D", "E", "F", "G","H"],
"source_count":["15", "15", "15", "25","25","25"]
"target_count":["10", "20", "30", "10","20","30"]
})
net_graph = from_pandas_edgelist(df, 'source', 'target')
#assign attributes
for index, row in df.iterrows():
net_graph.nodes[row['source']]['yearly_count'] = row['source_count']
net_graph.nodes[row['target']]['yearly_count'] = row['target_count']
graph_plot= Plot(plot_width=800, plot_height=600,
x_range=Range1d(-1.1, 1.1), y_range=Range1d(-1.1, 1.1))
node_hover_tool = HoverTool(tooltips=[("Name", "#index"),("Yearly Count", "#yearly_count")])
graph_plot.add_tools(node_hover_tool)
graph_setup = from_networkx(net_graph, nx.spring_layout, scale=1, center=(0, 0))
graph_setup.node_renderer.glyph = Circle(size=20,fill_color = 'blue')
graph_setup.edge_renderer.glyph = MultiLine(line_color="red", line_alpha=0.8, line_width=1)
graph_plot.renderers.append(graph_setup)
output_file("test_1.html")
show(graph_plot)
The slider I am trying to would use the yearly_count attribute to limit the number of nodes on display. I know that Bokeh allows the embedding of a JavaScript Callback, however, I have not seen a use-case integrated with NetworkX.
Any assistance that anyone could provide would be greatly appreciated.
If you can run your app with bokeh serve then I would try:
from bokeh.models import Slider
graph_plot= Plot()
graph_setup.node_renderer.glyph = Circle()
graph_setup.edge_renderer.glyph = MultiLine()
def callback(attr, old, new):
//filter your data here to show less nodes and edges based
graph_setup.node_renderer.data_source.data = data
graph_setup.edge_renderer.data_source.data = data
slider = Slider()
slider.on_change('value', callback)
If you want to run a Bokeh standalone app then replace slider callback with:
code = """
//filter your data here to show less nodes and edges
graph_setup.node_renderer.data_source.data = data;
graph_setup.edge_renderer.data_source.data = data; """
callback = CustomJS(args = dict(graph_setup = graph_setup, data = data), code = code)
slider = Slider()
slider.js_on_change('value', callback)
See complete JS callback example below:
import networkx as nx
from bokeh.io import show, output_file
from bokeh.models import Plot, Range1d, MultiLine, Circle, TapTool, OpenURL, HoverTool, CustomJS, Slider, Column
from bokeh.models.graphs import from_networkx, EdgesAndLinkedNodes
from bokeh.palettes import Spectral4
from dask.dataframe.core import DataFrame
import pandas as pd
data = {'source': ['A', 'A', 'A', 'A', 'A', 'A'], 'target': ['C', 'D', 'E', 'F', 'G', 'H'], 'source_count': [15, 15, 15, 25, 25, 25], 'target_count': [10, 20, 30, 10, 20, 30]}
df = pd.DataFrame(data)
net_graph = nx.from_pandas_edgelist(df, 'source', 'target')
for index, row in df.iterrows():
net_graph.nodes[row['source']]['yearly_count'] = row['source_count']
net_graph.nodes[row['target']]['yearly_count'] = row['target_count']
graph_plot = Plot(plot_width = 800, plot_height = 600, x_range = Range1d(-1.1, 1.1), y_range = Range1d(-1.1, 1.1))
node_hover_tool = HoverTool(tooltips = [("Name", "#index"), ("Yearly Count", "#yearly_count")])
graph_plot.add_tools(node_hover_tool)
graph_setup = from_networkx(net_graph, nx.spring_layout, scale = 1, center = (0, 0))
graph_setup.node_renderer.glyph = Circle(size = 20, fill_color = 'blue')
graph_setup.edge_renderer.glyph = MultiLine(line_color = "red", line_alpha = 0.8, line_width = 1)
graph_plot.renderers.append(graph_setup)
code = """
var new_start = start.slice();
var new_end = end.slice();
