Swapping data frame values randomly between different deciles of the data frame - r

Its a bit complicated to explain, so I hope it is clear enough, but if not I'll try and expand more.
So I have a data-frame like this:
df <- data.frame(index=sort(runif(300, -10,10)), v1=runif(300, -2,-1), v2=runif(300, 1,2))
It gives us a 3-column 300-row df. The first column ("index") contains sorted values from -10 to 10, and the next two columns ("v1"/"v2") contain random numeric values that are not important for this issue.
Now I classify my df rows into deciles according to the index column, (e.g. decile 1: places 1-30, decile 2: places 31-60) and I want to swap randomly between the rows such that all the 1st decile values are swapped randomly with the 6th decile, all 2nd decile values are swapped randomly with the 7th decile, and so on. When I say swapped I mean that the index value remains in its place but the v1 and v2 values are swapped (still coupled) with the v1 and v2 of a random row in the appropriate decile.
For example, the v1 and v2 of the first row in the df (and thus from the 1st decile), will be swapped with the v1 and v2 of the 160th row in the df (6th decile), the v1 and v2 of the second row in the df (1st decile) will be swapped with the v1 and v2 of the 175th row in the df (also 6th decile), the v1 and v2 of the 31st row in the df (2nd decile) will be swapped with the v1 and v2 of the 186th row in the df (7th decile) and so on so all of the v1+v2 values have changed places randomly to their appropriate new decile.
Hope it's clear. I've been trying to solve it for hours and couldn't figure it out.
Thanks

Using order() to sort by two indices, one being the rearranged deciles, the other one random.
set.seed(123)
dtf <- data.frame(round(cbind(index=sort(runif(20, -10, 10)),
v1=runif(20, 0, 5),
v2=runif(20, 5, 10)), 2))
ea <- nrow(dtf)/10
# Deciles shifted by 5
d <- rep(((1:10 + 4) %% 10) + 1, each=ea)
# Random index within decile
r <- c(replicate(10, sample(ea)))
cbind(dtf, z=dtf[order(d, r), -1])
# index v1 v2 z.v1 z.v2
# 12 -9.16 4.45 5.71 4.51 7.21
# 11 -9.09 3.46 7.07 4.82 5.23
# 14 -7.94 3.20 7.07 3.98 5.61
# 13 -5.08 4.97 6.84 3.45 8.99
# 15 -4.25 3.28 5.76 0.12 7.80
# 16 -3.44 3.54 5.69 2.39 6.03
# 17 -1.82 2.72 6.17 3.79 5.64
# 18 -0.93 2.97 7.33 1.08 8.77
# 19 -0.87 1.45 6.33 1.59 9.48
# 20 0.56 0.74 9.29 1.16 6.87
# 2 1.03 4.82 5.23 3.46 7.07
# 1 1.45 4.51 7.21 4.45 5.71
# 3 3.55 3.45 8.99 3.20 7.07
# 4 5.77 3.98 5.61 4.97 6.84
# 6 7.66 0.12 7.80 3.54 5.69
# 5 7.85 2.39 6.03 3.28 5.76
# 8 8.00 3.79 5.64 2.97 7.33
# 7 8.81 1.08 8.77 2.72 6.17
# 10 9.09 1.59 9.48 0.74 9.29
# 9 9.14 1.16 6.87 1.45 6.33

I think that this is what you need.
