Tracking the first incidence of each episode - r

I am currently using R to process a data set that looks like the following:
age ep
1 0
2 0
3 1
4 1
5 1
6 1
7 0
8 0
9 1
10 1
11 0
I want to create a variable that will keep track of the first occurrence of ep=1 per series of ep=1. These series will have ep=0 prior to the first ep=1 and ep=0 following the last ep=1 of each series.
I would like the data set to look like this after processing:
age ep first
1 0 NA
2 0 NA
3 1 1
4 1 NA
5 1 NA
6 1 NA
7 0 NA
8 0 NA
9 1 1
10 1 NA
11 0 NA
I am working in data table as this data set is rather large, so I'd prefer to process the data using code for data tables, however if this isn't possible I can convert to a data frame and use other code. Any assistance would be greatly appreciated.

A fast data.table method ...
library(data.table)
dt <- fread("age ep
1 0
2 0
3 1
4 1
5 1
6 1
7 0
8 0
9 1
10 1
11 0")
dt[!shift(ep) & ep, first := 1]
# or more explicit:
dt[shift(ep) != 1 & ep == 1, first := 1]
dt
# age ep first
# 1: 1 0 NA
# 2: 2 0 NA
# 3: 3 1 1
# 4: 4 1 NA
# 5: 5 1 NA
# 6: 6 1 NA
# 7: 7 0 NA
# 8: 8 0 NA
# 9: 9 1 1
# 10: 10 1 NA
# 11: 11 0 NA
Note: just for clarity, if your object is not already a data.table. You can coerce it to a data.table:
setDT(dt)

Another option using an update join
dt[, first := dt[dt[, .I[1], by=rleid(ep)]$V1][ep == 1][dt, on=.(age), ep]]
dt
# age ep first
# 1: 1 0 NA
# 2: 2 0 NA
# 3: 3 1 1
# 4: 4 1 NA
# 5: 5 1 NA
# 6: 6 1 NA
# 7: 7 0 NA
# 8: 8 0 NA
# 9: 9 1 1
#10: 10 1 NA
#11: 11 0 NA
Using data provided by #Khaynes

An approach using fifelse
dt[, first := fifelse( ep == 1 & shift( ep , type = "lag" ) == 0L, 1L, NA_integer_) ]
dt
# age ep first
# 1: 1 0 NA
# 2: 2 0 NA
# 3: 3 1 1
# 4: 4 1 NA
# 5: 5 1 NA
# 6: 6 1 NA
# 7: 7 0 NA
# 8: 8 0 NA
# 9: 9 1 1
# 10: 10 1 NA
# 11: 11 0 NA

Another update join version, using mult="first" to only overwrite the first matching row in the group:
dt[, rid := rleid(ep)][dt[ep==1], on=.(rid), mult="first", first := 1]
dt
# age ep rid first
# 1: 1 0 1 NA
# 2: 2 0 1 NA
# 3: 3 1 2 1
# 4: 4 1 2 NA
# 5: 5 1 2 NA
# 6: 6 1 2 NA
# 7: 7 0 3 NA
# 8: 8 0 3 NA
# 9: 9 1 4 1
#10: 10 1 4 NA
#11: 11 0 5 NA