new_index = end.slice();
new_start = new_start.splice(0, cb_obj.value)
new_end = new_end.splice(0, cb_obj.value)
new_index = ['A'].concat(new_end)
new_data_edge = {'start': new_start, 'end': new_end};
new_data_nodes = {'index': new_index};
graph_setup.edge_renderer.data_source.data = new_data_edge;
graph_setup.node_renderer.data_source.data = new_data_nodes;
"""
callback = CustomJS(args = dict(graph_setup = graph_setup,
start = df['source'].values,
end = df['target'].values), code = code)
slider = Slider(title = 'Slider', start = 1, end = 6, value = 6)
slider.js_on_change('value', callback)
layout = Column(graph_plot, slider)
show(layout)
Result:
Newer versions of Bokeh uses strict mode for JavaScript (see release log), which implies that code from Tony's accepted answer does not work for Bokeh version 2.0.0 and upwards. Only a few small explicit declarations of variables are needed for the code to work for newer Bokeh versions:
code = '''
var new_start = start.slice();
var new_end = end.slice();
var new_index = end.slice();
new_start = new_start.splice(0, cb_obj.value)
new_end = new_end.splice(0, cb_obj.value)
new_index = ['A'].concat(new_end)
var new_data_edge = {'start': new_start, 'end': new_end};
var new_data_nodes = {'index': new_index};
graph_setup.edge_renderer.data_source.data = new_data_edge;
graph_setup.node_renderer.data_source.data = new_data_nodes;
'''
I tried to create a Gui with a grid like label, the label will randomly fill with number in random label with a click on the start button. I cannot get the code to recognize the random label and set text to it. The labels are create in a loop for the grid of '3 X 5'.
from tkinter import *
import random
lbl1 = {}
lbl2 = {}
lbl3 = {}
def fill_auto():
for i in range(1, 6):
rd_row = random.randrange(1, 6)
rd_col = random.randrange(1, 4)
rd_num = random.randrange(1, 16)
print(rd_row, rd_col, rd_num)
pos = str(rd_col) + str(rd_row)
box = 'lbl' + str(pos)
print(box)
box.config(text=rd_num)
root = Tk()
root.geometry('+0+0')
root.configure(bg='black')
for y in range(1, 6):
lbl1[str(y)] = Label(root, width=5, relief='solid')
lbl1[str(y)].grid(row=y, column=0)
lbl2[str(y)] = Label(root, width=5, relief='solid')
lbl2[str(y)].grid(row=y, column=1)
lbl3[str(y)] = Label(root, width=5, relief='solid')
lbl3[str(y)].grid(row=y, column=2)
btn = Button(root, text='start', command=fill_auto)
btn.grid(row=6, column=1)
root.mainloop()
If you want a grid of buttons, it would make sense to use a 2d list:
from tkinter import *
import random
# Create variables for these for the grid width/height
width = 3
height = 5
def fill_auto():
for i in range(1, 6):
rd_row = random.randrange(0, height)
rd_col = random.randrange(0, width)
rd_num = random.randrange(1, 16)
# Set the label text
matrix[rd_row][rd_col].config(text = str(rd_num))
root = Tk()
root.geometry('+0+0')
root.configure(bg='black')
# Helper function to create a label
def make_label(x, y):
l = Label(root, width=5, relief='solid')
l.grid(column=x, row=y)
return l;
# Using list comprehension to create 2d list
matrix = [[make_label(x,y) for x in range(width)] for y in range(height)]
btn = Button(root, text='start', command=fill_auto)
btn.grid(row=6, column=1)
root.mainloop()
I am attempting to get a matplotlib plotting function to be able to produce a graph with the x-axis set as a time axis. However, when I attempt to plot some values against UNIX times, I encounter the error ValueError: year is out of range. What is going wrong and how can it be addressed?
