I am trying to add the p-value and R2 from mgcv::gam results to ggplot with facets. The sample dataframe and code are below. Is there a way to successfully paste the p-value and R2 on the ggplots?
DF <- data.frame(Site = rep(LETTERS[20:24], each = 4),
Region = rep(LETTERS[14:18], each = 4),
time = rep(LETTERS[1:10], each = 10),
group = rep(LETTERS[1:4], each = 10),
value1 = runif(n = 1000, min = 10, max = 15),
value2 = runif(n = 1000, min = 100, max = 150))
DF$time <- as.numeric(DF$time)
GAMFORMULA <- y ~ s(x,bs="cr",k=3)
plot1 <- ggplot(data=DF,
aes(x=time, y=value2)) +
geom_point(col="gray", alpha=0.8,
name="") +
geom_line(col="gray", alpha=0.8,
name="",aes(group=group)) +
geom_smooth(se=T, col="darkorange", alpha=0.8,
name="", fill="orange",
method="gam",formula=GAMFORMULA) +
theme_bw() +
theme(strip.text.x = element_text(size=10),
strip.text.y = element_text(size=10, face="bold", angle=0),
strip.background = element_rect(colour="black", fill="gray90"),
axis.text.x = element_text(size=10), # remove x-axis text
axis.text.y = element_text(size=10), # remove y-axis text
axis.ticks = element_blank(), # remove axis ticks
axis.title.x = element_text(size=18), # remove x-axis labels
axis.title.y = element_text(size=25), # remove y-axis labels
panel.background = element_blank(),
panel.grid.major = element_blank(), #remove major-grid labels
panel.grid.minor = element_blank(), #remove minor-grid labels
plot.background = element_blank()) +
labs(y="Value", x="Time", title = "") +
stat_fit_glance(method = "gam",
method.args = list(formula = GAMFORMULA),
aes(label = sprintf('R^2~"="~%.3f~~italic(p)~"="~%.2f',
stat(..r.squared..),stat(..p.value..))),
parse = TRUE)
plot1 + facet_wrap(Site~group, scales="free_y", ncol=3)
Error in sprintf("R^2~\"=\"~%.3f~~italic(p)~\"=\"~%.2f", r.squared, p.value) :
object 'r.squared' not found
My answer explains why stat_fit_glance() cannot be used to add r.sq to a plot, but I am afraid is does not provide an alternative approach.
stat_fit_glance() is a wrapper on broom:glance() that fits the model and passes the model fit object to broom:glance(). In the case of gam(), broom:glance() does not return an estimate for R2 and consequently also stat_fit_glance() is unable to return it.
To see what computed values are available one can use geom_debug() from package 'gginnards'.
library(ggpmisc)
library(gginnards)
library(mgcv)
DF <- data.frame(Site = rep(LETTERS[20:24], each = 4),
Region = rep(LETTERS[14:18], each = 4),
time = rep(LETTERS[1:10], each = 10),
group = rep(LETTERS[1:4], each = 10),
value1 = runif(n = 1000, min = 10, max = 15),
value2 = runif(n = 1000, min = 100, max = 150))
DF$time <- as.numeric(DF$time)
GAMFORMULA <- y ~ s(x,bs="cr",k=3)
plot1 <- ggplot(data=DF,
aes(x=time, y=value2)) +
geom_point(col="gray", alpha=0.8,
name="") +
geom_line(col="gray", alpha=0.8,
name="",aes(group=group)) +
geom_smooth(se=T, col="darkorange", alpha=0.8,
name="", fill="orange",
method="gam",formula=GAMFORMULA) +
theme_bw() +
theme(strip.text.x = element_text(size=10),
strip.text.y = element_text(size=10, face="bold", angle=0),
strip.background = element_rect(colour="black", fill="gray90"),
axis.text.x = element_text(size=10), # remove x-axis text
axis.text.y = element_text(size=10), # remove y-axis text
axis.ticks = element_blank(), # remove axis ticks
axis.title.x = element_text(size=18), # remove x-axis labels
axis.title.y = element_text(size=25), # remove y-axis labels
panel.background = element_blank(),
panel.grid.major = element_blank(), #remove major-grid labels
panel.grid.minor = element_blank(), #remove minor-grid labels
plot.background = element_blank()) +
labs(y="Value", x="Time", title = "") +
stat_fit_glance(method = "gam",
method.args = list(formula = GAMFORMULA),
# aes(label = sprintf('R^2~"="~%.3f~~italic(p)~"="~%.2f',
# stat(..r.squared..),stat(..p.value..))),
# parse = TRUE)
geom = "debug")
plot1 + facet_wrap(Site~group, scales="free_y", ncol=3)
Shown above are the values returned by stat_fit_glance() for the first two panels in the plot.
