In dplyr, group_by has a parameter add, and if it's true, it adds to the group_by. For example:
data <- data.frame(a=c('a','b','c'), b=c(1,2,3), c=c(4,5,6))
data <- data %>% group_by(a, add=TRUE)
data <- data %>% group_by(b, add=TRUE)
data %>% summarize(sum_c = sum(c))
Output:
a b sum_c
1 a 1 4
2 b 2 5
3 c 3 6
Is there an analogous way to add summary variables to a summarize statement? I have some complicated conditionals (with dbplyr) where if x=TRUE I want to add
variable x_v to the summary.
I see several related stackoverflow questions, but I didn't see this.
EDIT: Here is some precise example code, but simplified from the real code (which has more than two conditionals).
summarize_num <- TRUE
summarize_num_distinct <- FALSE
data <- data.frame(val=c(1,2,2))
if (summarize_num && summarize_num_distinct) {
summ <- data %>% summarize(n=n(), n_unique=n_distinct())
} else if (summarize_num) {
summ <- data %>% summarize(n=n())
} else if (summarize_num_distinct) {
summ <- data %>% summarize(n_unique=n_distinct())
}
Depending on conditions (summarize_num, and summarize_num_distinct here), the eventual summary (summ here) has different columns.
As the number of conditions goes up, the number of clauses goes up combinatorially. However, the conditions are independent, so I'd like to add the summary variables independently as well.
I'm using dbplyr, so I have to do it in a way that it can get translated into SQL.
Would this work for your situation? Here, we add a column for each requested summation using mutate. It's computationally wasteful since it does the same sum once for every row in each group, and then discards everything but the first row of each group. But that might be fine if your data's not too huge.
data <- data.frame(val=c(1,2,2), grp = c(1, 1, 2)) # To show it works within groups
summ <- data %>% group_by(grp)
if(summarize_num) {summ = mutate(summ, n = n())}
if(summarize_num_distinct) {summ = mutate(summ, n_unique=n_distinct(val))}
summ = slice(summ, 1) %>% ungroup() %>% select(-val)
## A tibble: 2 x 3
# grp n n_unique
# <dbl> <int> <int>
#1 1 2 2
#2 2 1 1
The summarise_at() function takes a list of functions as parameter. So, we can get
data <- data.frame(val=c(1,2,2))
fcts <- list(n_unique = n_distinct, n = length)
data %>%
summarise_at(.vars = "val", fcts)
n_unique n
1 2 3
All functions in the list must take one argument. Therefore, n() was replaced by length().
The list of functions can be modified dynamically as requested by the OP, e.g.,
summarize_num_distinct <- FALSE
summarize_num <- TRUE
fcts <- list(n_unique = n_distinct, n = length)
data %>%
summarise_at(.vars = "val", fcts[c(summarize_num_distinct, summarize_num)])
n
1 3
So, the idea is to define a list of possible aggregation functions and then to select dynamically the aggregation to compute. Even the order of columns in the aggregate can be determined:
fcts <- list(n_unique = n_distinct, n = length, sum = sum, avg = mean, min = min, max = max)
data %>%
summarise_at(.vars = "val", fcts[c(6, 2, 4, 3)])
max n avg sum
1 2 3 1.666667 5
Related
I would like to create for loop to repeat the same function for 150 variables. I am new to R and I am a bit stuck.
To give you an example of some commands I need to repeat:
N <- table(df$ var1 ==0)["TRUE"]
n <- table(df$ var1 ==1)["TRUE"]
PREV95 <- (svyciprop(~ var1 ==1, level=0.95, design= design, deff= "replace")*100)
I need to run the same functions for 150 columns. I know that I need to put all my cols in one vector = x but then I don't know how to write the loop to repeat the same command for all my variables.
Can anyone help me to write a loop?
