I just joined the community and looking forward to get some help for the data analysis for my master thesis.
At the moment I have the following problem:
I plotted 42 varieties with ggplot by using facet_wrap:
`ggplot(sumfvvar,aes(x=TemperaturCmean,y=Fv.Fm,col=treatment))+
geom_point(shape=1,size=1)+
geom_smooth(method=lm)+
scale_color_brewer(palette = "Set1")+
facet_wrap(.~Variety)`
That works very well, but I would like to annotate the r squared values for the regression lines. I have two treatments and 42 varieties, therefore 84 regression lines.
Are there any possibilties to calculate all r squared values and integrate them into the ggplot? I found allready the function
ggplotRegression <- function (fit) {
require(ggplot2)
ggplot(fit$model, aes_string(x = names(fit$model)[2], y = names(fit$model)[1])) +
geom_point() +
stat_smooth(method = "lm") +
labs(title = paste("Adj R2 = ",signif(summary(fit)$adj.r.squared, 5),
"Intercept =",signif(fit$coef[[1]],5 ),
" Slope =",signif(fit$coef[[2]], 5),
" P =",signif(summary(fit)$coef[2,4], 5)))
}
but that works just for one variety and one treatment. Could be a loop for the lm() function an option?
Here is an example with the ggpmisc package:
library(ggpmisc)
set.seed(4321)
x <- 1:100
y <- (x + x^2 + x^3) + rnorm(length(x), mean = 0, sd = mean(x^3) / 4)
my.data <- data.frame(x = x,
y = y,
group = c("A", "B"))
formula <- y ~ poly(x, 1, raw = TRUE)
ggplot(my.data, aes(x, y)) +
facet_wrap(~ group) +
geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, parse = TRUE,
mapping = aes(label = stat(rr.label)))
You can't apply different labels to different facet, unless you add another r^2 column to your data.. One way is to use geom_text, but you need to calculate the stats you need first. Below I show an example with iris, and for your case, just change Species for Variety, and so on
library(tidyverse)
# simulate data for 2 treatments
# d2 is just shifted up from d1
d1 <- data.frame(iris,Treatment="A")
d2 <- data.frame(iris,Treatment="B") %>%
mutate(Sepal.Length=Sepal.Length+rnorm(nrow(iris),1,0.5))
# combine datasets
DF <- rbind(d1,d2) %>% rename(Variety = Species)
# plot like you did
# note I use "free" scales, if scales very different between Species
# your facet plots will be squished
g <- ggplot(DF,aes(x=Sepal.Width,y=Sepal.Length,col=Treatment))+
geom_point(shape=1,size=1)+
geom_smooth(method=lm)+
scale_color_brewer(palette = "Set1")+
facet_wrap(.~Variety,scales="free")
# rsq function
RSQ = function(y,x){signif(summary(lm(y ~ x))$adj.r.squared, 3)}
#calculate rsq for variety + treatment
STATS <- DF %>%
group_by(Variety,Treatment) %>%
summarise(Rsq=RSQ(Sepal.Length,Sepal.Width)) %>%
# make a label
# one other option is to use stringr::str_wrap in geom_text
mutate(Label=paste("Treat",Treatment,", Rsq=",Rsq))
# set vertical position of rsq
VJUST = ifelse(STATS$Treatment=="A",1.5,3)
# finally the plot function
g + geom_text(data=STATS,aes(x=-Inf,y=+Inf,label=Label),
hjust = -0.1, vjust = VJUST,size=3)
For the last geom_text() call, I allowed the y coordinates of the text to be different by multiplying the Treatment.. You might need to adjust that depending on your plot..
Related
I have a set of pvalues i.e 0<=pval<=1
I want to plot qqplot using ggplot2
As in the documentation the following code will plot a q_q plot, however if my data are pvalues I want the therotical values to be also probabilites ie. 0<=therotical v<=1
df <- data.frame(y = rt(200, df = 5))
p <- ggplot(df, aes(sample = y))
p + stat_qq() + stat_qq_line()
I am aware of the qqplot.pvalues from gaston package it does the job but the plot is not as customizable as the ggplot version.
