Asynchronous GRPC? - asynchronous

I am working on designing a new system that will take a an array of hashes of car data and then use this data to call a separate API that returns a Boolean, after which I will return to the original caller the car model and either true or false.
The system needs to be callable from other applications so I am looking into GRPC to solve the problem. My question revolves around how to implement this solution in GRPC and whether or not something like RabbitMQ would be better?
Would it make sense to make a bidirectional streaming GRPC solution where the client streams in the list of cars and then on the servers end I spawn off say a delayed job for each request on the server? And then when each delayed job finishes processing I return that value to the original caller in a stream?
Is this an elegant solution or are there better ways to achieve my goal? Thanks.

The streaming system of gRPC is typically designed for asynchronous communication, so it should fit your usage case neatly.
The general design philosophy in this case is to consider each individual message sent in the stream as independent. Basically, make sure your proto message contains all the information it needs to be parsed and processed by your application without needing any context from previous calls.

Related

In the C++ streaming gRPC API, is there any way to check how many messages are buffered in the grpc queue?

grpc_impl::ServerReaderWriter/grpc_impl::internal::ReaderInterface implement NextMessageSize(), but from the naming it looks like it'd only return the size of the immediate next message, and from this thread and the documentation it seems that the return value is only an upper bound.
For streaming applications (e.g. audio/video, text, any real time duplex streams), it'd be helpful to know how much data arrived from the client, so that it could be e.g. processed in bulk, or to measure non-realtimeness, or to adapt to variable streaming rates, etc.
Thanks for any pointers and explanations.
The current API does not provide such capabilities. It is normally recommended to keep reading from the stream especially if the application is expecting to receive messages. If the application stops reading, gRPC would also stop reading at some point depending on how resource quota is configured. Even if the configuration is such that gRPC never stops reading, we risk gRPC consuming too much memory.
It seems to me that what you want is to build a layer on top of gRPC that will buffer messages so that you can process them in bulk and perform measurements.

Confusion about synchronous socket in ZeroMQ

This may appear as a silly question, but I am really confused about the terminology of the ZeroMQ regarding synchronous sockets like REQ and REP.
By my understanding a synchronous communication occurs when a client sends a message an then it blocks, until the response arrives. If ZeroMQ implemented a synchronous communication then only a .send() method would be enough for a synchronous socket.
I think that synchronous sockets terminology of ZeroMQ refers only to the inability of sending more messages until the response of the last message arrives, but the "sender" can still continue its processing ( doing more stuff ) asynchronously.
Is this true?
In that case, is there any straightforward way to implement a synchronous communication using ZeroMQ?
EDIT: Synchronous communication makes sense when I want to invoke a method in a remote process (like RPC). If I want to execute a series of commands in a remote process and each command needs the result of the previous one to do its job then asynchronous communication is not the best option.
To use ZMQ for implementing a synchronous framework, you can very nearly do it using just ZMQ; you can set the high water mark to 1. Unfortunately that's not quite it; what you want is an out going queue length of 0. Even more unfortunately, setting the high water mark to 0 is interpretted by ZMQ as infinity...
So the only option is to implement a synchronous transfer protocol on top of ZMQ. That's not very difficult to do. The conversation between the two ends will be something like "can I send?", "yes you can send now", "ok here it is", "ok I have received it" (both ends return to caller) (or at least the programatic version of that). This sets up what is called an execution rendevous - both ends know that they both reached a certain point of execution.
Technically speaking what you're doing is taking ZeroMQ (Actor Model) and turning it into something more like Communicating Sequential Processes.
RPC
Having said all that, from your edit I think you might like to consider Cap'n Proto. This is a C++ serialisation technology that has a neat RPC trick. If the return from one RPC call is the input to another, you can chain those all together somehow in advance (see here).
Let's start with a first stepforget everything you know about sockets.
ZeroMQ is more a concept of thinking about distributed-systems ( multi-agent like ) and how to design a software, with a use of such a smart signalling / messaging framework.
This is the core aim of the ZeroMQ, to allow designers remain thinking in the application domain and let all the low level dirty work to be operated actually without much of the designers' need to care of.
If have just recently started with ZeroMQ, one may enjoy a short read about a ZeroMQ global view first, before discussing details.
Having read and understood the concept of the ZeroMQ hierarchy, it is way simpler to start on details:
given a local Context() instance is a data-pumping engine and having a REQ/REP Scalable Formal Communications Archetype pattern in mind, the story is now actually a story about a network of distributed-Finite-State-Automata.
local process, operating just one side of the distributed REQ/REP communication archetype has zero power to influence the remote process to receive or not the message that was passed from the local process over to the ZeroMQ delivery services towards the indended recipient(s) in a fair belief. The less the local process can influence the remote process' intent to respond at all or not, so welcome to the realms of distributed multi-agent games.
Both the REQ and the REP formal behaviour has to meet its both the { local | distributed-mode }-expected sort of behaviour -- REQ asks first, REP answers then, so as to keep the contracted promise. The point is, that this behaviour is distributed and split among a pair of nodes, plus there are cases, when network incidents may throw the distributed-FSA into an unsalvageable mutual deadlock ( one may find more posts on this here zeromq quite often ).
So, your local-side REQ code imperatively .send()-s and has no obligation to stop without doing anything reasonable until REP-side .recv( zmq.NOBLOCK )-s or not ( no one has any kind of warranty a remote node exists at all, similarly, one has to set oneselves ready to anticipate and handle all cases, where a remote side will never respond, so many "new" challenges appear from the nature of a distributed multi-agent ecosystem ).
There are smart ways to handle this new breed of distributed chaos and uncertainties, using, best using .poll() and non-blocking forms of either the .send() and .recv()-methods, as these let user-code to remain capable of handling all expected and un-expected events in due time and fashion.
One may also operate rather many co-existent ZeroMQ connections, so as to prioritise and specialise each and any form of the multi-agents' interactions in a distributed system design, even for designing in fault-resilience and similar high-level robustness concept, where asynchronous nature of each of the interactions avoids a need of any sort of coordination or synchronisation with a remote ( possibly even not yet present ) agent, which is principally an autonomous entity, having it's own domain of control, so again, being principally asynchronous to what local-side agent might "expect", the less "influence" in any other form but by an attempt to send "there" a message "telegram".
So yes,ZeroMQ is asynchronous brokerless signalling / messaging framework.
For (almost) synchronous communications, one may take steps and measures to trim down the ( principally distributed ) asynchronous control loops -- best update your post with an MCVE example and details about what are your particular goals for being achieved.

