I am attempting to create a constructor function for an object using the S3 00 system in R.
The arguments of the function should only be r where r is a k × 1 vector that contains the radial measurements of fungi.
The constructor function should return an object that is a vector corresponding to r with class equal to growth.
Here is some data,
"theta","r"
0,4
0.31,2.07
0.63,2.15
0.94,3.08
1.26,4.09
1.57,2.39
1.88,1.96
2.2,3.72
2.51,4.72
2.83,2.87
3.14,1.67
3.46,3.51
3.77,4.37
4.08,2.24
4.4,2.23
4.71,4.18
5.03,3.12
5.34,2.67
5.65,2.19
5.97,3.16
So I assume the function starts similar to the following?
growth <- function(x) {
r <- as.vector(x)
class(r) <- "growth"
r
}
One defines a set of functions that operate on a particular S3-class of objects defined by a 'class' attribute. If you want to make a constructor function, you might also want to provide an as-method to coerce objects that are not kx1 vectors. The constructor should do some validity checking. In your case where you anticipate giving this constructor an k x 1 vector, you would probably not require k as an argument unless you wanted to shorten the argument to a lesser length than that of the x-argument. So I would suggest putting in a default value of NA which will allow it to be absent unless needed.
If you are going to put this set of functions in a package you will need to read up on those requirements, as well.
growth <- function(x,k=NA){
if( length(x) < 2 || (!is.na(k) && k < 2 ) ){ error("insufficient data") }
# probably want to put in other validity checks
class(x) <- "growth"
if (!is.na(k) ){
return(x[1:k])} else{ return(x) }
}
I don't remember if you originally put in the physical rationale for this construction, but I now think I understand what is being done. You are measuring "radial" growth along equally spaced angled lines. Does make me wonder it you might want to later build time-series of such measurements. If you do you might want to look at the well-developed 'zoo'-library. It would allow a K-column (for spatial orientation) by Z-row (for time) objects.
Related
I saw:
“To understand computations in R, two slogans are helpful:
• Everything that exists is an object.
• Everything that happens is a function call."
— John Chambers
But I just found:
a <- 2
is.object(a)
# FALSE
Actually, if a variable is a pure base type, it's result is.object() would be FALSE. So it should not be an object.
So what's the real meaning about 'Everything that exists is an object' in R?
The function is.object seems only to look if the object has a "class" attribute. So it has not the same meaning as in the slogan.
For instance:
x <- 1
attributes(x) # it does not have a class attribute
NULL
is.object(x)
[1] FALSE
class(x) <- "my_class"
attributes(x) # now it has a class attribute
$class
[1] "my_class"
is.object(x)
[1] TRUE
Now, trying to answer your real question, about the slogan, this is how I would put it. Everything that exists in R is an object in the sense that it is a kind of data structure that can be manipulated. I think this is better understood with functions and expressions, which are not usually thought as data.
Taking a quote from Chambers (2008):
The central computation in R is a function call, defined by the
function object itself and the objects that are supplied as the
arguments. In the functional programming model, the result is defined
by another object, the value of the call. Hence the traditional motto
of the S language: everything is an object—the arguments, the value,
and in fact the function and the call itself: All of these are defined
as objects. Think of objects as collections of data of all kinds. The data contained and the way the data is organized depend on the class from which the object was generated.
Take this expression for example mean(rnorm(100), trim = 0.9). Until it is is evaluated, it is an object very much like any other. So you can change its elements just like you would do it with a list. For instance:
call <- substitute(mean(rnorm(100), trim = 0.9))
call[[2]] <- substitute(rt(100,2 ))
call
mean(rt(100, 2), trim = 0.9)
Or take a function, like rnorm:
rnorm
function (n, mean = 0, sd = 1)
.Call(C_rnorm, n, mean, sd)
<environment: namespace:stats>
You can change its default arguments just like a simple object, like a list, too:
formals(rnorm)[2] <- 100
rnorm
function (n, mean = 100, sd = 1)
.Call(C_rnorm, n, mean, sd)
<environment: namespace:stats>
Taking one more time from Chambers (2008):
The key concept is that expressions for evaluation are themselves
objects; in the traditional motto of the S language, everything is an
object. Evaluation consists of taking the object representing an
expression and returning the object that is the value of that
expression.