Related

R Insert Value within Dataframe

I have a very complex problem, i hope someone can help -> i want to copy a row value (i.e. Player 1 or Player 2) into two other rows (for Player 3 and 4) if and only if these players are in the same Treatment, Group and Period AND this player was indeed picked (see column Player.Picked)
I know that with tidyverse I can group_by my columns of interest: Treatment, Group, and Period.
However, I am unsure how to proceed with the condition that Player Picked is fulfilled and then how to extract this value appropriately for the players 3 and 4 in the same treatment, group, period.
The column "extracted.Player 1/2 Value" should be the output. (I have manually provided the first four correct solutions).
Any ideas? Help would be very much appreciated. Thanks a lot in advance!
df
T Player Group Player.Picked Period Player1/2Value extracted.Player1/2Value
1 1 6 1 1 10
1 2 6 1 1 9
1 3 5 2 1 NA -> 4
1 4 6 1 1 NA -> 10
1 5 3 1 1 NA
1 1 5 2 1 8
1 2 1 0 1 7
1 3 6 1 1 NA -> 10
1 4 2 2 1 NA
1 5 2 2 1 NA
1 1 1 0 1 7
1 2 2 2 1 11
1 3 3 1 1 NA
1 4 4 1 1 NA
1 5 4 1 1 NA
1 1 2 2 1 21
1 2 4 1 1 17
1 3 1 0 1 NA
1 4 5 2 1 NA -> 4
1 5 6 1 1 NA
1 1 3 1 1 12
1 2 3 1 1 15
1 3 4 1 1 NA
1 4 1 0 1 NA
1 5 1 0 1 NA
1 1 4 1 1 11
1 2 5 2 1 4
1 3 2 2 1 NA
1 4 3 1 1 NA
1 5 5 2 1 NA
I'm not sure if I understood the required logic; here I'm assuming that Player 5 always picks Player 1 or 2 per Group.
So, here is my go at this using library(data.table):
library(data.table)
DT <- data.table::data.table(
check.names = FALSE,
T = c(1L,1L,1L,
1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,
1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,
1L,1L,1L,1L),
Player = c(1L,2L,3L,
4L,5L,1L,2L,3L,4L,5L,1L,2L,3L,4L,5L,
1L,2L,3L,4L,5L,1L,2L,3L,4L,5L,1L,
2L,3L,4L,5L),
Group = c(6L,6L,5L,
6L,3L,5L,1L,6L,2L,2L,1L,2L,3L,4L,4L,
2L,4L,1L,5L,6L,3L,3L,4L,1L,1L,4L,
5L,2L,3L,5L),
Player.Picked = c(1L,1L,2L,
1L,1L,2L,0L,1L,2L,2L,0L,2L,1L,1L,1L,
2L,1L,0L,2L,1L,1L,1L,1L,1L,0L,0L,
1L,2L,2L,2L),
Period = c(1L,1L,1L,
1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,
1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,
1L,1L,1L,1L),
`Player1/2Value` = c(10L,9L,NA,
NA,NA,8L,7L,NA,NA,NA,7L,11L,NA,NA,
NA,21L,17L,NA,NA,NA,12L,15L,NA,NA,NA,
11L,4L,NA,NA,NA),
`extracted.Player1/2Value` = c(NA,NA,4L,
10L,NA,NA,NA,10L,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,4L,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA)
)
setorderv(DT, cols = c("T", "Group", "Period", "Player"))
Player5PickedDT <- DT[Player == 5, Player.Picked, by = c("T", "Group", "Period")]
setnames(Player5PickedDT, old = "Player.Picked", new = "Player5Picked")
DT <- DT[Player5PickedDT, on = c("T", "Group", "Period")]
extractedDT <- DT[Player == Player5Picked & Player5Picked > 0, `Player1/2Value`, by = c("T", "Group", "Period")]
setnames(extractedDT, old = "Player1/2Value", new = "extractedValue")
DT[, "Player5Picked" := NULL]
DT <- extractedDT[DT, on = c("T", "Group", "Period")]
DT[, extractedValue := fifelse(Player %in% c(3, 4), yes = extractedValue, no = NA_real_)]
setcolorder(DT, c("T", "Group", "Period", "Player", "Player.Picked", "Player1/2Value", "extracted.Player1/2Value", "extractedValue"))
DT
The resulting table differs from your expected result (extracted.Player1/2Value vs extractedValue, but in my eyes it is following the explained logic):
T Group Period Player Player.Picked Player1/2Value extracted.Player1/2Value extractedValue
1: 1 1 1 1 0 7 NA NA
2: 1 1 1 2 0 7 NA NA
3: 1 1 1 3 0 NA NA NA
4: 1 1 1 4 1 NA NA NA
5: 1 1 1 5 0 NA NA NA
6: 1 2 1 1 2 21 NA NA
7: 1 2 1 2 2 11 NA NA
8: 1 2 1 3 2 NA NA 11
9: 1 2 1 4 2 NA NA 11
10: 1 2 1 5 2 NA NA NA
11: 1 3 1 1 1 12 NA NA
12: 1 3 1 2 1 15 NA NA
13: 1 3 1 3 1 NA NA 12
14: 1 3 1 4 2 NA NA 12
15: 1 3 1 5 1 NA NA NA
16: 1 4 1 1 0 11 NA NA
17: 1 4 1 2 1 17 NA NA
18: 1 4 1 3 1 NA NA 11
19: 1 4 1 4 1 NA NA 11
20: 1 4 1 5 1 NA NA NA
21: 1 5 1 1 2 8 NA NA
22: 1 5 1 2 1 4 NA NA
23: 1 5 1 3 2 NA 4 4
24: 1 5 1 4 2 NA 4 4
25: 1 5 1 5 2 NA NA NA
26: 1 6 1 1 1 10 NA NA
27: 1 6 1 2 1 9 NA NA
28: 1 6 1 3 1 NA 10 10
29: 1 6 1 4 1 NA 10 10
30: 1 6 1 5 1 NA NA NA
T Group Period Player Player.Picked Player1/2Value extracted.Player1/2Value extractedValue