How do I create a memory bound message queue in Erlang?

I want the speed of asynchronous messages but still have some flow control. How can I accomplish this in Erlang?
There is no process memory limit right now -- it is discussed on mailing list etc. You can look at those threads.
On the up side, when you use OTP patterns implementation like gen_server you have a lot of freedom in retrieving messages from process queue and measuring the length of the queue.
gen_server2 used in rabbitmq used to optimize that by moving messages to internal data structure.
Having that you can discard any new incoming message when internal queue is too long.
You can do it silently or notify sender that the message rejected.
All of that is on very low level.
RabbitMQ will provide this functionality on AMQP level.
A common and quite good way of enforcing flow control is to make well selected messages into calls which limits how much load each client can load the server to one, effectively providing force feed back in an extremely simple way. The trick is of course to pick which communications uses synchronous calls :-)

How to best implement a blocking/waiting actor?

I'm fairly new to Akka and writing concurrent applications and I'm wondering what's a good way to implement an actor that would wait for a redis list and once an item becomes available it will process it, or send it to a different actor to process?
Would using the blocking function BRPOPLPUSH be better, or would a scheduler that will ask the actor to poll redis every second be a better way?
Also, on a normal system, how many of these actors can I spawn concurrently without consuming all the resource the system has to offer? How does one decide how many of each Actor type should an actor system be able to handle on the system its running on?
As a rule of thumb you should never block inside receive. Each actor should rely only on CPU and never wait, sleep or block on I/O. When these conditions are met you can create even millions of actors working concurrently. Each actor is suppose to have 600-650 bytes memory footprint (see: Concurrency, Scalability & Fault-tolerance 2.0 with Akka Actors & STM).
Back to your main question. Unfortunately there is no official Redis client "compatible" with Akka philosophy, that is, completely asynchronous. What you need is a client that instead of blocking will return you a Future object of some sort and allow you to register callback when results are available. There are such clients e.g. for Perl and node.js.
However I found fyrie-redis independent project which you might find useful. If you are bound to synchronous client, the best you can do is either:
poll Redis periodically without blocking and inform some actor by sending a message to with a Redis reply or
block inside an actor and understand the consequences
See also
Redis client library recommendations for use from Scala
BRPOPLPUSH with block for long time (up to the timeout you specify), so I would favour a Scheduler instead which still blocks, but for a shorter amount of time every second or so.
Whichever way you go, because you are blocking, you should read this section of the Akka docs which describes methods for working with blocking libraries.
Do you you have control over the code that is inserting the item into redis? If so you could get that code to send your akka code a message (maybe over ActiveMQ using the akka camel support) to notify it when the item has been inserted into redis. This will be a more event driven way of working and prevent you from having to poll, or block for super long periods of time.