A word in advance: loops in R can in most cases be replaced with a faster, R-ish way (various flavours of apply, maping, walking ...)
applying a function to the columns of dataframe df:
a)
with base R, example dataset cars
my_function <- function(xs) max(xs)
lapply(cars, my_function)
b)
tidyverse-style:
cars %>%
summarise_all(my_function)
An anecdotal example: I came across an R-script which took about half an hour to complete and made abundant use of for-loops. Replacing the loops with vectorized functions and members of the apply family cut the execution time down to about 3 minutes. So while for-loops and related constructs might be more familiar when coming from another language, they might soon get in your way with R.
This chapter of Hadley Wickham's R for data science gives an introduction into iterating "the R-way".
Here is an approach that doesn't use loops. I've created a data set called df with three factor variables to represent your dataset as you described it. I created a function eval() that does all the work. First, it filters out just the factors. Then it converts your factors to numeric variables so that the numbers can be summed as 0 and 1 otherwise if we sum the factors it would be based on 1 and 2. Within the function I create another function neg() to give you the number of negative values by subtracting the sum of the 1s from the total length of the vector. Then create the dataframes "n" (sum of the positives), "N" (sum of the negatives), and PREV95. I used pivot_longer to get the data in a long format so that each stat you are looking for will be in its own column when merged together. Note I had to leave PREV95 out because I do not have a 'design' object to use as a parameter to run the function. I hashed it out but you can remove the hash to add back in. I then used left_join to combine these dataframes and return "results". Again, I've hashed out the version that you'd use to include PREV95. The function eval() takes your original dataframe as input. I think the logic for PREV95 should work, but I cannot check it without a 'design' parameter. It returns a dataframe, not a list, which you'll likely find easier to work with.
library(dplyr)
library(tidyr)
seed(100)
df <- data.frame(Var1 = factor(sample(c(0,1), 10, TRUE)),
Var2 = factor(sample(c(0,1), 10, TRUE)),
Var3 = factor(sample(c(0,1), 10, TRUE)))
eval <- function(df){
df1 <- df %>%
select_if(is.factor) %>%
mutate_all(function(x) as.numeric(as.character(x)))
neg <- function(x){
length(x) - sum(x)
}
n<- df1 %>%
summarize(across(where(is.numeric), sum)) %>%
pivot_longer(everything(), names_to = "Var", values_to = "n")
N <- df1 %>%
summarize(across(where(is.numeric), function(x) neg(x))) %>%
pivot_longer(everything(), names_to = "Var", values_to = "N")
#PREV95 <- df1 %>%
# summarize(across(where(is.numeric), function(x) survey::svyciprop(~x == 1, design = design, level = 0.95, deff = "replace")*100)) %>%
# pivot_longer(everything(), names_to = "Var", values_to = "PREV95")
results <- n %>%
left_join(N, by = "Var")
#results <- n %>%
# left_join(N, by = "Var") %>%
# left_join(PREV95, by = "Var")
return(results)
}
eval(df)
Var n N
<chr> <dbl> <dbl>
1 Var1 2 8
2 Var2 5 5
3 Var3 4 6
If you really wanted to use a for loop, here is how to make it work. Again, I've left out the survey function due to a lack of info on the parameters to make it work.
seed(100)
df <- data.frame(Var1 = factor(sample(c(0,1), 10, TRUE)),
Var2 = factor(sample(c(0,1), 10, TRUE)),
Var3 = factor(sample(c(0,1), 10, TRUE)))
VarList <- names(df %>% select_if(is.factor))
results <- list()
for (var in VarList){
results[[var]][["n"]] <- sum(df[[var]] == 1)
results[[var]][["N"]] <- sum(df[[var]] == 0)
}
unlist(results)
Var1.n Var1.N Var2.n Var2.N Var3.n Var3.N
2 8 5 5 4 6
First time posting here! Been struggling with this for about two days but I have a dataframe that looks like this:
code.1 <- factor(c(rep("x",3), rep("y",2), rep("z",3)))
type.1 <- factor(c(rep("small", 2), rep("medium", 2), rep("large", 4)))
df <- cbind.data.frame(type.1, code.1)
df
And am trying to get it to return this:
code.2 <- factor(c("x", "y", "z"))
type.2 <- factor(c("multiple", "multiple", "large"))
df2 <- cbind.data.frame(type.2, code.2)
df2
I've tried all manner of If/Else and apply functions grouping by "code" to return these results but am stuck. Any help appreciated!