When 0 in x is odd, how to assign id value between this zero and the next zero to the new variable ref

x<-c(0,0,1,1,0,1,1,1,0,1,1,0,1,1)
aaa<-data.frame(x)
aaa$id<-1:nrow(aaa)
When 0 in x is odd, how to assign id value between this zero and the next zero to the new variable ref.
The results like:
aaa$ref <- with(aaa, ifelse(cumsum(x == 0) %% 2, id, NA))
aaa
# x id ref
# 1 0 1 1
# 2 0 2 NA
# 3 1 3 NA
# 4 1 4 NA
# 5 0 5 5
# 6 1 6 6
# 7 1 7 7
# 8 1 8 8
# 9 0 9 NA
# 10 1 10 NA
# 11 1 11 NA
# 12 0 12 12
# 13 1 13 13
# 14 1 14 14
An option using data.table
library(data.table)
i1 <- setDT(aaa)[, grp := rleid(x)][, .I[seq_len(.N) == .N & x==0], grp]$V1
i2 <- unlist(lapply(split(i1, as.integer(gl(length(i1), 2,
length(i1)))), function(x) head(x[1]:x[2],-1)))
aaa[!i2, ref := id][, grp := NULL][]
# x id ref
# 1: 0 1 1
# 2: 0 2 NA
# 3: 1 3 NA
# 4: 1 4 NA
# 5: 0 5 5
# 6: 1 6 6
# 7: 1 7 7
# 8: 1 8 8
# 9: 0 9 NA
#10: 1 10 NA
#11: 1 11 NA
#12: 0 12 12
#13: 1 13 13
#14: 1 14 14