Note: There does not seem to be agreement on whether R-square is meaningful for GAM. However the summary() method for gam does return an adjusted R-square estimate as member r.sq.
Related
I want to plot a dataframe (stats) with the coefficient and error bars, and automatically write the p-values above each point.
stats <- data.frame(Coefficient = c(-0.07,-0.04,-0.15173266),
p_value = c(.0765210755,0.5176050652,0.0001309025),
conf_low = c(-.1544418,-0.1686583,-0.2294873),
conf_high = c(0.007812205,0.084939487,-0.073978033),
Test = c("TestA","TestB","TestC"))
I am trying to make a function to plot the p-values above each Coefficient point. (The coord_flip in the plot below may also be throwing me off.
give.pval <- function(y){
return(c(x = Coefficient, label = stats$p_value))
}
The following ggplot is exactly what I need, except for the stat_summary line which I am doing incorrectly
ggplot(stats, aes(x = Test, y = Coefficient)) +
geom_point(aes(size = 6)) +
geom_errorbar(aes(ymax = conf_high, ymin = conf_low)) +
geom_hline(yintercept=0, linetype="dashed") +
#stat_summary(fun.data = give.pval, geom = "text") +
theme_calc() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
axis.text.x = element_text(size = 12, vjust = 0.5), axis.title.x = element_text(size = 16),
axis.text.y = element_text(size = 12), axis.title.y = element_blank(),
legend.position = "none",
plot.title = element_text(hjust = 0.5, size = 24)) +
coord_flip() +
ylab("Coefficient")
I would like the have this plot but with the appropriate p-value above each of the three Coefficient points.
Thanks for any advice.
This could be achieved with a geom_text layer where you map p_value on the label aes and some additional nudging
library(ggplot2)
stats <- data.frame(Coefficient = c(-0.07,-0.04,-0.15173266),
p_value = c(.0765210755,0.5176050652,0.0001309025),
conf_low = c(-.1544418,-0.1686583,-0.2294873),
conf_high = c(0.007812205,0.084939487,-0.073978033),
Test = c("TestA","TestB","TestC"))
ggplot(stats, aes(x = Test, y = Coefficient)) +
geom_point(aes(size = 6)) +
geom_errorbar(aes(ymax = conf_high, ymin = conf_low)) +
geom_hline(yintercept=0, linetype="dashed") +
geom_text(aes(label = p_value), nudge_x = .2) +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
axis.text.x = element_text(size = 12, vjust = 0.5), axis.title.x = element_text(size = 16),
axis.text.y = element_text(size = 12), axis.title.y = element_blank(),
legend.position = "none",
plot.title = element_text(hjust = 0.5, size = 24)) +
coord_flip() +
ylab("Coefficient")
I am wondering if there is any way to rename facet titles so that they contain partial italics and partial non-italics.
Here is some toy data
library(Hmisc)
library(dplyr)
# Plot power vs. n for various odds ratios
n <- seq(10, 1000, by=10) # candidate sample sizes
OR <- as.numeric(sort(c(seq(1/0.90,1/0.13,length.out = 9),2.9))) # candidate ORs
alpha <- c(.001, .01, .05) # alpha significance levels
# put all of these into a dataset and calculate power
powerDF <- data.frame(expand.grid(OR, n, alpha)) %>%
rename(OR = Var1, num = Var2, alph = Var3) %>%
arrange(OR) %>%
mutate(power = as.numeric(bpower(p1=.29, odds.ratio=OR, n=num, alpha = alph))) %>%
transform(OR = factor(format(round(OR,2),nsmall=2)),
alph = factor(ifelse(alph == 0.001, "p=0.001",
ifelse(alph == 0.01, "p=0.01", "p=0.05"))))
pPower <- ggplot(powerDF, aes(x = num, y = power, colour = factor(OR))) +
geom_line() +
facet_grid(factor(alph)~.) +
labs(x = "sample size") +
scale_colour_discrete(name = "Odds Ratio") +
scale_x_continuous(breaks = seq(0,1000,100)) +
scale_y_continuous(breaks = seq(0,1,.1), sec.axis = sec_axis(trans=I, breaks=NULL, name="Significance Level")) + # this is the second axis label
theme_light() +
theme(axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text = element_text(size = 11),
panel.grid.minor = element_blank(),
panel.grid.major.y = element_line(colour = "gray95"),
panel.grid.major.x = element_line(colour = "gray95"),
strip.text = element_text(colour = 'black', face = 'bold', size = 12),
legend.text = element_text(size = 12),
legend.title = element_text(size = 12, face = "bold"))
pPower
Is there any way to get the facet headings to read "p=0.001", "p=0.01" etc, instead of "p=0.001", i.e. to get partial italics and partial non-italics?