So going back to our call example, the call is an object which represents another object. When evaluated, it becomes that other object, which in this case is the numeric vector with one number: -0.008138572.
set.seed(1)
eval(call)
[1] -0.008138572
And that would take us to the second slogan, which you did not mention, but usually comes together with the first one: "Everything that happens is a function call".
Taking again from Chambers (2008), he actually qualifies this statement a little bit:
Nearly everything that happens in R results from a function call.
Therefore, basic programming centers on creating and refining
functions.
So what that means is that almost every transformation of data that happens in R is a function call. Even a simple thing, like a parenthesis, is a function in R.
So taking the parenthesis like an example, you can actually redefine it to do things like this:
`(` <- function(x) x + 1
(1)
[1] 2
Which is not a good idea but illustrates the point. So I guess this is how I would sum it up: Everything that exists in R is an object because they are data which can be manipulated. And (almost) everything that happens is a function call, which is an evaluation of this object which gives you another object.
I love that quote.
In another (as of now unpublished) write-up, the author continues with
R has a uniform internal structure for representing all objects. The evaluation process keys off that structure, in a simple form that is essentially
composed of function calls, with objects as arguments and an object as the
value. Understanding the central role of objects and functions in R makes
use of the software more effective for any challenging application, even those where extending R is not the goal.
but then spends several hundred pages expanding on it. It will be a great read once finished.
Objects For x to be an object means that it has a class thus class(x) returns a class for every object. Even functions have a class as do environments and other objects one might not expect:
class(sin)
## [1] "function"
class(.GlobalEnv)
## [1] "environment"
I would not pay too much attention to is.object. is.object(x) has a slightly different meaning than what we are using here -- it returns TRUE if x has a class name internally stored along with its value. If the class is stored then class(x) returns the stored value and if not then class(x) will compute it from the type. From a conceptual perspective it matters not how the class is stored internally (stored or computed) -- what matters is that in both cases x is still an object and still has a class.
Functions That all computation occurs through functions refers to the fact that even things that you might not expect to be functions are actually functions. For example when we write:
{ 1; 2 }
## [1] 2
if (pi > 0) 2 else 3
## [1] 2
1+2
## [1] 3
we are actually making invocations of the {, if and + functions:
`{`(1, 2)
## [1] 2
`if`(pi > 0, 2, 3)
## [1] 2
`+`(1, 2)
## [1] 3
sqr = seq(1, 100, by=2)
sqr.squared = NULL
for (n in 1:50)
{
sqr.squared[n] = sqr[n]^2
}
I came accross the loop above, for a beginner this was simple enough. To further understand r what was the precise purpose of the second line? For my research I gather it has something to do with resetting the vector. If someone could elaborate it'd be much appreciated.
sqr.squared <- NULL
is one of many ways initialize the empty vector sqr.squared prior to running it through a loop. In general, when the length of the resulting vector is known, it is much better practice to allocate the vector's length. So here,
sqr.squared <- vector("integer", 50)
would be much better practice. And faster too. This way you are not building the new vector in the loop. But since ^ is vectorized, you could also simply do
sqr[1:50] ^ 2
and ditch the loop all together.
Another way to think about it is to remember that everything in r is a function call, and functions need input (usually).
say you calculated y and want to store that value somewhere. You can do x <- y without initializing an x object (r does this for you unlike in other languages, c for example), but say you want to store it in a specific place in x.
So note that <- (or = in your example) is a function
y <- 1
x[2] <- y
# Error in x[2] <- y : object 'x' not found
This is a different function than <-. Since you want to put y at x[2], you need the function [<-
`[<-`(x, 2, y)
# Error: object 'x' not found
But this still doesn't work because we need the object x to use this function, so initialize x to something.