Calculate diff price in a unbalanced set

I have a unbalanced data frame with date, localities and prices. I would like calculate diff price among diferents localities by date. My data its unbalanced and to get all diff price I think in create data(localities) to balance data.
My data look like:
library(dplyr)
set.seed(123)
df= data.frame(date=(1:3),
locality= rbinom(21,3, 0.2),
price=rnorm(21, 50, 20))
df %>%
arrange(date, locality)
> date locality price
1 1 0 60.07625
2 1 0 35.32994
3 1 0 63.69872
4 1 1 54.76426
5 1 1 66.51080
6 1 1 28.28602
7 1 2 47.09213
8 2 0 26.68910
9 2 1 100.56673
10 2 1 48.88628
11 2 1 48.29153
12 2 2 29.02214
13 2 2 45.68269
14 2 2 43.59887
15 3 0 60.98193
16 3 0 75.89527
17 3 0 43.30174
18 3 0 71.41221
19 3 0 33.62969
20 3 1 34.31236
21 3 1 23.76955
To get balanced data I think in:
> date locality price
1 1 0 60.07625
2 1 0 35.32994
3 1 0 63.69872
4 1 1 54.76426
5 1 1 66.51080
6 1 1 28.28602
7 1 2 47.09213
8 1 2 NA
9 1 2 NA
10 2 0 26.68910
10 2 0 NA
10 2 0 NA
11 2 1 100.56673
12 2 1 48.88628
13 2 1 48.29153
14 2 2 29.02214
15 2 2 45.68269
16 2 2 43.59887
etc...
Finally to get diff price beetwen pair localities I think:
> date diff(price, 0-1) diff(price, 0-2) diff(price, 1-2)
1 1 60.07625-54.76426 60.07625-47.09213 etc...
2 1 35.32994-66.51080 35.32994-NA
3 1 63.69872-28.28602 63.69872-NA
You don't need to balance your data. If you use dcast, it will add the NAs for you.
First transform the data to show individual columns for each locality
library(data.table)
library(tidyverse)
setDT(df)
df[, rid := rowid(date, locality)]
df2 <- dcast(df, rid + date ~ locality, value.var = 'price')
# rid date 0 1 2
# 1: 1 1 60.07625 54.76426 47.09213
# 2: 1 2 26.68910 100.56673 29.02214
# 3: 1 3 60.98193 34.31236 NA
# 4: 2 1 35.32994 66.51080 NA
# 5: 2 2 NA 48.88628 45.68269
# 6: 2 3 75.89527 23.76955 NA
# 7: 3 1 63.69872 28.28602 NA
# 8: 3 2 NA 48.29153 43.59887
# 9: 3 3 43.30174 NA NA
# 10: 4 3 71.41221 NA NA
# 11: 5 3 33.62969 NA NA
Then create a data frame to_diff of differences to calculate, and pmap over that to calculate the differences. Here c0_1 corresponds to what you call in your question diff(price, 0-1).
to_diff <- CJ(0:2, 0:2)[V1 < V2]
pmap(to_diff, ~ df2[[as.character(.x)]] - df2[[as.character(.y)]]) %>%
setNames(paste0('c', to_diff[[1]], '_', to_diff[[2]])) %>%
bind_cols(df2[, 1:2])
# A tibble: 11 x 5
# c0_1 c0_2 c1_2 rid date
# <dbl> <dbl> <dbl> <int> <int>
# 1 5.31 13.0 7.67 1 1
# 2 -73.9 -2.33 71.5 1 2
# 3 26.7 NA NA 1 3
# 4 -31.2 NA NA 2 1
# 5 NA NA 3.20 2 2
# 6 52.1 NA NA 2 3
# 7 35.4 NA NA 3 1
# 8 NA NA 4.69 3 2
# 9 NA NA NA 3 3
# 10 NA NA NA 4 3
# 11 NA NA NA 5 3