import os
import time
import matplotlib.dates
import matplotlib.pyplot
import shijian
def main():
data = [
[1484611200.0, 844.4333],
[1484524800.0, 783.3373],
[1484438400.0, 774.194 ],
[1484352000.0, 769.2299]
]
save_graph_matplotlib(
values = data,
line = True,
line_width = 0.5,
title_axis_x = "time",
title_axis_y = "value",
#time_axis_x = True
)
def save_graph_matplotlib(
values = None,
title = None,
title_axis_x = None,
title_axis_y = None,
filename = None,
directory = ".",
overwrite = True,
color = "black",
LaTeX = False,
markers = True,
marker_size = 1,
aspect = None,
line = False,
line_style = "-",
line_width = 0.2,
font_size = 20,
scientific_notation = False,
time_axis_x = False
):
# 1D or 2D data
if isinstance(values[0], list):
x = [element[0] for element in values]
y = [element[1] for element in values]
else:
x = range(0, len(values))
y = values
matplotlib.pyplot.ioff()
if LaTeX is True:
matplotlib.pyplot.rc("text", usetex = True)
matplotlib.pyplot.rc("font", family = "serif")
if filename is None:
if title is None:
filename = "graph.png"
else:
filename = shijian.propose_filename(
filename = title + ".png",
overwrite = overwrite
)
else:
filename = shijian.propose_filename(
filename = filename,
overwrite = overwrite
)
figure = matplotlib.pyplot.figure()
if title is not None:
figure.suptitle(
title,
fontsize = font_size
)
if markers is True:
matplotlib.pyplot.scatter(
x,
y,
s = marker_size,
c = color,
edgecolors = "none",
)
if line is True:
matplotlib.pyplot.plot(
x,
y,
line_style,
c = color,
linewidth = line_width
)
# Turn on or off axes scientific notation.
if scientific_notation is False:
matplotlib.pyplot.gca().get_xaxis().\
get_major_formatter().set_scientific(False)
matplotlib.pyplot.gca().get_yaxis().\
get_major_formatter().set_scientific(False)
# Set axes titles.
if title_axis_x is not None:
matplotlib.pyplot.xlabel(title_axis_x, fontsize = font_size)
if title_axis_y is not None:
matplotlib.pyplot.ylabel(title_axis_y, fontsize = font_size)
# Set axes font size.
matplotlib.pyplot.xticks(fontsize = font_size)
matplotlib.pyplot.yticks(fontsize = font_size)
# Set or do not set axis x as time.
if time_axis_x:
time_formatter = matplotlib.dates.DateFormatter("%Y-%m-%d")
matplotlib.pyplot.axes().xaxis_date()
matplotlib.pyplot.axes().xaxis.set_major_formatter(time_formatter)
matplotlib.pyplot.xticks(rotation = -90)
# Set the aspect ratio.
if aspect is None:
matplotlib.pyplot.axes().set_aspect(
1 / matplotlib.pyplot.axes().get_data_ratio()
)
else:
matplotlib.pyplot.axes().set_aspect(aspect)
if not os.path.exists(directory):
os.makedirs(directory)
matplotlib.pyplot.savefig(
directory + "/" + filename,
dpi = 700
)
matplotlib.pyplot.close()
if __name__ == "__main__":
main()
You need to convert your timestamp-like x data to a python datetime object, which can then be used in matplotlib and be understood by the matplotlib.dates.DateFormatter.