swapByBlocks <- function(df, blockSize = 30, nblocks = 10){
if((nrow(df) != blockSize*nblocks) || nblocks %%2) stop("Undefined behaviour")
swappedDF <- df[c((nrow(df)/2 +1):nrow(df), 1:(nrow(df)/2)),]
ndxMat <- sapply(1:(nblocks/2),function(dummy) sample(1:blockSize))
for(i in 1:ncol(ndxMat)) {
swappedDF[(i-1)*blockSize + 1:blockSize, ] <- swappedDF[((i-1)*blockSize + 1:blockSize)[ndxMat[,i]], ]
swappedDF[(i+nblocks/2-1)*blockSize + 1:blockSize, ] <- swappedDF[((i+nblocks/2-1)*blockSize + 1:blockSize)[order(ndxMat[,i])], ]
}
return(swappedDF)
}
A small case where you can check how it works:
res <- swapByBlocks(df[1:18,], blockSize = 3, nblocks = 6)
> df[1:18,]
index v1 v2
1 -9.859624 -1.657779 1.954094
2 -9.774898 -1.015825 1.006341
3 -9.624402 -1.713754 1.527065
4 -9.441129 -1.891834 1.803793
5 -9.424195 -1.125674 1.581199
6 -8.890537 -1.142044 1.219111
7 -8.838012 -1.173445 1.013408
8 -8.296938 -1.780396 1.570550
9 -8.172076 -1.789056 1.178596
10 -7.671897 -1.988539 1.690468
11 -7.655868 -1.095662 1.876414
12 -7.450011 -1.337443 1.632104
13 -7.204528 -1.880350 1.408944
14 -7.085862 -1.232293 1.593247
15 -7.030691 -1.087031 1.924306
16 -6.989892 -1.639967 1.495058
17 -6.978945 -1.395340 1.872944
18 -6.930379 -1.841031 1.061046
> res
index v1 v2
10 -7.450011 -1.337443 1.632104
11 -7.655868 -1.095662 1.876414
12 -7.671897 -1.988539 1.690468
13 -7.030691 -1.087031 1.924306
14 -7.085862 -1.232293 1.593247
15 -7.204528 -1.880350 1.408944
16 -6.989892 -1.639967 1.495058
17 -6.930379 -1.841031 1.061046
18 -6.978945 -1.395340 1.872944
1 -9.624402 -1.713754 1.527065
2 -9.774898 -1.015825 1.006341
3 -9.859624 -1.657779 1.954094
4 -8.890537 -1.142044 1.219111
5 -9.424195 -1.125674 1.581199
6 -9.441129 -1.891834 1.803793
7 -8.838012 -1.173445 1.013408
8 -8.172076 -1.789056 1.178596
9 -8.296938 -1.780396 1.570550
>
Here there are 18 rows with six blocks of three numbers each. Rows 1 to 3 get swapped with rows 10 to 12, rows 4 to 6 with rows 13 to 15 and rows 4
7 to 9 with rows 16 to 17.

Related

standardize a variable values differently based on another categorical variable in R (Using R Base)

I have a large dataset that has a continuous variable "Cholesterol" for two visits for each participant (each participant has two rows: first visit = Before & second visit= After). I'd like to standadise cholesterol but I have both Before and After visits merged which will not make my standardisation accurate as it is calculated using the mean and the SD
USING R BASE, How can I create a new cholesterol variable standardised based on Visit in the same data set (in this process standardisation should be done twice; once for Before and another time for After, but the output (standardised values) will be in a one variable again following the same structure of this DF
DF$Cholesterol<- c( 0.9861551,2.9154158, 3.9302373,2.9453085, 4.2248018,2.4789901, 0.9972635, 0.3879830, 1.1782336, 1.4065341, 1.0495609,1.2750138, 2.8515144, 0.4369885, 2.2410429, 0.7566147, 3.0395565,1.7335131, 1.9242212, 2.4539439, 2.8528908, 0.8432039,1.7002653, 2.3952744,2.6522959, 1.2178764, 2.3426695, 1.9030782,1.1708246,2.7267124)
DF$Visit< -c(Before,After,Before,After,Before,After,Before,After,Before,After,Before,After,Before,After,Before,After,Before,After,Before,After,Before,After,Before,After,Before, After,Before,After,Before,After)
