Looking up data based on two parameters (including a date) in R - r

I am new in R and already found a lot of answers on this site, but with this one, I am stuck.
I have a table (in Excel, see image in link) that gives me a value (called c) based on class (0 to 6) and start date (17/2018, 1/7/2019, 1/7/2020 and so on). In my dataframe there is a colum 'date' and a column 'class'. For every row in the dataframe, I need to find the corresponding c-value (so if class = 2 and date = 15/10/2018, I need the value 659,86 in a new column).
I have to problems:
- when importing the data in R, it sets an "X" before the date
- I don't know how to do the lookup with dates (with exact values, I manage with merge).
Hope my question is clear and somebody can help me.
Thanks!
steven

Related

R: Searching a column in a dataframe for matches to a reference list in another dataframe

I am trying to categorize genes with multiple GO descriptors into bins based on what those GO descriptors are related to. I have dataframe A which contains the raw data associated with a list of geneIDs (>500,000) and their associated GO descriptors and dataframe B which classifies these GO descriptors into larger groups.
Example of dataframe A
dfA
Example of dataframe B
dfB
Ideally, the final output would reference the entire list and generate a new column in dataframe A classifying the GeneIDs into the GO_Category's associated with its specific GO_IDs -- bonus points if it removes duplicate hits on the GO_Categorys.
Looking something like this...
Example of Ideal Solution
However, I know that the ideal solution might be difficult to obtain, and I already have dataframe B listed out based on the unique GO_Categories so a solution like this might be easier to obtain.
Example of Acceptable Solution
So far I have struggled with getting any command to search for partial strings using a list from another dataframe with the goal of returning all matches.
I have had partial success with the acceptable solution approach and using:
dfA <- dfA %>%
mutate(GO_Cat_1 = c('No', 'Yes')[1+str_detect(dfA$GO_IDs, as.character(dfB$GO_IDs))])
The solution seems okay, however, it does return an error along the lines of
problem with mutate() column GO_Cat_1.
i GO_Cat_1 = ...[].
i longer object length is not a multiple of shorter object length
I have also tried to look into applying grepl/grep - but struggled to feed it a list of terms to look for partial string matches in dfA.
Any assistance is greatly appreciated!

Sorting a column of values based on index location

I am currently working with a large amount of data. For testing purposes I am using a smaller batch, but the main point of concern is the sorting of all the data based off of values in one particular column. I have posted a picture below that shows a small portion of my unsorted data. I want to sort the values in row 2 in ascending order along with all other data in those corresponding columns. In other words I don't want to just order row 2, I want to order row 2 and shift all other data with those re-ordered values.
Currently what I do is read in that csv to a data frame (tmpDF).
After that I transpose the data using tmpDF <- t(tmpDF)
Now I take that data and order the second column into ascending order (or at least that is what i think I am doing. ) tmpDF<- tmpDF[order(tmpDF[,1]),]
Re transpose the data to get it back how it was originally, but sorted. Result is shown in picture below "Ordered data result" Keep in mind that the data shown between the unsorted and sorted are different numbers due to my not posting my entire data set.
I have a few questions about this.
1) Am I going about this the correct way? I am not a very experienced programmer, just trying to teach myself R to help out my research efforts.
2) Why are the values such as "102" being represented as "1.01E+02" in my final sorted csv file? I don't believe I am changing type and in the original file they were represented as "102"
3) Why does the value 116 gets ordered before "1.01E+02"?