You can do that with dplyr: you group by code.1, then all you have to do is to summarize type.1 with an if/else: if there is only a single value, you return it, else you return "multiple".
The code is slightly more complicated because of practical considerations (need to convert to character, need to have a vectorized TRUE condition that always returns a single value even when FALSE):
df %>%
group_by(code.1) %>%
summarize(type.2 = if_else(n_distinct(type.1) == 1,
as.character(first(type.1)),
"multiple"),
type.2 = as.factor(type.2))
# A tibble: 3 x 2
# code.1 type.2
# <fct> <fct>
# 1 x multiple
# 2 y multiple
# 3 z large
EDIT: here is a different formulation of the same approach without converting to character, might be better suited for large problems, and might give a different view of the same question:
# default value when multiple
iffalse <- as.factor("multiple")
df %>%
group_by(code.1) %>%
mutate(type.1 = factor(type.1, levels = c(levels(type.1), levels(iffalse)))) %>% # add possible level to type.1
summarize(type.2 = if_else(n_distinct(type.1) == 1,
first(type.1),
iffalse))
Let's say I make a dummy dataframe with 6 columns with 10 observations:
X <- data.frame(a=1:10, b=11:20, c=21:30, d=31:40, e=41:50, f=51:60)
I need to create a loop that evaluates 3 columns at a time, adding the summed second and third columns and dividing this by the sum of the first column:
(sum(b)+sum(c))/sum(a) ... (sum(e)+sum(f))/sum(d) ...
I then need to construct a final dataframe from these values. For example using the dummy dataframe above, it would look like:
value
1. 7.454545
2. 2.84507
I imagine I need to use the next function to iterate within the loop, but I'm fairly lost! Thank you for any help.
You can split your data frame into groups of 3 by creating a vector with rep where each element repeats 3 times. Then with this list of sub data frames, (s)apply the function of summing the second and third columns, adding them, and dividing by the sum of the first column.
out_vec <-
sapply(
split.default(X, rep(1:ncol(X), each = 3, length.out = ncol(X)))
, function(x) (sum(x[2]) + sum(x[3]))/sum(x[1]))
data.frame(value = out_vec)
# value
# 1 7.454545
# 2 2.845070
You could also sum all the columns up front before the sapply with colSums, which will be more efficient.
out_vec <-
sapply(
split(colSums(X), rep(1:ncol(X), each = 3, length.out = ncol(X)))
, function(x) (x[2] + x[3])/x[1])
data.frame(value = out_vec, row.names = NULL)
# value
# 1 7.454545
# 2 2.845070
You could use tapply:
tapply(colSums(X), gl(ncol(X)/3, 3), function(x)sum(x[-1])/x[1])
1 2
7.454545 2.845070
Here is an option with tidyverse
library(dplyr) # 1.0.0
library(tidyr)
X %>%
summarise(across(.fn = sum)) %>%
pivot_longer(everything()) %>%
group_by(grp = as.integer(gl(n(), 3, n()))) %>%
summarise(value = sum(lead(value)/first(value), na.rm = TRUE)) %>%
select(value)
# A tibble: 2 x 1
# value
# <dbl>
#1 7.45
#2 2.85
I need help with sample_n() in ‘dplyr’ in R:
I have a list of data riskset[[1]], riskset[[2]],..., riskset[[1000]]), each element riskset[[i]] of the list is a data frame of observations, and I divided the observations in each riskset into group 1:4 based on the distribution of a variable. So the data in riskset[[i]] looks like this:
id sex grp ...
1 F 1 ...
2 M 3 ...
3 F 1 ...
4 M 4 ...
5 F 2 ...
6 F 3 ...
......................