# the standardisation function I want to apply
standardise <- function(x) {return((x-min(x,na.rm = T))/sd(x,na.rm = T))}
thank you in advance
Let's make your data, fix the df$visit assignment, fix the standardise function to be mean rather than min, and then assume each new occasion of before is the next person, pivot to wide format, then mutate our before and after standardised variables:
df <- data.frame(x = rep(1, 30))
df$cholesterol<- c( 0.9861551,2.9154158, 3.9302373,2.9453085, 4.2248018,2.4789901, 0.9972635, 0.3879830, 1.1782336, 1.4065341, 1.0495609,1.2750138, 2.8515144, 0.4369885, 2.2410429, 0.7566147, 3.0395565,1.7335131, 1.9242212, 2.4539439, 2.8528908, 0.8432039,1.7002653, 2.3952744,2.6522959, 1.2178764, 2.3426695, 1.9030782,1.1708246,2.7267124)
df$visit <- rep(c("before", "after"), 15)
standardise <- function(x) {return((x-mean(x,na.rm = T))/sd(x,na.rm = T))}
df <- df %>%
mutate(person = cumsum(visit == "before"))%>%
pivot_wider(names_from = visit, id_cols = person, values_from = cholesterol)%>%
mutate(before_std = standardise(before),
after_std = standardise(after))
gives:
person before after before_std after_std
<int> <dbl> <dbl> <dbl> <dbl>
1 1 0.986 2.92 -1.16 1.33
2 2 3.93 2.95 1.63 1.36
3 3 4.22 2.48 1.91 0.842
4 4 0.997 0.388 -1.15 -1.49
5 5 1.18 1.41 -0.979 -0.356
6 6 1.05 1.28 -1.10 -0.503
7 7 2.85 0.437 0.609 -1.44
8 8 2.24 0.757 0.0300 -1.08
9 9 3.04 1.73 0.788 0.00940
10 10 1.92 2.45 -0.271 0.814
11 11 2.85 0.843 0.611 -0.985
12 12 1.70 2.40 -0.483 0.749
13 13 2.65 1.22 0.420 -0.567
14 14 2.34 1.90 0.126 0.199
15 15 1.17 2.73 -0.986 1.12
If you actually want min in your standardise function rather than mean, editing it should be simple enough.
Edited for BaseR solution, but with a cautionary tale that there's probably a much neater solution:
df <- data.frame(id = rep(c(seq(1, 15, 1)), each = 2))
df$cholesterol<- c( 0.9861551,2.9154158, 3.9302373,2.9453085, 4.2248018,2.4789901, 0.9972635, 0.3879830, 1.1782336, 1.4065341, 1.0495609,1.2750138, 2.8515144, 0.4369885, 2.2410429, 0.7566147, 3.0395565,1.7335131, 1.9242212, 2.4539439, 2.8528908, 0.8432039,1.7002653, 2.3952744,2.6522959, 1.2178764, 2.3426695, 1.9030782,1.1708246,2.7267124)
df$visit <- rep(c("before", "after"), 15)
df <- reshape(df, direction = "wide", idvar = "id", timevar = "visit")
standardise <- function(x) {return((x-mean(x,na.rm = T))/sd(x,na.rm = T))}
df$before_std <- round(standardise(df$cholesterol.before), 2)
df$aafter_std <- round(standardise(df$cholesterol.after), 2)
gives:
i id cholesterol.before cholesterol.after before_std after_std
1 1 0.9861551 2.9154158 -1.16 1.33
3 2 3.9302373 2.9453085 1.63 1.36
5 3 4.2248018 2.4789901 1.91 0.84
7 4 0.9972635 0.3879830 -1.15 -1.49
9 5 1.1782336 1.4065341 -0.98 -0.36
11 6 1.0495609 1.2750138 -1.10 -0.50
13 7 2.8515144 0.4369885 0.61 -1.44
15 8 2.2410429 0.7566147 0.03 -1.08
17 9 3.0395565 1.7335131 0.79 0.01
19 10 1.9242212 2.4539439 -0.27 0.81
21 11 2.8528908 0.8432039 0.61 -0.99
23 12 1.7002653 2.3952744 -0.48 0.75
25 13 2.6522959 1.2178764 0.42 -0.57
27 14 2.3426695 1.9030782 0.13 0.20
29 15 1.1708246 2.7267124 -0.99 1.12

How to apply a function from a package to a dataframe

How can I apply a package function to a data frame ?