Referencing last used row in a data frame

I couldn't find the answer in any previously asked questions, but I believe this is an easy one.
I have the below two lines of code, which take in data from excel in a specific range (using readxl for this). The range itself only goes through row 2589 in the excel document, but it will update dynamically (it's a time series) and to ensure I capture the different observations (rows) as they're added, I've included rows to 10000 in the read_excel range argument.
In the end, I'd like to run charts on this data, but a key part of this is identifying the last used row, without manually updating the code row for the latest date. I've tried using nrow but to no avail.
Raw_Index_History <- read_excel("RData.xlsx", range = "ReturnsA6:P10000", col_names = TRUE)
Raw_Index_History <- Raw_Index_History[nrow(Raw_Index_History),]
Does anybody have any thoughts or advice? Thanks very much.
It would be easier to answer your question if you include an example.
Not knowing how your data looks like answers are likely going to be a bit vague.
Does your data contain NAs? If not it should be straight forward to remove the empty rows with
na.omit(Raw_Index_History)
It appears you also have control over the excel spreadsheet. So in case your data does contain NAs you could have some default value in your empty rows that will get overwritten as soon as a new data point is recorded. This will allow you to filter your dataframe accordingly.
Raw_Index_History[!grepl("place_holder", Raw_Index_History$column_with_placeholder),]
If you expect data in the spreadsheet to grow, you can specify only the columns to include, instead of a defined boundary.
Something like this ...
Raw_Index_History <- read_excel("RData.xlsx",
sheet = 1,
range = cell_cols("A:P"), # Only cols, no rows
col_names = TRUE)
Every time you run the code, R will pull in the data from columns between A:P up until the last populated row.
This will be a more elegant approach to your use case. (Consider what you'd do when your data crosses 10000 rows in the future)

Adding (mathematically) columns of a CSV based on information in another column with PowerShell

I was having a really hard time describing what I need in the Title, so I apologize ahead of time if that makes absolutely no sense.
If I have a CSV that has 2 columns, one with a persons name and a second column with a numeric value I need to find the duplicates in the names column then add the numeric values for that person together to get a total number in a new CSV.
This is a very simplified version of the real CSV
Name,Number
Dog,1
Cat,2
Fish,1
Dog,3
Dog,2
Cat,2
Fish,1
Given the information above, what I would like to be able to produce is this:
Name,Number
Dog,6
Cat,4
Fish,2
I really don't have any idea how to get there or if it's possible with PowerShell. I can only get as far as using group-object to group by name, but I have no clue how to add the columns after that.
The biggest problem I'm coming across with my research on this is that most if not all the results I get when googling involve adding new columns to a csv and not performing the mathematical calculation.
I finally got it
$csvfile = import-csv c:\csvfile.csv
$csvfile | group name | select name,#{Name="Totals";Expression={($_.group | Measure-Object -sum number).sum}}
Credit goes to:
http://www.hanselman.com/blog/ParsingCSVsAndPoorMansWebLogAnalysisWithPowerShell.aspx

Trouble getting my data into wide form with the reshape package

I am currently analysing a rather large dataset (22k+records) and am having some trouble getting the data into a wide format (with one row corresponding to each observation, and columns representing variables).
The data came in two CSV files, one giving demographics and the other giving participants probability ratings to a number of questions. Both of these CSV files were in long format.
I have used the reshape (and reshape2 for speed) packages to attempt to solve my problem. The specific issue i am having is the following.
I have the participants probability ratings in the following form (after one successful reshape).
dtf <- read.csv("http://dl.dropbox.com/u/8566396/foobar.csv")
Now, the format i would like my data to be in is as follows:
User ID Qid1, ....Qid255 Time, with the probabilities for each question in the questions corresponding column.
I have tried a loop and apply to put the values into a new data frame, and many variations of melt and cast. I have also tried the base reshape function, but all to no avail.
In the past, i've always edited my CSV files directly, but this is not an option with the size of this file (my laziness when it comes to data manipulation within R has come back to haunt me).
Any advice or solution you can give to avoid me having to do this by hand would be greatly appreciated.
Your dataset has 6 rows, 3 of which have the column "variable" equal to "probability" and 3 of which have that column equal to "time". You want to have probability be the value of each, and time be added onto the right.
I think there's a difficulty in making this work for you because what you want to do isn't clear. You have values for each UID-Time-X### cell, and values for each UID-Prob-X### cell. Therefore, you have to discard information to get it into your preferred format (UID-Time-X### with probabilities as the values). It seems to me like you're treating time as an ID variable, but it's storing values like a content variable.
To avoid discarding any data, your output would have to look something like:
UID Time1 Time2 Time3 Prob1 Prob2 Prob3
Which is simply reshaped wide.

Resources