The problem I am faced with regards to llvmlite is producing a simple hello world example.
I am unable to display the string global variable value in the function I created.
It appears to always print out the number one.
I have already tried to return the stringtype which produced a error.
from llvmlite import ir
i64 = ir.IntType(64)
i8 = ir.IntType(16)
hellostr = 'hello, world!'
stringtype = ir.ArrayType(i64, len(hellostr))
module = ir.Module( name="m_hello_example" )
hello = ir.GlobalVariable(module, stringtype, '.str4')
fn_int_to_int_type = ir.FunctionType(i64, [stringtype.as_pointer()] )
fn_hel = ir.Function( module, fn_int_to_int_type, name="fn_hel" )
fn_hel_block = fn_hel.append_basic_block( name="fn_hel_entry" )
builder = ir.IRBuilder(fn_hel_block )
# zero = builder.constant(i64, 0)
# const_1 = ir.Constant(stringtype,1);
# builder.ret(const_1)
const_1 = ir.Constant(i64,1);
# print(const_1)
builder.ret(const_1)
print( module )
I was expecting the output to print out the string 'hello, world!'.
Any help would be much appreciated.
Thanks.
It ended up that I was able to solve my problem with the following code:
import llvmlite.ir as ir
import llvmlite.binding as llvm
from ctypes import CFUNCTYPE
def main():
m = ir.Module()
func_ty = ir.FunctionType(ir.VoidType(), []) #defining printer function as type void
func = ir.Function(m, func_ty, name="printer") #define function as printer
builder = ir.IRBuilder(func.append_basic_block('entry')) #defining the entry point of the function printer
fmt = "%s\n\0" #in function printf allows for inserting arg in, next global_fmt statements allow for creating #"fstr" assignment
c_fmt = ir.Constant(ir.ArrayType(ir.IntType(8), len(fmt)),
bytearray(fmt.encode("utf8")))
global_fmt = ir.GlobalVariable(m, c_fmt.type, name="fstr")
global_fmt.linkage = 'internal'
global_fmt.global_constant = True
global_fmt.initializer = c_fmt
arg = "Hello, World!\0" #args will be passed into printf function.
c_str_val = ir.Constant(ir.ArrayType(ir.IntType(8), len(arg)),
bytearray(arg.encode("utf8"))) #creates the c_str_value as a constant
printf_ty = ir.FunctionType(ir.IntType(32), [], var_arg=True) #creation of the printf function begins here and specifies the passing of a argument
printf = ir.Function(m, printf_ty, name="printf")
c_str = builder.alloca(c_str_val.type) #creation of the allocation of the %".2" variable
builder.store(c_str_val, c_str) #store as defined on the next line below %".2"
voidptr_ty = ir.IntType(8).as_pointer()
fmt_arg = builder.bitcast(global_fmt, voidptr_ty) #creates the %".4" variable with the point pointing to the fstr
builder.call(printf, [fmt_arg, c_str]) #We are calling the prinf function with the fmt and arg and returning the value as defiend on the next line
builder.ret_void()
#Next lines are for calling llvm and returning the assembly.
llvm.initialize()
llvm.initialize_native_target()
llvm.initialize_native_asmprinter()
print(str(m)) #PRINTING OUT THE ASSEMBLY
llvm_module = llvm.parse_assembly(str(m)) #Parsing teh assembly
tm = llvm.Target.from_default_triple().create_target_machine() #creating the target machine
with llvm.create_mcjit_compiler(llvm_module, tm) as ee:
ee.finalize_object() #Making sure all modules owned by the execution engine are fully processed and usable for execution
fptr = ee.get_function_address("printer") #fptr will reference the printer function
py_func = CFUNCTYPE(None)(fptr)
py_func() #run the function printer
if __name__ == "__main__":
main()
It appears that I didn't correctly assign the variable and hence why I wasn't returning anything.
Related
Currently I'm tryin to convert given onnx file to tensorrt file, and do inference on the generated tensorrt file.
To do so, I used tensorrt python binding API, but
"Error Code 1: Cuda Driver (invalid resource handle)" happens and there is no kind description about this.
Can anyone help me to overcome this situation?