I have a data set (df) with two columns (total and n) on which I would like to apply the pois.exact function (pois.exact(x, pt = 1, conf.level = 0.95)) from the epitools package with x = df$n and pt = df$total f and get a "new" data frame (new_df) with 3 more columns with the corresponding rounded computed rates, lower and upper CI ?
df <- data.frame("total" = c(35725302,35627717,34565295,36170648,38957933,36579643,29628394,18212075,39562754,1265055), "n" = c(24,66,166,461,898,1416,1781,1284,329,12))
> df
total n
1 35725302 24
2 35627717 66
3 34565295 166
4 36170648 461
5 38957933 898
6 36579643 1416
7 29628394 1781
8 18212075 1284
9 9562754 329
In facts, the dataframe in much more longer.
For example, for the first row the desired results are:
require (epitools)
round (pois.exact (24, pt = 35725302, conf.level = 0.95)* 100000, 2)[3:5]
rate lower upper
1 0.07 0.04 0.1
The new dataframe with the added results by applying the pois.exact function should look like that.
> new_df
total n incidence lower_95IC uppper_95IC
1 35725302 24 0.07 0.04 0.10
2 35627717 66 0.19 0.14 0.24
3 34565295 166 0.48 0.41 0.56
4 36170648 461 1.27 1.16 1.40
5 38957933 898 2.31 2.16 2.46
6 36579643 1416 3.87 3.67 4.08
7 29628394 1781 6.01 5.74 6.03
8 18212075 1284 7.05 6.67 7.45
9 9562754 329 3.44 3.08 3.83
Thanks.
df %>%
cbind( pois.exact(df$n, df$total) ) %>%
dplyr::select( total, n, rate, lower, upper )
# total n rate lower upper
# 1 35725302 24 1488554.25 1488066.17 1489042.45
# 2 35627717 66 539813.89 539636.65 539991.18
# 3 34565295 166 208224.67 208155.26 208294.10
# 4 36170648 461 78461.28 78435.71 78486.85
# 5 38957933 898 43383.00 43369.38 43396.62
# 6 36579643 1416 25833.08 25824.71 25841.45
# 7 29628394 1781 16635.82 16629.83 16641.81
# 8 18212075 1284 14183.86 14177.35 14190.37
# 9 39562754 329 120251.53 120214.06 120289.01
# 10 1265055 12 105421.25 105237.62 105605.12

R generate bins from a data frame respecting blanks

I need to generate bins from a data.frame based on the values of one column. I have tried the function "cut".
For example: I want to create bins of air temperature values in the column "AirTDay" in a data frame:
AirTDay (oC)
8.16
10.88
5.28
19.82
23.62
13.14
28.84
32.21
17.44
31.21
I need the bin intervals to include all values in a range of 2 degrees centigrade from that initial value (i.e. 8-9.99, 10-11.99, 12-13.99...), to be labelled with the average value of the range (i.e. 9.5, 10.5, 12.5...), and to respect blank cells, returning "NA" in the bins column.
The output should look as:
Air_T (oC) TBins
8.16 8.5
10.88 10.5
5.28 NA
NA
19.82 20.5
23.62 24.5
13.14 14.5
NA
NA
28.84 28.5
32.21 32.5
17.44 18.5
31.21 32.5
I've gotten as far as:
setwd('C:/Users/xxx')
temp_data <- read.csv("temperature.csv", sep = ",", header = TRUE)
TAir <- temp_data$AirTDay
Tmin <- round(min(TAir, na.rm = FALSE), digits = 0) # is start at minimum value
Tmax <- round(max(TAir, na.rm = FALSE), digits = 0)
int <- 2 # bin ranges 2 degrees
mean_int <- int/2
int_range <- seq(Tmin, Tmax + int, int) # generate bin sequence
bin_label <- seq(Tmin + mean_int, Tmax + mean_int, int) # generate labels
temp_data$TBins <- cut(TAir, breaks = int_range, ordered_result = FALSE, labels = bin_label)
The output table looks correct, but for some reason it shows a sequential additional column, shifts column names, and collapse all values eliminating blank cells. Something like this:
Air_T (oC) TBins
1 8.16 8.5
2 10.88 10.5
3 5.28 NA
4 19.82 20.5
5 23.62 24.5
6 13.14 14.5
7 28.84 28.5
8 32.21 32.5
9 17.44 18.5
10 31.21 32.5
Any ideas on where am I failing and how to solve it?