In gaston package the theoretical data are plotted as -log10((n:1)/(n + 1)) where n is number of pvalues. How to pass these values to ggplot as theoritical data?
Assuming you have some p-values, say from a normal distribution you could create it manually
library(ggplot2)
data <- data.frame(outcome = rnorm(150))
data$pval <- pnorm(data$outcome)
data <- data[order(data$pval),]
ggplot(data = data, aes(y = pval, x = pnorm(qnorm(ppoints(nrow(data)))))) +
geom_point() +
geom_abline(slope = 1) +
labs(x = 'theoraetical p-val', y = 'observed p-val', title = 'qqplot (pval-scale)')
Although I am not sure this plot is sensible to use for conclusions.
I am plotting different models' prediction lines over some data points. I would like to get a legend indicating to which individual belongs each point colour and another legend indicating to which model belongs each line colour. Below I share a fake example for reproducibility:
set.seed(123)
df <- data.frame(Height =rnorm(500, mean=175, sd=15),
Weight =rnorm(500, mean=70, sd=20),
ID = rep(c("A","B","C","D"), (500/4)))
mod1 <- lmer(Height ~ Weight + (1|ID), df)
mod2 <- lmer(Height ~ poly(Weight,2) + (1|ID), df)
y.mod1 <- predict(mod1, data.frame(Weight=df$Weight),re.form=NA) # Prediction of y according to model 1
y.mod2 <- predict(mod2, data.frame(Weight=df$Weight),re.form=NA) # Prediction of y according to model 2
df <- cbind(df, y.mod1,y.mod2)
df <- as.data.frame(df)
head(df)
Height Weight ID y.mod1 y.mod2
1 166.5929 57.96214 A 175.9819 175.4918
2 171.5473 50.12603 B 176.2844 176.3003
3 198.3806 90.53570 C 174.7241 174.7082
4 176.0576 85.02123 D 174.9371 174.5487
5 176.9393 39.81667 A 176.6825 177.7303
6 200.7260 68.09705 B 175.5905 174.8027
First I plot my data points:
Plot_a <- ggplot(df,aes(x=Weight, y=Height,colour=ID)) +
geom_point() +
theme_bw() +
guides(color=guide_legend(override.aes=list(fill=NA)))
Plot_a
Then, I add lines relative to the prediction models:
Plot_b <- Plot_a +
geom_line(data = df, aes(x=Weight, y=y.mod1,color='mod1'),show.legend = T) +
geom_line(data = df, aes(x=Weight, y=y.mod2,color='mod2'),show.legend = T) +
guides(fill = guide_legend(override.aes = list(linetype = 0)),
color=guide_legend(title=c("Model")))
Plot_b
Does anyone know why I am not getting two different legends, one titled Model and the other ID?
I would like to get this
This type of problems generaly has to do with reshaping the data. The format should be the long format and the data is in wide format. See this post on how to reshape the data from long to wide format.
The plot layers become simpler, one geom_line is enough and there is no need for guideto override the aesthetics.
To customize the models' legend text, create a vector of legends, in this case with plotmath, in order to have math notation. And the colors are set manually too.
library(dplyr)
library(tidyr)
library(ggplot2)
model_labels <- c(expression(X^1), expression(X^2))
df %>%
pivot_longer(
cols = c(y.mod1, y.mod2),
names_to = "Model",
values_to = "Value"
) %>%
ggplot(aes(Weight, Height)) +
geom_point(aes(fill = ID), shape = 21) +
geom_line(aes(y = Value, color = Model)) +
scale_color_manual(labels = model_labels,
values = c("coral", "coral4")) +
theme_bw()
The issue is that in ggplot2 each aesthetic can only have one scale and only one legend. As you are using only the color aes you get one legend. If you want multiple legends for the same aesthetic have a look at the ggnewscales package. Otherwise you have to make use of a second aesthetic.