(x <- numeric(5))
# [1] 0 0 0 0 0
# and now use the function
`[<-`(x, 2, y)
# [1] 0 1 0 0 0
This prefix notation is easier for computers to parse (eg, + 1 1) but harder for humans (me at least), so we prefer infix notation (eg, 1 + 1). R makes such functions easier to use x[2] <- y rather than how I did above.
The first answer is correct, when you assign a NULL value to a variable, the purpose is to initialize a vector. In many cases, when you are working checking numbers or with different types of variables, you will need to set NULL this arrays, matrix, etc.
For example, in you want to create a some type of element, in some cases you will need to put something inside them. This is the purpose of to use NULL. In addition, sometimes you will require NA instead of NULL.
I just finished reading about scoping in the R intro, and am very curious about the <<- assignment.
The manual showed one (very interesting) example for <<-, which I feel I understood. What I am still missing is the context of when this can be useful.
So what I would love to read from you are examples (or links to examples) on when the use of <<- can be interesting/useful. What might be the dangers of using it (it looks easy to loose track of), and any tips you might feel like sharing.
<<- is most useful in conjunction with closures to maintain state. Here's a section from a recent paper of mine:
A closure is a function written by another function. Closures are
so-called because they enclose the environment of the parent
function, and can access all variables and parameters in that
function. This is useful because it allows us to have two levels of
parameters. One level of parameters (the parent) controls how the
function works. The other level (the child) does the work. The
following example shows how can use this idea to generate a family of
power functions. The parent function (power) creates child functions
(square and cube) that actually do the hard work.
power <- function(exponent) {
function(x) x ^ exponent
}
square <- power(2)
square(2) # -> [1] 4
square(4) # -> [1] 16
cube <- power(3)
cube(2) # -> [1] 8
cube(4) # -> [1] 64
The ability to manage variables at two levels also makes it possible to maintain the state across function invocations by allowing a function to modify variables in the environment of its parent. The key to managing variables at different levels is the double arrow assignment operator <<-. Unlike the usual single arrow assignment (<-) that always works on the current level, the double arrow operator can modify variables in parent levels.
This makes it possible to maintain a counter that records how many times a function has been called, as the following example shows. Each time new_counter is run, it creates an environment, initialises the counter i in this environment, and then creates a new function.
new_counter <- function() {
i <- 0
function() {
# do something useful, then ...
i <<- i + 1
i
}
}
The new function is a closure, and its environment is the enclosing environment. When the closures counter_one and counter_two are run, each one modifies the counter in its enclosing environment and then returns the current count.
counter_one <- new_counter()
counter_two <- new_counter()
counter_one() # -> [1] 1
counter_one() # -> [1] 2
counter_two() # -> [1] 1
It helps to think of <<- as equivalent to assign (if you set the inherits parameter in that function to TRUE). The benefit of assign is that it allows you to specify more parameters (e.g. the environment), so I prefer to use assign over <<- in most cases.
Using <<- and assign(x, value, inherits=TRUE) means that "enclosing environments of the supplied environment are searched until the variable 'x' is encountered." In other words, it will keep going through the environments in order until it finds a variable with that name, and it will assign it to that. This can be within the scope of a function, or in the global environment.
In order to understand what these functions do, you need to also understand R environments (e.g. using search).
I regularly use these functions when I'm running a large simulation and I want to save intermediate results. This allows you to create the object outside the scope of the given function or apply loop. That's very helpful, especially if you have any concern about a large loop ending unexpectedly (e.g. a database disconnection), in which case you could lose everything in the process. This would be equivalent to writing your results out to a database or file during a long running process, except that it's storing the results within the R environment instead.
My primary warning with this: be careful because you're now working with global variables, especially when using <<-. That means that you can end up with situations where a function is using an object value from the environment, when you expected it to be using one that was supplied as a parameter. This is one of the main things that functional programming tries to avoid (see side effects). I avoid this problem by assigning my values to a unique variable names (using paste with a set or unique parameters) that are never used within the function, but just used for caching and in case I need to recover later on (or do some meta-analysis on the intermediate results).