I want to sample 2 observations from each grp within each riskset and save them as a list of sample. I used
sample<- list()
for(i in 1:1000){
sample[[i]] <- riskset[[i]] %>% group_by(grp) %>% sample_n(2,replace=F)
}
It gave me error:
size must be less or equal than 1 (size of data), set ‘replace = TRUE’ to use sampling with replacement.
I tried the code on the riskset which has more than 2 obs in each grp, it worked. But it doesn’t work on the riskset which has less than 2 obs in some group. For the group that has less than 2 obs, I want all the obs it has. And for the group that has more than 2 obs, I want to sample 2 obs without replacement. How can I achieve my sampling goal using R functions? Thanks in advance!
We can use map to loop over the list ('riskset'), then grouped by 'grp', apply the sample_n
library(tidyerse)
out <- map(riskset, ~ .x %>%
group_by(grp) %>%
sample_n(pmin(n(), 2), replace = TRUE))
Or another option is slice
map(riskset, ~ .x %>%
group_by(grp) %>%
slice(if(n() < 2) 1 else sample(row_number(), 2))
Or without using if/else
map(riskset, ~ .x %>%
group_by(grp) %>%
slice(sample(seq_len(pmin(n(), 2)))))
data
iris1 <- iris %>%
select(grp = Species, everything()) %>%
slice(c(1:5, 51))
riskset <- list(iris1, iris1)
I have grouped data that has blocks of missing values. I used dplyr to compute the sum of my target variable over each group. For groups where the sum is zero, I want to replace that group's values with the ones from the previous group. I could do this in a loop, but since my data is in a large data frame, that would be extremely inefficient.
Here's a synthetic example:
df <- tbl_df(as.data.frame(cbind(c(rep(1, 4), rep(2, 4)),
c(abs(rnorm(4)), rep(NA, 4)))))
names(df) <- c("group", "var")
df <- df %>%
group_by(group) %>%
mutate(total = sum(var, na.rm = TRUE))
Output:
Source: local data frame [8 x 3]
Groups: group
group var total
1 1 1.3697267 4.74936
2 1 1.5263502 4.74936
3 1 0.4065596 4.74936
4 1 1.4467237 4.74936
5 2 NA 0.00000
6 2 NA 0.00000
7 2 NA 0.00000
8 2 NA 0.00000
In this case, I want to replace the values of var in group 2 with the values of var in group 1, and I want to do it by detecting that total = 0 in group 2.
I've tried to come up with a custom function to feed into do() that does this, but can't figure out how to tell it to replace values in the current group with values from a different group. With the above example, I tried the following, which will always replace using the values from group 1:
CheckDay <- function(x) {
if( all(x$total == 0) ) { x$var <- df[df$group==1, 2] } ; x
}
do(df, CheckDay)
CheckDay does return a df, but do() throws an error:
Error: Results are not data frames at positions: 1, 2
Is there a way to get this to work?
There are a couple of things going on. First you need to make sure df is a data.frame, your function CheckDay(x) has both the local variable x which you give value df as the global variable df itself, it's better to keep everything inside the function local. Finally, your call to do(df, CheckDay(.)) is missing the (.) part. Try this, this should work:
library("dplyr")
df <- tbl_df(as.data.frame(cbind(c(rep(1, 4), rep(2, 4)),
c(abs(rnorm(4)), rep(NA, 4)))))
names(df) <- c("group", "var")
df <- df %>%
group_by(group) %>%
mutate(total = sum(var, na.rm = TRUE))
df <- as.data.frame(df)
CheckDay <- function(x) {
if( all( (x[x$group == 2, ])$total == 0) ) {
x$var <- x[x$group == 1, 2]
}
x
}
result <- do(df, CheckDay(.))
print(result)
To expand on Brouwer's answer, here is what I implemented to accomplish my goal:
Generate df as previously.
Create df.shift, a copy of df with groups 1, 1, 2... etc -- i.e. a df with the variables shifted down by one group. (The rows in group 1 of df.shift could also simply be blank.)
Get the indices where total = 0 and copy the values from df.shift into df at those indices.
This can all be done in base R. It creates one copy, but is much cheaper and faster than looping over the groups.