My preferred approach would be similar to the one proposed by #RuiBarradas. However, to stick close to your approach this could be achieved like so:
Instead of color map on linetype in your calls to geom_line.
Set the colors for the lines as arguments, i.e. not inside aes.
Make use of scale_linetype_manual to get solid lines for both models.
Make use of guide_legend to fix the colors appearing in the legend
library(ggplot2)
library(lme4)
#> Loading required package: Matrix
set.seed(123)
df <- data.frame(Height =rnorm(500, mean=175, sd=15),
Weight =rnorm(500, mean=70, sd=20),
ID = rep(c("A","B","C","D"), (500/4)))
mod1 <- lmer(Height ~ Weight + (1|ID), df)
mod2 <- lmer(Height ~ poly(Weight,2) + (1|ID), df)
y.mod1 <- predict(mod1, data.frame(Weight=df$Weight),re.form=NA) # Prediction of y according to model 1
y.mod2 <- predict(mod2, data.frame(Weight=df$Weight),re.form=NA) # Prediction of y according to model 2
df <- cbind(df, y.mod1,y.mod2)
df <- as.data.frame(df)
Plot_a <- ggplot(df) +
geom_point(aes(x=Weight, y=Height, colour=ID)) +
theme_bw() +
guides(color=guide_legend(override.aes=list(fill=NA)))
line_colors <- scales::hue_pal()(2)
Plot_b <- Plot_a +
geom_line(aes(x=Weight, y=y.mod1, linetype = "mod1"), color = line_colors[1]) +
geom_line(aes(x=Weight, y=y.mod2, linetype = "mod2"), color = line_colors[2]) +
scale_linetype_manual(values = c(mod1 = "solid", mod2 = "solid")) +
labs(color = "ID", linetype = "Model") +
guides(linetype = guide_legend(override.aes = list(color = line_colors)))
Plot_b
I have two probability distribution curves, a Gamma and a standarized Normal, that I need to compare:
library(ggplot2)
pgammaX <- function(x) pgamma(x, shape = 64.57849, scale = 0.08854802)
f <- ggplot(data.frame(x=c(-4, 9)), aes(x)) + stat_function(fun=pgammaX)
f + stat_function(fun = pnorm)
The output is like this
However I need to have the two curves separated by means of the faceting mechanism provided by ggplot2, sharing the Y axis, in a way like shown below:
I know how to do the faceting if the depicted graphics come from data (i.e., from a data.frame), but I don't understand how to do it in a case like this, when the graphics are generated on line by functions. Do you have any idea on this?
you can generate the data similar to what stat_function is doing ahead of time, something like:
x <- seq(-4,9,0.1)
dat <- data.frame(p = c(pnorm(x), pgammaX(x)), g = rep(c(0,1), each = 131), x = rep(x, 2) )
ggplot(dat)+geom_line(aes(x,p, group = g)) + facet_grid(~g)
The issue with doing facet_wrap is that the same stat_function is designed to be applied to each panel of the faceted variable which you don't have.
I would instead plot them separately and use grid.arrange to combine them.
f1 <- ggplot(data.frame(x=c(-4, 9)), aes(x)) + stat_function(fun = pgammaX) + ggtitle("Gamma") + theme(plot.title = element_text(hjust = 0.5))
f2 <- ggplot(data.frame(x=c(-4, 9)), aes(x)) + stat_function(fun = pnorm) + ggtitle("Norm") + theme(plot.title = element_text(hjust = 0.5))
library(gridExtra)
grid.arrange(f1, f2, ncol=2)
Otherwise create the data frame with y values from both pgammaX and pnorm and categorize them under a faceting variable.
