Giving rnorm(100) I need to create a for loop in R to calculate the mean and the standard deviation generating 100 different numbers each time, and store those results in a vector.
How can I accomplish that?
so far
a <- rnorm(100) # generate 100 random numbers with normal distribution
sample <- 100 # number of samples
results <- rep(NA, 100) # vector creation for storing the results
for (i in 1:sample){
results[i] <- as.data.frame() # then i stuck here, lol, the most important part
}
This function will return the mean, standard deviation and sample size. The only argument required is the sample size (n).
results <- function(n) {
data.frame(Mean = mean(rnorm(n)),
Stdev = sd(rnorm(n)),
n = n
) -> out
return(out)
}
Related
Below I have code that finds the relative standard deviation of a bootstrap population that were bootstrapped from sample sizes ranging between 2 and 30.
I would like to create a loop that runs this loop for 10 iterations, finding the mean standard deviation for each sample size (2->30), and puts it into a data frame, so instead of the output being n 2:30 with the subsequent standard deviation, the standard deviation is instead a mean standard deviation (from 10 loops). I hope that makes sense.
n_range <- 2:29
bResultsRan <- vector("double", 28)
set.seed(30)
for (b in n_range) {
bRowsRan<-Random[sample(nrow(Random), b), ]
base <- read.table("base.csv", header=T, sep="," )
base$area<-5036821
base$quadrea <- base$area * 16
bootRan <- boot(data=bRowsRan$count, average, R=1000)
base$data<- bootRan$t
base$popsize<-(base$data*base$quadrea)
bValue <- sd(base$popsize)/mean(base$popsize)
bResultsRan[[b - 1]] <- bValue}
BRRan <- data.frame(n = n_range, bResultsRan)
plot(BRRan)
I know the basic loop format, but I'm unsure how to incorporate 'population' into the loop to find the probability of collecting a sample with a mean of 42 or larger.
Use a loop to find out the probability of collecting a sample (n=10) with a mean of 42 (or larger) from the dataset produced by the following code:
set.seed(1)
population<-rnorm(n=500,mean=35,sd=10)
One approach to this problem is to repeatedly sample from population and compute the frequency that the mean of these samples is greater than or equal to 42.
set.seed(1);
population <- rnorm(n=500, mean=35, sd=10)
nsim <- 100000 # the number of time we will do this
vec_mean <- numeric(nsim) # a vector to hold the sample means
for (i in 1:nsim) {
samp <- sample(population, size = 10, replace = TRUE)
vec_mean[i] <- mean(samp)
}
sum(vec_mean >= 42) / nsim
# [1] 0.01727
This can be interpreted as the (frequentist) probability of collecting a sample of size 10 from this population with a mean of 42 or larger.
I have some simulated data, on top of the data I add some noise to see how the noise affects my data for further analyses. I created the following function
create.noise <- function(n, amount_needed, mean, sd){
set.seed(25)
values <- rnorm(n, mean, sd)
returned.values <- sample(values, size=amount_needed)
}
I call this function in the following loop:
dataframe.noises <- as.data.frame(noises) #i create here a dataframe dim 1x45 containing zeros
for(i in 1:100){
noises <- as.matrix(create.noise(100,45,0,1))
dataframe.noises[,i] <- noises
data_w_noise <- df.data_responses+noises
Estimators <- solve(transposed_schema %*% df.data_schema) %*% (transposed_schema %*% data_w_noise)
df.calculated_estimators[,i] <-Estimators
}
The code above always returns the same values, one solution I tried is sending i as parameter(which i think isn't correct) for each iteration I add i to the set.seed(25+i)
This gives me a unique value for each iteration, butas mentioned I don't think that this is the correct way to go with it.
I'm trying to create a Gaussian Mix function according to these parameters:
For each sample, roll a die with k sides
If the j-th side appears from the roll, draw a sample from Normal(muj, sdj) where muj and sdj are the mean and standard deviation for the j-th Normal distribution respectively. This means you should have k different Normal distributions to choose from. Note that muj is the mathematical form of referring to the j-th element in a vector called mus.
The resulting sample from this Normal is then from a Gaussian Mixture.
Where:
n, an integer that represents the number of independent samples you want from this random variable
mus, a numeric vector with length k
sds, a numeric vector with length k
prob, a numeric vector with length k that indicates the probability of choosing the different Gaussians. This should have a default to NULL.