Thx in advance, and below is my code snippet.
def trt_export(self):
fp_16_mode = True
## Obviously, I provided appropriate file names
trt_file_name = "PATH_TO_TRT_FILE"
onnx_name = "PATH_TO_ONNX_FILE"
TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE)
EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
builder = trt.Builder(TRT_LOGGER)
network = builder.create_network(EXPLICIT_BATCH)
parser = trt.OnnxParser(network, TRT_LOGGER)
config = builder.create_builder_config()
config.max_workspace_size = (1<<30)
config.set_flag(trt.BuilderFlag.FP16)
config.default_device_type = trt.DeviceType.GPU
profile = builder.create_optimization_profile()
profile.set_shape('input', (1, 3, IMG_SIZE, IMG_SIZE), (12, 3, IMG_SIZE, IMG_SIZE), (32, 3, IMG_SIZE, IMG_SIZE)) # random nubmers for min. opt. max batch
config.add_optimization_profile(profile)
with open(onnx_name, 'rb') as model:
if not parser.parse(model.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
engine = builder.build_engine(network, config)
buf = engine.serialize()
with open(trt_file_name, 'wb') as f:
f.write(buf)
def validate_trt_result(self, input_path):
TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE)
trt_file_name = "PATH_TO_TRT_FILE"
trt_runtime = trt.Runtime(TRT_LOGGER)
with open(trt_file_name, 'rb') as f:
engine_data = f.read()
engine = trt_runtime.deserialize_cuda_engine(engine_data)
cuda.init()
device = cuda.Device(0)
ctx = device.make_context()
inputs, outputs, bindings = [], [], []
context = engine.create_execution_context()
stream = cuda.Stream()
index = 0
for binding in engine:
size = trt.volume(engine.get_binding_shape(binding)) * -1 # assuming one batch
dtype = trt.nptype(engine.get_binding_dtype(binding))
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc(host_mem.nbytes)
bindings.append(int(device_mem))
if engine.binding_is_input(binding):
inputs.append(HostDeviceMem(host_mem, device_mem))
context.set_binding_shape(index, [1, 3, IMG_SIZE, IMG_SIZE])
else:
outputs.append(HostDeviceMem(host_mem, device_mem))
index += 1
print(context.all_binding_shapes_specified)
input_img = cv2.imread(input_path)
input_r = cv2.resize(input_img, dsize = (256, 256))
input_p = np.transpose(input_r, (2, 0, 1))
input_e = np.expand_dims(input_p, axis = 0)
input_f = input_e.astype(np.float32)
input_f /= 255
numpy_array_input = [input_f]
hosts = [input.host for input in inputs]
trt_types = [trt.int32]
for numpy_array, host, trt_types in zip(numpy_array_input, hosts, trt_types):
numpy_array = np.asarray(numpy_array).astype(trt.nptype(trt_types)).ravel()
print(numpy_array.shape)
np.copyto(host, numpy_array)
[cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
#### ERROR HAPPENS HERE ####
context.execute_async_v2(bindings=bindings, stream_handle=stream.handle)
#### ERROR HAPPENS HERE ####
[cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
stream.synchronize()
print("TRT model inference result : ")
output = outputs[0].host
for one in output :
print(one)
ctx.pop()
Looks like ctx.push() line is missing before a line with memcpy_htod_async.
Such a error can happen if TensorFlow / PyTorch is also using CUDA in parallel with TensorRT.
See the related question/answer: https://stackoverflow.com/a/73996477/5655977
First of all, I am using TFX version 0.21.2 and Tensorflow version 2.1.
I have constructed a pipeline largely following the Chigaco taxi example. When the Trainer component is executed I can see the following in the logs:
INFO - Training complete. Model written to /root/airflow/tfx/pipelines/fish/Trainer/model/9/serving_model_dir
When checking the above directory it is empty. What am I missing?