I have a dataset with a lot of overlapping points and used ggplot to create a bubble plot to show that data. I need to add bars on my plot for the means of each group on the x axis (values can be 0, 1, or 2). I have tried to use geom_errorbar but haven't been able to get it to work with my data. Any help/suggestions would be greatly appreciated.
The following is my code and a script to generate fake data that is similar:
y <- seq(from=0, to=3.5, by=0.5)
x <- seq(from=0, to=2, by=1)
xnew <- sample(x, 100, replace=T)
ynew <- sample(y, 100, replace=T)
data <- data.frame(xnew,ynew)
data2 <- aggregate(data$xnew, by=list(x=data$xnew, y=data$ynew), length)
names(data2)[3] <- "Count"
ggplot(data2, aes(x = x, y = y)) +
geom_point(aes(size=Count)) +
labs(x = "Copies", y = "Score") +
aes(ymax=..y.., ymin=..y..) +
scale_x_continuous(breaks = seq(0, 2, 1)) +
scale_y_continuous(breaks = seq(0, 3, 0.5)) +
theme(legend.position = "bottom", legend.direction = "horizontal",
axis.line = element_line(size=1, colour = "black"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
axis.text.x = element_text(colour="black", size = 10),
axis.text.y = element_text(colour="black", size = 10))
I am not entirely sure that I understand your question correctly. It seems to me that in addition to the bubbles, you want to visualise the mean value of y for each value of x as a bar of some kind. (You mention error bars, but it seems that this is not a requirement, but just what you have tried. I will use geom_col() instead.)
I assume that you want to weigh the mean over y by the counts, i.e., sum(y * Count) / sum(Count). You can create a data frame that contains these values by using dplyr:
data2_mean
## # A tibble: 3 × 2
## x y
## <dbl> <dbl>
## 1 0 1.833333
## 2 1 1.750000
## 3 2 2.200000
When creating the plot, I use data2 as the data set for geom_point() and data2_mean as the data set for geom_col(). It is important to put the bars first, since the bubbles should be on top of the bars.
ggplot() +
geom_col(aes(x = x, y = y), data2_mean, fill = "gray60", width = 0.7) +
geom_point(aes(x = x, y = y, size = Count), data2) +
labs(x = "Copies", y = "Score") +
scale_x_continuous(breaks = seq(0, 2, 1)) +
scale_y_continuous(breaks = seq(0, 3, 0.5)) +
theme(legend.position = "bottom", legend.direction = "horizontal",
axis.line = element_line(size=1, colour = "black"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
axis.text.x = element_text(colour="black", size = 10),
axis.text.y = element_text(colour="black", size = 10))
Everything that I changed compared to your code comes before scale_x_continuous(). This produces the following plot:
Is this what you're after? I first calculated the group-level means using the dplyr package and then added line segments to your plot using geom_segment:
library(ggplot2)
library(dplyr)
data2 <- data2 %>% group_by(x) %>% mutate(mean.y = mean(y))
ggplot(data2, aes(x = x, y = y)) +
geom_point(aes(size=Count)) +
labs(x = "Copies", y = "Score") +
aes(ymax=..y.., ymin=..y..) +
scale_x_continuous(breaks = seq(0, 2, 1)) +
scale_y_continuous(breaks = seq(0, 3, 0.5)) +
theme(legend.position = "bottom", legend.direction = "horizontal",
axis.line = element_line(size=1, colour = "black"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
axis.text.x = element_text(colour="black", size = 10),
axis.text.y = element_text(colour="black", size = 10)) +
geom_segment(aes(y = mean.y, yend = mean.y, x = x -0.25, xend = x + 0.25))
I am trying to stack three plots on top of each other using the gridExtra package. I have tried the the first example that uses grid.arrange from here, which works absolutely fine.
