Problem with data gaps in Wavelet analysis in R - r

I am trying to run the analyze.wavelet function from WaveletComp package with a time series with 15 years of data. There are some small gaps in the data resulting in error "Some values in your time series seem to be missing." Is there a way to analyze the time series as a single block? I would prefer that in my work instead of data separated to several blocks. Thanks for any help.

Related

Decomposition of additive time series

[Hey, I am sorry if this question might be too easy for this forum! My task was to decompose a time series to break it into the different components. Then plot it in R.
However, the correct solutions included the part that I uploaded as a picture. We are trying to identify the monthly data right? but why are we using the cbind and the data.frame function? than you very much in advance[enter image description here]1 ][2]

Forecasting Hospital Bed Demand Using Daily Observations

Basically, my task for the next 3 months is to forecast bed demand and a couple of other variables in a hospital's emergency department. The data is 5 years worth of daily observations of these variables. The data is complete with no missing values.
The goal is to improve the prediction accuracy of the current tool, which is an Excel workbook.
I have not taken any time series or optimization courses in college thus far- so imagine my horror when I realised I had no clue on how to approach this project and that I would be working entirely alone. I was told no one in the department has any experience and no one would be able to help me.
I'm using RStudio, but I'm not very proficient since it was self-taught.
From trying out the questions asked on here as well as YouTube tutorials to learn the appropriate syntax and functions, what I have managed to find out is:
1) My data is a time series and I should apply forecasting models to predict future values based on the historical data I have.
2) Daily observations of a long time series has weekly and annual seasonality, so I should define the data as a multi-seasonal time series.
I first tried defining my data as ts(), then msts(). One of the answers here mentioned zoo() would be more appropriate for daily obervations, so I tried that too. The forecasting models I've tried are snaive, ets, auto.arima and TBATS.
I would like to present the plots of the values/forecasts based on day-of-the-week other than all 365 days of the year, which is the only output I could plot. I tried using frequency = 365 and 7, and start = c(2014, 1) and end= c(2018, 365), but I haven't had any luck.
I would really appreciate any advice and help I could get from anyone. Thank you!
Without looking at your data, have you tried to get started with some basic ARIMA modeling and seeing what results you get from that? It’s a fairly friendly way to get started with time series forecasting, depending on your data. I was forecasting by the hour, but the frequency can be adjusted to whatever you need to forecast in. As you have mentioned, you are looking ot change the frequency. Sometimes it’s easier to see a pattern at larger time intervals, and can aggregate your data at larger time intervals.
For example, this converts daily observations to monthly.
library(xts)
dates <- seq(as.Date('2012-01-01'),as.Date('2019-03-31'),by='days')
beds$date.formatted <- dates
beds.xts <- xts(x=beds$neds.count,as.POSIXct(paste(beds$date.formatted)))
end.month <- endpoints(beds.xts,'months')
beds.month <- period.apply(beds.xts,end.month,sum)
beds.monthly.df <- data.frame(date=index(beds.month),coredata(beds.month))
colnames(beds.monthly.df) <- c('Date','Sessions')
beds.monthly <- ts(sessions.monthly.df$Sessions,start=c(2012,1),end=c(2019,3),frequency=12)
plot(beds.monthly)
I’m not sure if that would answer your question, but as you mentioned you are self-taught and stating out, I can share a script with you to help you go get started with an example, and maybe this would help you? It goes through the whole process of checking you have read your data in as a time series, what is time series data, how to check for non-stationary data and seasonality trends, plots that are useful for this, modeling, prediction, plotting actual vs predicted, accuracy, and further issues with the data that could be hindering your model. The video tutorial series are scripted in Python, but you can follow the end-to-end process of forecasting in ARIMA using the equivalent R script for this tutorial: https://code.datasciencedojo.com/rebeccam/tutorials/blob/master/Time%20Series/r_time_series_example.R
https://tutorials.datasciencedojo.com/time-series-python-reading-data/

Is there a function to detect individual outliers in longitudinal data in R?

I have a dataset of 5,000 records and each of those records consists of a series of continuous measurements collected over a decade at various times. Each of the measurements was originally entered by manually and, as might be expected, there are a number of errors that need to be corrected.
Typically the incorrect data change by >50% from point to point, while data that is correct changes at most by 10% at any one time. If I visualize the data individually, these are very obvious in an X/Y plot with time on the X-axis.
It's not feasible to graph each of these individually, and I'm trying to figure out if there's a faster way to automate and flag the data that are obviously in error and need to be corrected/removed.
Does anyone have any experience with a problem like this?

How to interpret the values in auto arima plot and store it in a dataframe

I want to use forecasting to my data and I have used the auto arima method and got graph.
The following is my code,
fit <- auto.arima(a)
LH.pred <- forecast(fit,h=30)
plot(LH.pred)
I want to interpret the graphs as values and store it in a data frame, so that I can make calculations based on the forecasting.
Can anybody let me know how to take the values from the graph and store it in a data frame?
Also when I used the auto arima method, the days just got converted to days count from 1-1-1970. I want to convert back to normal dates. Can anybody plese help in that too?
Thanks
Observer
Taking the values from the graph is not really necessary. The graph consists of two parts. The first one is the time series 'a' used to build 'fit'. It is still stored in 'fit' as 'fit$x'. The second part is the forecast. You can take it from 'LH.pred' using 'as.data.frame(LH.pred)'.

What is the best way to store anciliary data with a 2D timeseries object in R?

I currently try to move from matlab to R.
I have 2D measurements, consisting of irradiance in time and wavelength together with quality flags and uncertainty and error estimates.
In Matlab I extended the timeseries object to store both the wavelength array and the auxiliary data.
What is the best way in R to store this data?
Ideally I would like this data to be stored together such that e.g. window(...) keeps all data synchronized.
So far I had a look at the different timeseries classes like ts, zoo etc and some spatial-time series. However none of them allow me to neither attach auxiliary data to observations nor can they give me a secondary axes.
Not totally sure what you want, but here is a simple tutorial mentioning
R's "ts" and"zoo" time series classes:
http://faculty.washington.edu/ezivot/econ424/Working%20with%20Time%20Series%20Data%20in%20R.pdf
and here is a more comprehensive outline of many more classes(see the Time Series Classes section)
http://cran.r-project.org/web/views/TimeSeries.html

Resources