Finally I got the answer. First, I need to have two data sets and attach each function to each data set, as follows:
library(ggplot2)
pgammaX <- function(x) pgamma(x, shape = 64.57849, scale = 0.08854802)
a <- data.frame(x=c(3,9), category="Gamma")
b <- data.frame(x=c(-4,4), category="Normal")
f <- ggplot(a, aes(x)) + stat_function(fun=pgammaX) + stat_function(data = b, mapping = aes(x), fun = pnorm)
Then, using facet_wrap(), I separate into two graphics according to the category assigned to each data set, and establishing a free_x scale.
f + facet_wrap("category", scales = "free_x")
The result is shown below:
I have a very simple question but so far couldn't find easy solution for that. Let's say I have a some data that I want to fit and show its x axis value where y is in particular value. In this case let's say when y=0 what is the x value. Model is very simple y~x for fitting but I don't know how to estimate x value from there. Anyway,
sample data
library(ggplot2)
library(scales)
df = data.frame(x= sort(10^runif(8,-6,1),decreasing=TRUE), y = seq(-4,4,length.out = 8))
ggplot(df, aes(x = x, y = y)) +
geom_point() +
#geom_smooth(method = "lm", formula = y ~ x, size = 1,linetype="dashed", col="black",se=FALSE, fullrange = TRUE)+
geom_smooth(se=FALSE)+
labs(title = "Made-up data") +
scale_x_log10(breaks = c(1e-6,1e-4,1e-2,1),
labels = trans_format("log10", math_format(10^.x)),limits = c(1e-6,1))+
geom_hline(yintercept=0,linetype="dashed",colour="red",size=0.6)
I would like to convert 1e-10 input to 10^-10 format and annotate it on the plot. As I indicated in the plot.
thanks in advance!
Because geom_smooth() uses R functions to calculate the smooth line, you can attain the predicted values outside the ggplot() environment. One option is then to use approx() to get a linear approximations of the x-value, given the predicted y-value 0.
# Define formula
formula <- loess(y~x, df)
# Approximate when y would be 0
xval <- approx(x = formula$fitted, y = formula$x, xout = 0)$y
# Add to plot
ggplot(...) + annotate("text", x = xval, y = 0 , label = yval)
I'm analyzing a series that varies around zero. And to see where there are parts of the series with a tendency to be mostly positive or mostly negative I'm plotting a geom_smooth. I was wondering if it is possible to have the color of the smooth line be dependent on whether or not it is above or below 0. Below is some code that produces a graph much like what I am trying to create.
set.seed(5)
r <- runif(22, max = 5, min = -5)
t <- rep(-5:5,2)
df <- data.frame(r+t,1:22)
colnames(df) <- c("x1","x2")
ggplot(df, aes(x = x2, y = x1)) + geom_hline() + geom_line() + geom_smooth()
I considered calculating the smoothed values, adding them to the df and then using a scale_color_gradient, but I was wondering if there is a way to achieve this in ggplot directly.
You may use the n argument in geom_smooth to increase "number of points to evaluate smoother at" in order to create some more y values close to zero. Then use ggplot_build to grab the smoothed values from the ggplot object. These values are used in a geom_line, which is added on top of the original plot. Last we overplot the y = 0 values with the geom_hline.
# basic plot with a larger number of smoothed values
p <- ggplot(df, aes(x = x2, y = x1)) +
geom_line() +
geom_smooth(linetype = "blank", n = 10000)
# grab smoothed values
df2 <- ggplot_build(p)[[1]][[2]][ , c("x", "y")]
# add smoothed values with conditional color
p +
geom_line(data = df2, aes(x = x, y = y, color = y > 0)) +
geom_hline(yintercept = 0)
Something like this:
# loess data
res <- loess.smooth(df$x2, df$x1)
res <- data.frame(do.call(cbind, res))
res$posY <- ifelse(res$y >= 0, res$y, NA)
res$negY <- ifelse(res$y < 0, res$y, NA)
# plot
ggplot(df, aes(x = x2, y = x1)) +
geom_hline() +
geom_line() +
geom_line(data=res, aes(x = x, y = posY, col = "green")) +
geom_line(data=res, aes(x = x, y = negY, col = "red")) +
scale_color_identity()