One place where I used <<- was in simple GUIs using tcl/tk. Some of the initial examples have it -- as you need to make a distinction between local and global variables for statefullness. See for example
library(tcltk)
demo(tkdensity)
which uses <<-. Otherwise I concur with Marek :) -- a Google search can help.
On this subject I'd like to point out that the <<- operator will behave strangely when applied (incorrectly) within a for loop (there may be other cases too). Given the following code:
fortest <- function() {
mySum <- 0
for (i in c(1, 2, 3)) {
mySum <<- mySum + i
}
mySum
}
you might expect that the function would return the expected sum, 6, but instead it returns 0, with a global variable mySum being created and assigned the value 3. I can't fully explain what is going on here but certainly the body of a for loop is not a new scope 'level'. Instead, it seems that R looks outside of the fortest function, can't find a mySum variable to assign to, so creates one and assigns the value 1, the first time through the loop. On subsequent iterations, the RHS in the assignment must be referring to the (unchanged) inner mySum variable whereas the LHS refers to the global variable. Therefore each iteration overwrites the value of the global variable to that iteration's value of i, hence it has the value 3 on exit from the function.
Hope this helps someone - this stumped me for a couple of hours today! (BTW, just replace <<- with <- and the function works as expected).
f <- function(n, x0) {x <- x0; replicate(n, (function(){x <<- x+rnorm(1)})())}
plot(f(1000,0),typ="l")
The <<- operator can also be useful for Reference Classes when writing Reference Methods. For example:
myRFclass <- setRefClass(Class = "RF",
fields = list(A = "numeric",
B = "numeric",
C = function() A + B))
myRFclass$methods(show = function() cat("A =", A, "B =", B, "C =",C))
myRFclass$methods(changeA = function() A <<- A*B) # note the <<-
obj1 <- myRFclass(A = 2, B = 3)
obj1
# A = 2 B = 3 C = 5
obj1$changeA()
obj1
# A = 6 B = 3 C = 9
I use it in order to change inside map() an object in the global environment.
a = c(1,0,0,1,0,0,0,0)
Say I want to obtain a vector which is c(1,2,3,1,2,3,4,5), that is if there is a 1, let it 1, otherwise add 1 until the next 1.
map(
.x = seq(1,(length(a))),
.f = function(x) {
a[x] <<- ifelse(a[x]==1, a[x], a[x-1]+1)
})
a
[1] 1 2 3 1 2 3 4 5
I have two lists of lists. humanSplit and ratSplit. humanSplit has element of the form::
> humanSplit[1]
$Fetal_Brain_408_AGTCAA_L001_R1_report.txt
humanGene humanReplicate alignment RNAtype
66 DGKI Fetal_Brain_408_AGTCAA_L001_R1_report.txt 6 reg
68 ARFGEF2 Fetal_Brain_408_AGTCAA_L001_R1_report.txt 5 reg
If you type humanSplit[[1]], it gives the data without name $Fetal_Brain_408_AGTCAA_L001_R1_report.txt
RatSplit is also essentially similar to humanSplit with difference in column order. I want to apply fisher's test to every possible pairing of replicates from humanSplit and ratSplit. Now I defined the following empty vector which I will use to store the informations of my fisher's test
humanReplicate <- vector(mode = 'character', length = 0)
ratReplicate <- vector(mode = 'character', length = 0)
pvalue <- vector(mode = 'numeric', length = 0)
For fisher's test between two replicates of humanSplit and ratSplit, I define the following function. In the function I use `geneList' which is a data.frame made by reading a file and has form:
> head(geneList)
human rat
1 5S_rRNA 5S_rRNA
2 5S_rRNA 5S_rRNA
Now here is the main function, where I use a function getGenetype which I already defined in other part of the code. Also x and y are integers :
fishertest <-function(x,y) {
ratReplicateName <- names(ratSplit[x])
humanReplicateName <- names(humanSplit[y])