This is what I came up with so far:
n <- c(1)
mus <- c()
sds <- c()
prob <- c()
rgaussmix <- function(n, mus, sds, prob = NULL){
if(length(mus) != length(sds)){
stop("mus and sds have different lengths")
}
for(i in 1:seq_len(n)){
if(is.null(prob)){
rolls <- c(NA, n)
rolls <- sample(c(1:length(mus)), n, replace=TRUE)
avg <- rnorm(length(rolls), mean=mus[rolls], sd=sds[rolls])
}else{
rolls <- c(NA, n)
rolls <- sample(c(1:length(mus), n, replace=TRUE, p=prob))
avg <- rnorm(length(rolls), mean=mus[rolls], sd=sds[rolls])
}
}
return(avg)
}
rgaussmix(2, 1:3, 1:3)
It seems to match most of the requirements, but it keeps giving me the following error:
numerical expression has 2 elements: only the first usednumber of items to replace is not a multiple of replacement length
I've tried looking at the lengths of multiple variables, but I can't seem to figure out where the error is coming from!
Could someone please help me?
If you do seq_len(2) it gives you:
[1] 1 2
And you cannot do 1:(1:2) .. it doesn't make sense
Also you can avoid the loops in your code, by sampling the number of tries you need, for example if you do:
rnorm(3,c(0,10,20),1)
[1] -0.507961 8.568335 20.279245
It gives you 1st sample from the 1st mean, 2nd sample from 2nd mean and so on. So you can simplify your function to:
rgaussmix <- function(n, mus, sds, prob = NULL){
if(length(mus) != length(sds)){
stop("mus and sds have different lengths")
}
if(is.null(prob)){
prob = rep(1/length(mus),length(mus))
}
rolls <- sample(length(mus), n, replace=TRUE, p=prob)
avg <- rnorm(n, mean=mus[rolls], sd=sds[rolls])
avg
}
You can plot the results:
plot(density(rgaussmix(10000,c(0,5,10),c(1,1,1))),main="mixture of 0,5,10")
for 2 independent normally distributed variables x and y, they are found using x = rnorm(50) and y = rnorm(50). calculate the correlation 5000 times and save the result each time. What is the likelihood that a correlation with absolute value greater than 0.3 is computed? (default set.seed(42) and to plot a histogram of the coefficient spread)
This is what i have tried so far...
set.seed(42)
n <- 50 #length of random sequence
x_norm <- rnorm(n)
y_norm <- rnorm(n)
nrun <- 5000
corr <- numeric(nrun)
for (i in 1:nrun) {
corrxy <- cor(x_norm,y_norm)
corr[i] <- sum(abs(corrxy > 0.3)) / n #save statistic in the vector
}
hist(corr)
it is expected that i get 5000 different coefficient numbers saved in [i], and when plotted using hist(0), these coefficients should follow approx a normal distribution. but i do not understand how the for loop works and how to incorporate the value of coefficient being greater than 0.3.
I think you were nearly there. You just had to shift some code outside and inside the for loop.
You want new data for each run of the loop (otherwise you get the same correlation 5000 times) and you need to save the correlation each time the loop runs. This results in a vector of 5000 correlations which you can use to look at the proportion of correlations (divide by the number of runs, not the number of observations) that are higher than .3 outside of the for loop.
Edit: One final correction is needed in the bracketing of the absolute function. You want to find the absolute correlations > .3 not the absolute value of corrxy > .3.
set.seed(42)
n <- 50 #length of random sequence
nrun <- 5000
corrxy <- numeric(nrun) # The correlation is the statistic you want to save
for (i in 1:nrun) {
x_norm <- rnorm(n) # Compute a new dataset for each run (otherwise you get the same correlation)
y_norm <- rnorm(n)
corrxy[i] <- cor(x_norm,y_norm) # Calculate the correlation
}
hist(corrxy)
sum(abs(corrxy) > 0.3) / nrun # look at the proportion of runs that have cor > .3
Below is the resulting histogram of the 5000 correlations. The proportion of correlations that is higher than |.3| is 0.034 in this case.
Here's another way of doing this kind of simulations without explicitly calling a loop:
Define first your simulation:
my_sim <- function(n) { # n is the norm distribution size
x <- rnorm(n)
y <- rnorm(n)
corrxy <- cor(x, y)
corrxy # return the correlation (single value)
}
Now we can call this function many times with replicate():
set.seed(123)
nrun <- 10
my_results <- replicate(nrun, my_sim(n=50))
#my_results
# [1] -0.0358698314 -0.0077403045 -0.0512509071 -0.0998484901 0.1230261286 0.1001124010 -0.0002023124
# [8] 0.2017120443 0.0644662387 0.0567232640
Now in my_results you have all the correlations from each simulations (just 10 for example).
And you can compute your statistics:
sum(abs(my_results)> 0.3) / nrun # nrun is 10
or plot:
hist(my_results)