{ ProcessName, NodeName } ! Message VS rpc:call/4 VS HTTP/1.1 across Erlang Nodes

I have a setup in which two nodes are going to be communicating a lot. On Node A, there are going to be thousands of processes, which are meant to access services on Node B. There is going to be a massive load of requests and responses across the two nodes. The two Nodes, will be running on two different servers, each on its own hardware server.
I have 3 Options: HTTP/1.1 , rpc:call/4 and Directly sending a message to a registered gen_server on Node B. Let me explain each option.
HTTP/1.1 Suppose that on Node A, i have an HTTP Client like Ibrowse, and on Node B, i have a web server like Yaws-1.95, the web server being able to handle unlimited connections, the operating system settings tweaked to allow yaws to handle all connections. And then make my processes on Node A to communicate using HTTP. In this case each method call, would mean a single HTTP request and a reply. I believe there is an overhead here, but we are evaluating options here. The erlang Built in mechanism called webtool, may be built for this kind of purpose.
rpc:call/4 I could simply make direct rpc calls from Node A to Node B. I am not very susre how the underlying rpc mechanism works , but i think that when two erlang nodes connect via net_adm:ping/1, the created connection is not closed but all rpc calls use this pipe to transmit requests and pass responses. Please correct me on this one.Sending a Message from Node A to Node B I could make my processes on Node A to just send message to a registered process, or a group of processes on Node B. This too seems a clean option.
Q1. Which of the above options would you recommend and why, for an application in which two erlang nodes are going to have enormous communications between them all the time. Imagine a messaging system, in which two erlang nodes are the routers :) ? Q2. Which of the above methods is cleaner, less problematic and is more fault tolerant (i mean here that, the method should NOT have single point of failure, that could lead to all processes on Node A blind) ? Q3. The mechanism of your choice: how would you make it even more fault tolerant, or redundant? Assumptions: The Nodes are always alive and will never go down, the network connection between the nodes will always be available and non-congested (dedicated to the two nodes only) , the operating system have allocated maximum resources to these two nodes. Thank you for your evaluations
HTTP is definitely out. Just the round-trip overhead of creating a new connection is a problem.
As for Erlang connections and using Pids, you have the advantage that you can subscribe to node-down messages and handle the case where a node goes down. A single TCP connection should be able to give you very fast speeds, however, be aware that it works like a long pipe: messages are muxed and demuxed on a pipe which can affect latency on the line. It also means that large messages will block small messages from getting through.
How much bandwidth are you aiming for, and at what latency? What is the 95th and 99th percentile of answering messages? It is better to put up some rough numbers and then try to target these than just having "as fast as possible". Set your success criteria first.
Q1: HTTP will add additional overhead and will give you nothing in my opinion. HTTP would be useful if you were designing a REST API. Directly sending messages and rpc:call look about the same as far as overhead is regarded.
Q2: Sending messages is much much clearer. It's the way erlang is designed. With RPC calls you must always track which call is executed where and under which circumstances which can be a huge issue if the two servers have state. Also RPC calls are synchronous.
Q3: I would use UBF if I can afford minor overhead, otherwise I would directly send messages between the erlang nodes. If the bandwidth is an issue other trickery would be needed as well. Like encoding the messages in same way and then using some compression algorithm to reduce the size of the message, alternatively I may ditch the erlang message passing altogether and use UDP sockets.
It is not obvious that ! is the best way to go. Definitely, it is the easiest and the code will be the most elegant.
In terms of scalability, take under consideration that to use rpc/! you have to maintain an erlang cluster. I found it painful having just 10-20 nodes even in private cloud. I would never recommend bigger deployments on e.g. EC2, where io/latency/network is not deterministic.
I recommend to structure the project in a way that will let you exchange communication engine in the future. Also HTTP is pretty heavy, but there are options:
socket-socket (tcp/udp/sctp)
amqp (many benefits connected to load balancing)
zeromq (even nicer than amqp)
Betting on !/rpc and OTP cluster is risky. You will fight with full mesh overhead, master election algos and quorum/partition detection.

Resources