v<-ceiling(max(dat$V1,na.rm=T))
breaks<-seq(8,v,2)
labels=seq(8.5,length.out=length(s)-1,by=2)
transform(dat,Tbins=cut(V1,breaks,labels))
V1 Tbins
1 8.16 8.5
2 10.88 10.5
3 5.28 <NA>
4 NA <NA>
5 19.82 18.5
6 23.62 22.5
7 13.14 12.5
8 NA <NA>
9 NA <NA>
10 28.84 28.5
11 32.21 <NA>
12 17.44 16.5
13 31.21 30.5
This result follows the logic given: we have
paste(seq(8,v,2),seq(9.99,v,by=2),sep="-")
[1] "8-9.99" "10-11.99" "12-13.99" "14-15.99" "16-17.99" "18-19.99" "20-21.99"
[8] "22-23.99" "24-25.99" "26-27.99" "28-29.99" "30-31.99"
From this we can tell that 19.82 will lie between 18 and 20 thus given the value 18.5, similar to 10.88 being between 10-11.99 thus assigned the value 10.5

How to divide dataset into balanced sets based on multiple variables

I have a large dataset I need to divide into multiple balanced sets.
The set looks something like the following:
> data<-matrix(runif(4000, min=0, max=10), nrow=500, ncol=8 )
> colnames(data)<-c("A","B","C","D","E","F","G","H")
The sets, each containing for example 20 rows, will need to be balanced across multiple variables so that each subset ends up having a similar mean of B, C, D that's included in their subgroup compared to all the other subsets.
Is there a way to do that with R? Any advice would be much appreciated. Thank you in advance!
library(tidyverse)
# Reproducible data
set.seed(2)
data<-matrix(runif(4000, min=0, max=10), nrow=500, ncol=8 )
colnames(data)<-c("A","B","C","D","E","F","G","H")
data=as.data.frame(data)
Updated Answer
It's probably not possible to get similar means across sets within each column if you want to keep observations from a given row together. With 8 columns (as in your sample data), you'd need 25 20-row sets where each column A set has the same mean, each column B set has the same mean, etc. That's a lot of constraints. Probably there are, however, algorithms that could find the set membership assignment schedule that minimizes the difference in set means.