This can be done using the datetime.datetime.fromtimestamp() method.
import datetime
import matplotlib.dates
import matplotlib.pyplot as plt
data = [
[1484611200.0, 844.4333],
[1484524800.0, 783.3373],
[1484438400.0, 774.194 ],
[1484352000.0, 769.2299]
]
x = [datetime.datetime.fromtimestamp(element[0]) for element in data]
y = [element[1] for element in data]
plt.plot( x, y, ls="-", c= "b", linewidth = 2 )
plt.xlabel("Dates")
time_formatter = matplotlib.dates.DateFormatter("%Y-%m-%d")
plt.axes().xaxis.set_major_formatter(time_formatter)
plt.axes().xaxis_date() # this is not actually necessary
plt.show()
Whilst not directly addressing the text of the question, the error mentioned in the title can also occur when one attempts to plot data on an existing axis whose timeline units don't match those of the plot data (e.g. seconds vs datetime).
I have a QGraphicsRect that changes its height dynamically. I want to normalize its height to 1 after its height changed. If I try to apply a QTransform or the scale() function, the y position of the QGraphicsRect changes as well if its y position is not 0.
I tried to move the QGraphicsRect back to the origin of the scene before applying the scaling, but it did not help. Any ideas?
Minimal working example below. (Press the button to change the height of the QRectItem). If the problem is solved, the QGraphicsRect upper and lower edge should always lay on the red lines.
import sys
import numpy as np
from PySide import QtCore, QtGui
class Test(QtGui.QMainWindow):
def __init__(self):
super(Test, self).__init__()
self.setupUi(self)
self.setupGV()
self.connectElements()
self.rectY = 3
self.initRect()
self.show()
def setupUi(self, MainWindow):
MainWindow.setObjectName("MainWindow")
MainWindow.resize(800, 600)
self.centralwidget = QtGui.QWidget(MainWindow)
self.centralwidget.setObjectName("centralwidget")
self.gv_center = QtGui.QGraphicsView(self.centralwidget)
self.gv_center.setGeometry(QtCore.QRect(100, 60, 561, 331))
self.gv_center.setObjectName("gv_center")
self.pb_debug = QtGui.QPushButton(self.centralwidget)
self.pb_debug.setGeometry(QtCore.QRect(540, 500, 94, 24))
self.pb_debug.setObjectName("pb_debug")
self.pb_debug.setText("push !")
MainWindow.setCentralWidget(self.centralwidget)
def connectElements(self):
self.pb_debug.clicked.connect(self.buttonClick)
def setupGV(self):
self.overviewScene = QtGui.QGraphicsScene(self)
self.overviewScene.setSceneRect(0, -0.5, 1, 7)
self.gv_center.setScene(self.overviewScene)
self.gv_center.fitInView(0, -0.5, 1, 7)
def initRect(self):
self.overviewScene.addLine(-5, self.rectY, 5, self.rectY, QtGui.QPen(QtGui.QColor(255, 0, 0)))
self.overviewScene.addLine(-5, self.rectY + 1, 5, self.rectY + 1, QtGui.QPen(QtGui.QColor(255, 0, 0)))
self.rect = self.overviewScene.addRect(0, self.rectY, 1, 1, QtGui.QPen(QtGui.QColor(0, 0, 0)))
def buttonClick(self):
newHeight = np.random.randint(1, 10)
print(newHeight)
geo = self.rect.rect()
geo.setHeight(newHeight)
self.rect.setRect(geo)
self.normalizeSubplot(self.rect, newHeight, self.rectY)
def normalizeSubplot(self, subplotItem, accH, y):
subplotItem.prepareGeometryChange()
if accH != 0:
height = 1.0 / accH
else:
height = 0
trans = subplotItem.transform()
trans.setMatrix(1, trans.m12(), trans.m13(),
trans.m21(), height, trans.m23(),
trans.m31(), trans.m32(), 1)
subplotItem.setTransform(trans)
if __name__ == "__main__":
app = QtGui.QApplication(sys.argv)
w = Test()
sys.exit(app.exec_())
After a couple of days I found the solution with help of some guy from IRC. The transformation matrix has to be:
trans.setMatrix(1, trans.m12(), trans.m13(),
trans.m21(), height, trans.m23(),
trans.m31(), -height * self.rectY + self.rectY, 1)