However, when I try to use my own plots, I get axes for each plot but no data, with all the formatting stripped out. Minimum working example:
library(ggplot2)
library(gridExtra)
popu_H0 <- seq(10, 30, length=100)
popu_H0_norm <- dnorm(popu_H0, mean = 20, sd = 4)
popu_H0_df <- as.data.frame(cbind(popu_H0, popu_H0_norm))
plot_H0 <- ggplot(popu_H0_df, aes(x=popu_H0, y=popu_H0_norm))
plot_H0 +
geom_line() +
theme(
text = element_text(size=20),
axis.title.x = element_text(vjust=0.1),
axis.text.x = element_text(size = rel(1.8)),
legend.position = "none",
axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
axis.line.y = element_blank()
) +
xlab("New label") +
annotate("text", x = 20, y = 0.05, label = "Some annotation", size = 10)
grid.arrange(plot_H0, plot_H0, plot_H0, ncol = 1, nrow = 3)
ggplot produces the expected output, but grid.arrange produces this.
You forgot to replace the plot object.
library(ggplot2)
library(gridExtra)
popu_H0 <- seq(10, 30, length=100)
popu_H0_norm <- dnorm(popu_H0, mean = 20, sd = 4)
popu_H0_df <- as.data.frame(cbind(popu_H0, popu_H0_norm))
plot_H0 <- ggplot(popu_H0_df, aes(x=popu_H0, y=popu_H0_norm))
plot_H0 <- plot_H0 + # Here you need `<-` to update the plot
geom_line() +
theme(
text = element_text(size=20),
axis.title.x = element_text(vjust=0.1),
axis.text.x = element_text(size = rel(1.8)),
legend.position = "none",
axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
axis.line.y = element_blank()
) +
xlab("New label") +
annotate("text", x = 20, y = 0.05, label = "Some annotation", size = 10)
grid.arrange(plot_H0, plot_H0, plot_H0, ncol = 1, nrow = 3)
Thanks for the suggested duplicate, this is however not only about the labels, but is also about adjusting the points themselves so they do not overlap.
have a quick look at the plot below...
I need the coloured points, and their corresponding labels, to never overlap. They should be clustered together and all visible, perhaps with some indication that they are spaced and not 100% accurate, perhaps some sort of call out? Open to suggestions on that.
I've tried adding position = 'jitter' to both geom_point and geom_text, but that doesn't seem to be working (assume it is only for small overlaps?)
Ideas?
# TEST DATA
srvc_data <- data.frame(
Key = 1:20,
X = sample(40:80, 20, replace = T),
Y = sample(30:65, 20, replace = T)
)
srvc_data$Z <- with(srvc_data,abs(X-Y))
t1<-theme(
plot.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
axis.line = element_line(size=.4)
)
main_plot <- ggplot(srvc_data, aes(x = X, y = Y),xlim=c(0,100), ylim=c(0,100)) +
t1 +
theme_bw() +
labs(x="X", y="Y") +
scale_x_continuous(limits = c(0, 100)) +
scale_y_continuous(limits = c(0, 100)) +
geom_abline(intercept = 0, slope = 1, colour="blue", size=34, alpha=.1)+
geom_abline(intercept = 0, slope = 1, colour="black", size=.2, alpha=.5,linetype="dashed")+
geom_point(size = 7, aes(color = Z), alpha=.7) +
scale_color_gradient("Gap %\n",low="green", high="red")+
coord_fixed()+
geom_text(aes(label=Key,size=6),show_guide = FALSE)
main_plot
Produces this plot (of course with your random data it will vary)
Thanks in advance.
Here's your plot with ggrepel geom_text_repel:
library(ggrepel)
# TEST DATA
set.seed(42)
srvc_data <- data.frame(
Key = 1:20,
X = sample(40:80, 20, replace = T),
Y = sample(30:65, 20, replace = T)
)
srvc_data$Z <- with(srvc_data,abs(X-Y))
t1<-theme(
plot.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
axis.line = element_line(size=.4)
)
ggplot(srvc_data, aes(x = X, y = Y),xlim=c(0,100), ylim=c(0,100)) +
t1 +
theme_bw() +
labs(x="X", y="Y") +
scale_x_continuous(limits = c(0, 100)) +
scale_y_continuous(limits = c(0, 100)) +
geom_abline(intercept = 0, slope = 1, colour="blue", size=34, alpha=.1)+
geom_abline(intercept = 0, slope = 1, colour="black", size=.2, alpha=.5,linetype="dashed")+
geom_point(size = 7, aes(color = Z), alpha=.7) +
scale_color_gradient("Gap %\n",low="green", high="red")+
coord_fixed()+
geom_text_repel(aes(label=Key,size=6),show_guide = FALSE)