This is my DAG definition file (import statements omitted):
_pipeline_name = 'fish'
_airflow_config = AirflowPipelineConfig(airflow_dag_config = {
'schedule_interval': None,
'start_date': datetime.datetime(2019, 1, 1),
})
_project_root = os.path.join(os.environ['HOME'], 'airflow')
_data_root = os.path.join(_project_root, 'data', 'fish_data')
_module_file = os.path.join(_project_root, 'dags', 'fishUtils.py')
_serving_model_dir = os.path.join(_project_root, 'serving_model', _pipeline_name)
_tfx_root = os.path.join(_project_root, 'tfx')
_pipeline_root = os.path.join(_tfx_root, 'pipelines', _pipeline_name)
_metadata_path = os.path.join(_tfx_root, 'metadata', _pipeline_name,
'metadata.db')
def _create_pipeline(pipeline_name: Text, pipeline_root: Text, data_root: Text,
module_file: Text, serving_model_dir: Text,
metadata_path: Text,
direct_num_workers: int) -> pipeline.Pipeline:
examples = external_input(data_root)
example_gen = CsvExampleGen(input=examples)
statistics_gen = StatisticsGen(examples=example_gen.outputs['examples'])
infer_schema = SchemaGen(
statistics=statistics_gen.outputs['statistics'],
infer_feature_shape=False)
validate_stats = ExampleValidator(
statistics=statistics_gen.outputs['statistics'],
schema=infer_schema.outputs['schema'])
trainer = Trainer(
examples=example_gen.outputs['examples'], schema=infer_schema.outputs['schema'],
module_file=_module_file, train_args= trainer_pb2.TrainArgs(num_steps=10000),
eval_args= trainer_pb2.EvalArgs(num_steps=5000))
model_validator = ModelValidator(
examples=example_gen.outputs['examples'],
model=trainer.outputs['model'])
pusher = Pusher(
model=trainer.outputs['model'],
model_blessing=model_validator.outputs['blessing'],
push_destination=pusher_pb2.PushDestination(
filesystem=pusher_pb2.PushDestination.Filesystem(
base_directory=_serving_model_dir)))
return pipeline.Pipeline(
pipeline_name=_pipeline_name,
pipeline_root=_pipeline_root,
components=[
example_gen,
statistics_gen,
infer_schema,
validate_stats,
trainer,
model_validator,
pusher],
enable_cache=True,
metadata_connection_config=metadata.sqlite_metadata_connection_config(
metadata_path),
beam_pipeline_args=['--direct_num_workers=%d' % direct_num_workers]
)
runner = AirflowDagRunner(config = _airflow_config)
DAG = runner.run(
_create_pipeline(
pipeline_name=_pipeline_name,
pipeline_root=_pipeline_root,
data_root=_data_root,
module_file=_module_file,
serving_model_dir=_serving_model_dir,
metadata_path=_metadata_path,
# 0 means auto-detect based on on the number of CPUs available during
# execution time.
direct_num_workers=0))
And this is my module file:
_DENSE_FLOAT_FEATURE_KEYS = ['length']
real_valued_columns = [tf.feature_column.numeric_column('length')]
def _eval_input_receiver_fn():
serialized_tf_example = tf.compat.v1.placeholder(
dtype=tf.string, shape=[None], name='input_example_tensor')
features = tf.io.parse_example(
serialized=serialized_tf_example,
features={
'length': tf.io.FixedLenFeature([], tf.float32),
'label': tf.io.FixedLenFeature([], tf.int64),
})
receiver_tensors = {'examples': serialized_tf_example}
return tfma.export.EvalInputReceiver(
features={'length' : features['length']},
receiver_tensors=receiver_tensors,
labels= features['label'],
)
def parser(serialized_example):
features = tf.io.parse_single_example(
serialized_example,
features={
'length': tf.io.FixedLenFeature([], tf.float32),
'label': tf.io.FixedLenFeature([], tf.int64),
})
return ({'length' : features['length']}, features['label'])
def _input_fn(filenames):
# TFRecordDataset doesn't directly accept paths with wildcards
filenames = tf.data.Dataset.list_files(filenames)
dataset = tf.data.TFRecordDataset(filenames, 'GZIP')
dataset = dataset.map(parser)
dataset = dataset.shuffle(2000)
dataset = dataset.batch(40)
dataset = dataset.repeat(10)
return dataset
def trainer_fn(trainer_fn_args, schema):
estimator = tf.estimator.LinearClassifier(feature_columns=real_valued_columns)
train_input_fn = lambda: _input_fn(trainer_fn_args.train_files)
train_spec = tf.estimator.TrainSpec(
train_input_fn,
max_steps=trainer_fn_args.train_steps)
eval_input_fn = lambda: _input_fn(trainer_fn_args.eval_files)
eval_spec = tf.estimator.EvalSpec(
eval_input_fn,
steps=trainer_fn_args.eval_steps,
name='fish-eval')
receiver_fn = lambda: _eval_input_receiver_fn()
return {
'estimator': estimator,
'train_spec': train_spec,
'eval_spec': eval_spec,
'eval_input_receiver_fn': receiver_fn
}
Thank you in advance for your help!
Posting the solution for anyone that is facing the same problem that I faced.
The reason that the model was not written in the filesystem was that the estimator needs a config argument to know where to write the model.