## merging above two based on the one-to-one gene mapping as in geneList
## defined above.
mergedHumanData <-merge(geneList,humanSplit[[y]], by.x = "human", by.y = "humanGene")
mergedRatData <- merge(geneList, ratSplit[[x]], by.x = "rat", by.y = "ratGene")
## [here i do other manipulation with using already defined function
## getGenetype that is defined outside of this function and make things
## necessary to define following contingency table]
contingencyTable <- matrix(c(HnRn,HnRy,HyRn,HyRy), nrow = 2)
fisherTest <- fisher.test(contingencyTable)
humanReplicate <- c(humanReplicate,humanReplicateName )
ratReplicate <- c(ratReplicate,ratReplicateName )
pvalue <- c(pvalue , fisherTest$p)
}
After doing all this I do the make matrix eg to use in apply. Here I am basically trying to do something similar to double for loop and then using fisher
eg <- expand.grid(i = 1:length(ratSplit),j = 1:length(humanSplit))
junk = apply(eg, 1, fishertest(eg$i,eg$j))
Now the problem is, when I try to run, it gives the following error when it tries to use function fishertest in apply
Error in humanSplit[[y]] : recursive indexing failed at level 3
Rstudio points out problem in following line:
mergedHumanData <-merge(geneList,humanSplit[[y]], by.x = "human", by.y = "humanGene")
Ultimately, I want to do the following:
result <- data.frame(humanReplicate,ratReplicate, pvalue ,alternative, Conf.int1, Conf.int2, oddratio)
I am struggling with these questions:
In defining fishertest function, how should I pass ratSplit and humanSplit and already defined function getGenetype?
And how I should use apply here?
Any help would be much appreciated.
Up front: read ?apply. Additionally, the first three hits on google when searching for "R apply tutorial" are helpful snippets: one, two, and three.
Errors in fishertest()
The error message itself has nothing to do with apply. The reason it got as far as it did is because the arguments you provided actually resolved. Try to do eg$i by itself, and you'll see that it is returning a vector: the corresponding column in the eg data.frame. You are passing this vector as an index in the i argument. The primary reason your function erred out is because double-bracket indexing ([[) only works with singles, not vectors of length greater than 1. This is a great example of where production/deployed functions would need type-checking to ensure that each argument is a numeric of length 1; often not required for quick code but would have caught this mistake. Had it not been for the [[ limit, your function may have returned incorrect results. (I've been bitten by that many times!)
BTW: your code is also incorrect in its scoped access to pvalue, et al. If you make your function return just the numbers you need and the aggregate it outside of the function, your life will simplify. (pvalue <- c(pvalue, ...) will find pvalue assigned outside the function but will not update it as you want. You are defeating one purpose of writing this into a function. When thinking about writing this function, try to answer only this question: "how do I compare a single rat record with a single human record?" Only after that works correctly and simply without having to overwrite variables in the parent environment should you try to answer the question "how do I apply this function to all pairs and aggregate it?" Try very hard to have your function not change anything outside of its own environment.
Errors in apply()
Had your function worked properly despite these errors, you would have received the following error from apply:
apply(eg, 1, fishertest(eg$i, eg$j))
## Error in match.fun(FUN) :
## 'fishertest(eg$i, eg$j)' is not a function, character or symbol
When you call apply in this sense, it it parsing the third argument and, in this example, evaluates it. Since it is simply a call to fishertest(eg$i, eg$j) which is intended to return a data.frame row (inferred from your previous question), it resolves to such, and apply then sees something akin to:
apply(eg, 1, data.frame(...))
Now that you see that apply is being handed a data.frame and not a function.