Update all the records in between from NA to the value

I have a data table in the below format :
id c1 c2
1 1 NA
1 1 NA
1 1 10
1 1 NA
1 1 NA
1 1 10
1 1 NA
1 1 NA
1 1 11
1 1 NA
1 1 NA
1 1 11
2 1 NA
2 1 12
2 1 NA
2 1 NA
2 1 12
From this data table I would like to update all the NA in between the two values in c2 as below:
id c1 c2
1 1 NA
1 1 NA
1 1 10
1 1 10
1 1 10
1 1 10
1 1 NA
1 1 NA
1 1 11
1 1 11
1 1 11
1 1 11
2 1 NA
2 1 12
2 1 12
2 1 12
2 1 12
Can do it using a for loop and which():
df=data.frame(id = c(rep(1,12)),c2 = c(NA,NA,10,NA,NA,10, NA,NA,11,NA,11,NA))
Find unique values of c2:
vals=unique(df[which(!is.na(df$c2)),'c2'])
Loop through unique values and replace observations between their first and last appearance:
for(i in vals){
df[min(which(df$c2==i)):max(which(df$c2==i)),'c2']=i
}
Besides David's approach which is working directly with row indices there is another data.table approach which uses a non-equi join:
# coerce to data.table
setDT(DT)[
# append unique row id
, rn := .I][
# non-equi join on row ids
DT[!is.na(c2), .(rmin = min(rn), rmax = max(rn)), by = c2],
on = .(rn >= rmin, rn <= rmax), c2 := i.c2][
# remove row id column
, rn := NULL][]
id c1 c2
1: 1 1 NA
2: 1 1 NA
3: 1 1 10
4: 1 1 10
5: 1 1 10
6: 1 1 10
7: 1 1 NA
8: 1 1 NA
9: 1 1 11
10: 1 1 11
11: 1 1 11
12: 1 1 11
13: 2 1 NA
14: 2 1 12
15: 2 1 12
16: 2 1 12
17: 2 1 12
Caveat
The expression
DT[!is.na(c2), .(rmin = min(rn), rmax = max(rn)), by = c2]
returns the row id ranges for each unique value of c2
c2 rmin rmax
1: 10 3 6
2: 11 9 12
3: 12 14 17
There is an implicit assumption that the row id ranges do not overlap. It requires that each "gap" is associated with a unique c2 value. This affects other solutions 1, 2 as well.
Improved solution using rleid()
The code can be improved to handle cases where the above mentioned assumption is violated.
Using rleid(), we can distinguish different gaps even if the have the same c2 value. For instance, for the second sample data set
DT2[!is.na(c2), .(c2 = first(c2), rmin = min(rn), rmax = max(rn)), by = rleid(c2)]
rleid c2 rmin rmax
1: 1 10 3 6
2: 2 11 9 12
3: 3 12 14 17
4: 4 10 20 23
The complete code:
setDT(DT2)[, rn := .I][
DT2[!is.na(c2), .(c2 = first(c2), rmin = min(rn), rmax = max(rn)), by = rleid(c2)],
on = .(rn >= rmin, rn <= rmax), c2 := i.c2][, rn := NULL][]
id c1 c2
1: 1 1 NA
2: 1 1 NA
3: 1 1 10
4: 1 1 10
5: 1 1 10
6: 1 1 10
7: 1 1 NA
8: 1 1 NA
9: 1 1 11
10: 1 1 11
11: 1 1 11
12: 1 1 11
13: 2 1 NA
14: 2 1 12
15: 2 1 12
16: 2 1 12
17: 2 1 12
18: 2 1 NA
19: 2 1 NA
20: 2 1 10
21: 2 1 10
22: 2 1 10
23: 2 1 10
24: 2 1 NA
25: 2 1 NA
id c1 c2
Data
library(data.table)
DT <- fread("id c1 c2
1 1 NA
1 1 NA
1 1 10
1 1 NA
1 1 NA
1 1 10
1 1 NA
1 1 NA
1 1 11
1 1 NA
1 1 NA
1 1 11
2 1 NA
2 1 12
2 1 NA
2 1 NA
2 1 12")
Expanded data set (note the repeated appearance of c2 == 10):
DT2 <- fread("id c1 c2
1 1 NA
1 1 NA
1 1 10
1 1 NA
1 1 NA
1 1 10
1 1 NA
1 1 NA
1 1 11
1 1 NA
1 1 NA
1 1 11
2 1 NA
2 1 12
2 1 NA
2 1 NA
2 1 12
2 1 NA
2 1 NA
2 1 10
2 1 NA
2 1 NA
2 1 10
2 1 NA
2 1 NA")
Okay (new/edited answer), we can make use of the fact that the desired property of a solution is that filling up should yield the same result as filling down:
library(tidyverse)
df %>%
mutate(filled_down = c2, filled_up = c2) %>%
fill(filled_down, .direction="down") %>%
fill(filled_up, .direction="up") %>%
mutate(c2 = ifelse(filled_down == filled_up, filled_down, c2)) %>%
select(-filled_down, -filled_up)