However, if you can separately take 20 observations from each column without regard to which row it came from, then here's one option:
# Group into sets with same means
same_means = data %>%
gather(key, value) %>%
arrange(value) %>%
group_by(key) %>%
mutate(set = c(rep(1:25, 10), rep(25:1, 10)))
# Check means by set for each column
same_means %>%
group_by(key, set) %>%
summarise(mean=mean(value)) %>%
spread(key, mean) %>% as.data.frame
set A B C D E F G H
1 1 4.940018 5.018584 5.117592 4.931069 5.016401 5.171896 4.886093 5.047926
2 2 4.946496 5.018578 5.124084 4.936461 5.017041 5.172817 4.887383 5.048850
3 3 4.947443 5.021511 5.125649 4.929010 5.015181 5.173983 4.880492 5.044192
4 4 4.948340 5.014958 5.126480 4.922940 5.007478 5.175898 4.878876 5.042789
5 5 4.943010 5.018506 5.123188 4.924283 5.019847 5.174981 4.869466 5.046532
6 6 4.942808 5.019945 5.123633 4.924036 5.019279 5.186053 4.870271 5.044757
7 7 4.945312 5.022991 5.120904 4.919835 5.019173 5.187910 4.869666 5.041317
8 8 4.947457 5.024992 5.125821 4.915033 5.016782 5.187996 4.867533 5.043262
9 9 4.936680 5.020040 5.128815 4.917770 5.022527 5.180950 4.864416 5.043587
10 10 4.943435 5.022840 5.122607 4.921102 5.018274 5.183719 4.872688 5.036263
11 11 4.942015 5.024077 5.121594 4.921965 5.015766 5.185075 4.880304 5.045362
12 12 4.944416 5.024906 5.119663 4.925396 5.023136 5.183449 4.887840 5.044733
13 13 4.946751 5.020960 5.127302 4.923513 5.014100 5.186527 4.889140 5.048425
14 14 4.949517 5.011549 5.127794 4.925720 5.006624 5.188227 4.882128 5.055608
15 15 4.943008 5.013135 5.130486 4.930377 5.002825 5.194421 4.884593 5.051968
16 16 4.939554 5.021875 5.129392 4.930384 5.005527 5.197746 4.883358 5.052474
17 17 4.935909 5.019139 5.131258 4.922536 5.003273 5.204442 4.884018 5.059162
18 18 4.935830 5.022633 5.129389 4.927106 5.008391 5.210277 4.877859 5.054829
19 19 4.936171 5.025452 5.127276 4.927904 5.007995 5.206972 4.873620 5.054192
20 20 4.942925 5.018719 5.127394 4.929643 5.005699 5.202787 4.869454 5.055665
21 21 4.941351 5.014454 5.125727 4.932884 5.008633 5.205170 4.870352 5.047728
22 22 4.933846 5.019311 5.130156 4.923804 5.012874 5.213346 4.874263 5.056290
23 23 4.928815 5.021575 5.139077 4.923665 5.017180 5.211699 4.876333 5.056836
24 24 4.928739 5.024419 5.140386 4.925559 5.012995 5.214019 4.880025 5.055182
25 25 4.929357 5.025198 5.134391 4.930061 5.008571 5.217005 4.885442 5.062630
Original Answer
# Randomly group data into 20-row groups
set.seed(104)
data = data %>%
mutate(set = sample(rep(1:(500/20), each=20)))
head(data)
A B C D E F G H set
1 1.848823 6.920055 3.2283369 6.633721 6.794640 2.0288792 1.984295 2.09812642 10
2 7.023740 5.599569 0.4468325 5.198884 6.572196 0.9269249 9.700118 4.58840437 20
3 5.733263 3.426912 7.3168797 3.317611 8.301268 1.4466065 5.280740 0.09172101 19
4 1.680519 2.344975 4.9242313 6.163171 4.651894 2.2253335 1.175535 2.51299726 25
5 9.438393 4.296028 2.3563249 5.814513 1.717668 0.8130327 9.430833 0.68269106 19
6 9.434750 7.367007 1.2603451 5.952936 3.337172 5.2892300 5.139007 6.52763327 5
# Mean by set for each column
data %>% group_by(set) %>%
summarise_all(mean)
set A B C D E F G H
1 1 5.240236 6.143941 4.638874 5.367626 4.982008 4.200123 5.521844 5.083868
2 2 5.520983 5.257147 5.209941 4.504766 4.231175 3.642897 5.578811 6.439491
3 3 5.943011 3.556500 5.366094 4.583440 4.932206 4.725007 5.579103 5.420547
4 4 4.729387 4.755320 5.582982 4.763171 5.217154 5.224971 4.972047 3.892672
5 5 4.824812 4.527623 5.055745 4.556010 4.816255 4.426381 3.520427 6.398151
6 6 4.957994 7.517130 6.727288 4.757732 4.575019 6.220071 5.219651 5.130648
7 7 5.344701 4.650095 5.736826 5.161822 5.208502 5.645190 4.266679 4.243660
8 8 4.003065 4.578335 5.797876 4.968013 5.130712 6.192811 4.282839 5.669198
9 9 4.766465 4.395451 5.485031 4.577186 5.366829 5.653012 4.550389 4.367806
10 10 4.695404 5.295599 5.123817 5.358232 5.439788 5.643931 5.127332 5.089670
# ... with 15 more rows
If the total number of rows in the data frame is not divisible by the number of rows you want in each set, then you can do the following when you create the sets:
data = data %>%
mutate(set = sample(rep(1:ceiling(500/20), each=20))[1:n()])
In this case, the set sizes will vary a bit with the number of data rows is not divisible by the desired number of rows in each set.