The third argument (FUN) needs to be a function itself that takes as its first argument a vector containing the elements of the row (1) or column (2) of the matrix/data.frame. As an example, consider the following contrived example:
eg <- data.frame(aa = 1:5, bb = 11:15)
apply(eg, 1, mean)
## [1] 6 7 8 9 10
# similar to your use, will not work; this error comes from mean not getting
# any arguments, your error above is because
apply(eg, 1, mean())
## Error in mean.default() : argument "x" is missing, with no default
Realize that mean is a function itself, not the return value from a function (there is more to it, but this definition works). Because we're iterating over the rows of eg (because of the 1), the first iteration takes the first row and calls mean(c(1, 11)), which returns 6. The equivalent of your code here is mean()(c(1, 11)) will fail for a couple of reasons: (1) because mean requires an argument and is not getting, and (2) regardless, it does not return a function itself (in a "functional programming" paradigm, easy in R but uncommon for most programmers).
In the example here, mean will accept a single argument which is typically a vector of numerics. In your case, your function fishertest requires two arguments (templated by my previous answer to your question), which does not work. You have two options here:
Change your fishertest function to accept a single vector as an argument and parse the index numbers from it. Bothing of the following options do this:
fishertest <- function(v) {
x <- v[1]
y <- v[2]
ratReplicateName <- names(ratSplit[x])
## ...
}
or
fishertest <- function(x, y) {
if (missing(y)) {
y <- x[2]
x <- x[1]
}
ratReplicateName <- names(ratSplit[x])
## ...
}
The second version allows you to continue using the manual form of fishertest(1, 57) while also allowing you to do apply(eg, 1, fishertest) verbatim. Very readable, IMHO. (Better error checking and reporting can be used here, I'm just providing a MWE.)
Write an anonymous function to take the vector and split it up appropriately. This anonymous function could look something like function(ii) fishertest(ii[1], ii[2]). This is typically how it is done for functions that either do not transform as easily as in #1 above, or for functions you cannot or do not want to modify. You can either assign this intermediary function to a variable (which makes it no longer anonymous, figure that) and pass that intermediary to apply, or just pass it directly to apply, ala:
.func <- function(ii) fishertest(ii[1], ii[2])
apply(eg, 1, .func)
## equivalently
apply(eg, 1, function(ii) fishertest(ii[1], ii[2]))
There are two reasons why many people opt to name the function: (1) if the function is used multiple times, better to define once and reuse; (2) it makes the apply line easier to read than if it contained a complex multi-line function definition.
As a side note, there are some gotchas with using apply and family that, if you don't understand, will be confusing. Not the least of which is that when your function returns vectors, the matrix returned from apply will need to be transposed (with t()), after which you'll still need to rbind or otherwise aggregrate.
This is one area where using ddply may provide a more readable solution. There are several tutorials showing it off. For a quick intro, read this; for a more in depth discussion on the bigger picture in which ddply plays a part, read Hadley's Split, Apply, Combine Strategy for Data Analysis paper from JSS.
I have a function that needs to access a variable in its parent environment (scope from which the function is called). The variable is large in terms of memory so I would prefer not to pass it to by value to the function being called. Is there a standard way of doing this other than declaring the variable in the global scope? For example:
g <- function (a, b) { #do stuff}
f <- function(x) {
y <- 3 #but in my program y is very large
g(x, y)
}
I would like to access y in g(). So something like this:
g <- function (a) { a+y }
f <- function(x) {
y <- 3 #but in my program y is very large
g(x)
}
Is this possible?
Thanks
There is no advantage to "declaring the variable in the global scope" and it may not even be possible in R depending on what you mean by that. You certainly could use the second form. The action that causes duplicate or even triplicate copies of an object is assignment. You will need to describe in more detail what you are trying to illustrate by the code: y <- 3. That would not normally be needed inside a function that merely accessed an object named "y" that was located in an enclosing frame.
Storing variables in a declared environment will sometimes improve efficiency of access, but my understanding is that the efficiency is in terms of improved speed because a hash table is used. One accesses items in an environment in the same manner as one accesses list elements:
> evn <- new.env()
> evn$a <- rnorm(100000)
> ls(evn)
[1] "a"
> length(evn$a)
[1] 100000
The BigMemory project may offer facilities for this:
http://www.bigmemory.org/ .
It and Lumley's biglm may help with the large dataset mentioned in the comments.