Shifting row values by lag value in another column

I have a rather large dataset and I am interested in "marching" values forward through time based on values from another column. For example, if I have a Value = 3 at Time = 0 and a DesiredShift = 2, I want the 3 to shift down two rows to be at Time = 2. Here is a reproducible example.
Build reproducible fake data
library(data.table)
set.seed(1)
rowsPerID <- 8
dat <- CJ(1:2, 1:rowsPerID)
setnames(dat, c("ID","Time"))
dat[, Value := rpois(.N, 4)]
dat[, Shift := sample(0:2, size=.N, replace=TRUE)]
Fake Data
# ID Time Value Shift
# 1: 1 1 3 2
# 2: 1 2 3 2
# 3: 1 3 4 1
# 4: 1 4 7 2
# 5: 1 5 2 2
# 6: 1 6 7 0
# 7: 1 7 7 1
# 8: 1 8 5 0
# 9: 2 1 5 0
# 10: 2 2 1 1
# 11: 2 3 2 0
# 12: 2 4 2 1
# 13: 2 5 5 2
# 14: 2 6 3 1
# 15: 2 7 5 1
# 16: 2 8 4 1
I want each Value to shift forward according the the Shift column. So the
DesiredOutput column for row 3 will be equal to 3 since the value at Time=1 is
Value = 3 and Shift = 2.
Row 4 shows 3+4=7 since 3 shifts down 2 and 4 shifts down 1.
I would like to be able to do this by ID group and hopefully take advantage
of data.table since speed is of interest for this problem.
Desired Result
# ID Time Value Shift DesiredOutput
# 1: 1 1 3 2 NA
# 2: 1 2 3 2 NA
# 3: 1 3 4 1 3
# 4: 1 4 7 2 3+4 = 7
# 5: 1 5 2 2 NA
# 6: 1 6 7 0 7+7 = 14
# 7: 1 7 7 1 2
# 8: 1 8 5 0 7+5 = 12
# 9: 2 1 5 0 5
# 10: 2 2 1 1 NA
# 11: 2 3 2 0 1+2 = 3
# 12: 2 4 2 1 NA
# 13: 2 5 5 2 2
# 14: 2 6 3 1 NA
# 15: 2 7 5 1 3+5=8
# 16: 2 8 4 1 5
I was hoping to get this working using the data.table::shift function, but I am unsure how to make this work using multiple lag parameters.
Try this:
dat[, TargetIndex:= .I + Shift]
toMerge = dat[, list(Out = sum(Value)), by='TargetIndex']
dat[, TargetIndex:= .I]
# dat = merge(dat, toMerge, by='TargetIndex', all=TRUE)
dat[toMerge, on='TargetIndex', DesiredOutput:= i.Out]
> dat
# ID Time Value Shift TargetIndex DesiredOutput
# 1: 1 1 3 2 1 NA
# 2: 1 2 3 2 2 NA
# 3: 1 3 4 1 3 3
# 4: 1 4 7 2 4 7
# 5: 1 5 2 2 5 NA
# 6: 1 6 7 0 6 14
# 7: 1 7 7 1 7 2
# 8: 1 8 5 0 8 12
# 9: 2 1 5 0 9 5
# 10: 2 2 1 1 10 NA
# 11: 2 3 2 0 11 3
# 12: 2 4 2 1 12 NA
# 13: 2 5 5 2 13 2
# 14: 2 6 3 1 14 NA
# 15: 2 7 5 1 15 8
# 16: 2 8 4 1 16 5

Resources