The following modification to the trainer_fn function should solve the problem.
run_config = tf.estimator.RunConfig(save_checkpoints_steps=999, keep_checkpoint_max=1)
run_config = run_config.replace(model_dir=trainer_fn_args.serving_model_dir)
estimator=tf.estimator.LinearClassifier(feature_columns=real_valued_columns,config=run_config)
I'm trying to run a loop over different functions with different number of arguments. The variables are created at runtime inside the loop, and I want to use eval at each iteration to instantiate a Struct using the variable :symbol. However, I can't do this since eval only works in the global scope. This is the MWE for the case that works:
function f1(x); return x; end
function f2(x1,x2); return x1+x2; end
handles = [f1,f2]
args =[:(x1),:(x1,x2)]
x1 = 1; x2 = 1;
for (i,f) in enumerate(handles)
params = eval(args[i])
#show f(params...)
end
f(params...) = 1
f(params...) = 2
However, if I move the variable definitions inside the loop, which is what I actually want, it doesn't work after restarting Julia to clear the workspace.
function f1(x); return x; end
function f2(x1,x2); return x1+x2; end
handles = [f1,f2]
args =[:(x1),:(x1,x2)]
for (i,f) in enumerate(handles)
x1 = 1; x2 = 1;
params = eval(args[i])
#show f(params...)
end
ERROR: UndefVarError: x1 not defined
I've tried several of the answers, such as this one, but I can't seem to make it work. I could write a custom dispatch function that takes[x1,x2] and calls f1 or f2 with the correct arguments. But still, is there any way to do this with eval or with an alternative elegant solution?
EDIT: here are more details as to what I'm trying to do in my code. I have a config struct for each algorithm, and in this I want to define beforehand the arguments it takes
KMF_config = AlgConfig(
name = "KMF",
constructor = KMC.KMF,
parameters = :(mu,N,L,p),
fit = KMC.fit!)
MF_config = AlgConfig(
name = "MF",
constructor = KMC.MF,
parameters = :(mu,N,L),
fit = KMC.fit!)
alg_config_list = [KMF_config, MF_config]
for (i,alg_config) in enumerate(alg_config_list)
mu,N,L,p,A,B,C,D,data = gen_vars() #this returns a bunch of variables that are used in different algorithms
method = alg_config.constructor(eval(method.parameters)...)
method.fit(data)
end
One possible solution is to have a function take all the variables and method, and return a tuple with a subset of variables according to method.name. But I'm not sure if it's the best way to do it.
Here's an approach using multiple dispatch rather than eval:
run_a(x, y) = x + 10*y
run_b(x, y, z) = x + 10*y + 100*z
extract(p, ::typeof(run_a)) = (p.x, p.y)
extract(p, ::typeof(run_b)) = (p.x, p.y, p.z)
genvars() = (x=1, y=2, z=3)
function doall()
todo = [
run_a,
run_b,
]
for runalg in todo
v = genvars()
p = extract(v, runalg)
#show runalg(p...)
end
end
In your example you would replace run_a and run_b with KMC.KMF and KMC.MF.
Edit: Cleaned up example to avoid structs that don't exist in your example.
pyparsing: The below is the code i put up which can parse a nested function call , a logical function call or a hybrid call which nests both the function and a logical function call. The dump() data adds too many unnecessary levels of braces because of grouping. Removing the Group() results in a wrong output. Is there a guideline to use Group(parsers)?
Also the Pyparsing document does'nt detail on how to walk the tree created and not much of data is available out there. Please point me to a link/guide which helps me write the tree walker for recursively parsed data for my test cases.
I will be translating this parsed data to a valid tcl code.
from pyparsing import *
from pyparsing import OneOrMore, Optional, Word, delimitedList, Suppress
# parse action -maker; # from Paul's example
def makeLRlike(numterms):
if numterms is None:
# None operator can only by binary op
initlen = 2
incr = 1
else:
initlen = {0:1,1:2,2:3,3:5}[numterms]
incr = {0:1,1:1,2:2,3:4}[numterms]
# define parse action for this number of terms,
# to convert flat list of tokens into nested list
def pa(s,l,t):
t = t[0]
if len(t) > initlen:
ret = ParseResults(t[:initlen])
i = initlen
while i < len(t):
ret = ParseResults([ret] + t[i:i+incr])
i += incr
return ParseResults([ret])
return pa
line = Forward()
fcall = Forward().setResultsName("fcall")
flogical = Forward()
lparen = Literal("(").suppress()
rparen = Literal(")").suppress()
arg = Word(alphas,alphanums+"_"+"."+"+"+"-"+"*"+"/")
args = delimitedList(arg).setResultsName("arg")
fargs = delimitedList(OneOrMore(flogical) | OneOrMore(fcall) |
OneOrMore(arg))
fname = Word(alphas,alphanums+"_")
fcall << Group(fname.setResultsName('func') + Group(lparen +
Optional(fargs) + rparen).setResultsName('fargs'))
flogic = Keyword("or") | Keyword("and") | Keyword("not")
logicalArg = delimitedList(Group(fcall.setResultsName("fcall")) |
Group(arg.setResultsName("arg")))
#logicalArg.setDebug()
flogical << Group(logicalArg.setResultsName('larg1') +
flogic.setResultsName('flogic') + logicalArg.setResultsName('larg2'))
#logical = operatorPrecedence(flogical, [(not, 1, opAssoc.RIGHT,
makeLRlike(2)),
# (and, 2, opAssoc.LEFT,
makeLRlike(2)),
# (or , 2, opAssoc.LEFT,
makeLRlike(2))])
line = flogical | fcall #change to logical if operatorPrecedence is used
# Works fine
print line.parseString("f(x, y)").dump()
print line.parseString("f(h())").dump()
print line.parseString("a and b").dump()
print line.parseString("f(a and b)").dump()
print line.parseString("f(g(x))").dump()
print line.parseString("f(a and b) or h(b not c)").dump()
print line.parseString("f(g(x), y)").dump()
print line.parseString("g(f1(x), a, b, f2(x,y, k(x,y)))").dump()
print line.parseString("f(a not c) and g(f1(x), a, b, f2(x,y,
k(x,y)))").dump()
#Does'nt work fine yet;
#try changing flogical assignment to logicalArg | flogic
#print line.parseString("a or b or c").dump()
#print line.parseString("f(a or b(x) or c)").dump()
On a simple grammar I am in the bad situation that one of my ParseActions is not called.
For me this is strange as parseActions of a base symbol ("logic_oper") and a derived symbol ("cmd_line") are called correctly. Just "pa_logic_cmd" is not called. You can see this on the output which is included at the end of the code.
As there is no exception on parsing the input string, I am assuming that the grammar is (basically) correct.
import io, sys
import pyparsing as pp
def diag(msg, t):
print("%s: %s" % (msg , str(t)) )
def pa_logic_oper(t): diag('logic_oper', t)
def pa_operand(t): diag('operand', t)
def pa_ident(t): diag('ident', t)
def pa_logic_cmd(t): diag('>>>>>> logic_cmd', t)
def pa_cmd_line(t): diag('cmd_line', t)
def make_grammar():
semi = pp.Literal(';')
ident = pp.Word(pp.alphas, pp.alphanums).setParseAction(pa_ident)
operand = (ident).setParseAction(pa_operand)
op_and = pp.Keyword('A')
op_or = pp.Keyword('O')
logic_oper = (( op_and | op_or) + pp.Optional(operand))
logic_oper.setParseAction(pa_logic_oper)
logic_cmd = logic_oper + pp.Suppress(semi)
logic_cmd.setParseAction(pa_logic_cmd)
cmd_line = (logic_cmd)
cmd_line.setParseAction(pa_cmd_line)
grammar = pp.OneOrMore(cmd_line) + pp.StringEnd()
return grammar
if __name__ == "__main__":
inp_str = '''
A param1;
O param2;
A ;
'''
grammar = make_grammar()
print( "pp-version:" + pp.__version__)
parse_res = grammar.parseString( inp_str )
'''USAGE/Output: python test_4.py
pp-version:2.0.3
operand: ['param1']
logic_oper: ['A', 'param1']
cmd_line: ['A', 'param1']
operand: ['param2']
logic_oper: ['O', 'param2']
cmd_line: ['O', 'param2']
logic_oper: ['A']
cmd_line: ['A']
'''
Can anybody give me a hint on this parseAction problem?
Thanks,
The problem is here:
cmd_line = (logic_cmd)
cmd_line.setParseAction(pa_cmd_line)
The first line assigns cmd_line to be the same expression as logic_cmd. You can verify by adding this line:
print("???", cmd_line is logic_cmd)
Then the second line calls setParseAction, which overwrites the parse action of logic_cmd, so the pa_logic_cmd will never get called.
Remove the second line, since you are already testing the calling of the parse action with pa_logic_cmd. You could change to using the addParseAction method instead, but to my mind that is an invalid test (adding 2 parse actions to the same pyparsing expression object).
Or, change the definition of cmd_line to:
cmd_line = pp.Group(logic_cmd)
Now you will have wrapped logic_cmd inside another expression, and you can then independently set and test the running of parse actions on the two different expressions.