The following approach could be worth trying for someone in a similar position.
It is based on the numerical balancing in groupdata2's fold() function, which allows creating groups with balanced means for a single column. By standardizing each of the columns and numerically balancing their rowwise sum, we might increase the chance of getting balanced means in the individual columns.
I compared this approach to creating groups randomly a few times and selecting the split with the least variance in means. It seems to be a bit better, but I'm not too convinced that this will hold in all contexts.
# Attach dplyr and groupdata2
library(dplyr)
library(groupdata2)
set.seed(1)
# Create the dataset
data <- matrix(runif(4000, min = 0, max = 10), nrow = 500, ncol = 8)
colnames(data) <- c("A", "B", "C", "D", "E", "F", "G", "H")
data <- dplyr::as_tibble(data)
# Standardize all columns and calculate row sums
data_std <- data %>%
dplyr::mutate_all(.funs = function(x){(x-mean(x))/sd(x)}) %>%
dplyr::mutate(total = rowSums(across(where(is.numeric))))
# Create groups (new column called ".folds")
# We numerically balance the "total" column
data_std <- data_std %>%
groupdata2::fold(k = 25, num_col = "total") # k = 500/20=25
# Transfer the groups to the original (non-standardized) data frame
data$group <- data_std$.folds
# Check the means
data %>%
dplyr::group_by(group) %>%
dplyr::summarise_all(.funs = mean)
> # A tibble: 25 x 9
> group A B C D E F G H
> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
> 1 1 4.48 5.05 4.80 5.65 5.04 4.60 5.12 4.85
> 2 2 5.57 5.17 3.21 5.46 4.46 5.89 5.06 4.79
> 3 3 4.33 6.02 4.57 6.18 4.76 3.79 5.94 3.71
> 4 4 4.51 4.62 4.62 5.27 4.65 5.41 5.26 5.23
> 5 5 4.55 5.10 4.19 5.41 5.28 5.39 5.57 4.23
> 6 6 4.82 4.74 6.10 4.34 4.82 5.08 4.89 4.81
> 7 7 5.88 4.49 4.13 3.91 5.62 4.75 5.46 5.26
> 8 8 4.11 5.50 5.61 4.23 5.30 4.60 4.96 5.35
> 9 9 4.30 3.74 6.45 5.60 3.56 4.92 5.57 5.32
> 10 10 5.26 5.50 4.35 5.29 4.53 4.75 4.49 5.45
> # … with 15 more rows
# Check the standard deviations of the means
# Could be used to compare methods
data %>%
dplyr::group_by(group) %>%
dplyr::summarise_all(.funs = mean) %>%
dplyr::summarise(across(where(is.numeric), sd))
> # A tibble: 1 x 8
> A B C D E F G H
> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
> 1 0.496 0.546 0.764 0.669 0.591 0.611 0.690 0.475
It might be best to compare the means and mean variances (or standard deviations as above) of different methods on the standardized data though. In that case, one could calculate the sum of the variances and minimize it.
data_std %>%
dplyr::select(-total) %>%
dplyr::group_by(.folds) %>%
dplyr::summarise_all(.funs = mean) %>%
dplyr::summarise(across(where(is.numeric), sd)) %>%
sum()
> 1.643989
Comparing multiple balanced splits
The fold() function allows creating multiple unique grouping factors (splits) at once. So here, I will perform the numerically balanced split 20 times and find the grouping with the lowest sum of the standard deviations of the means. I'll further convert it to a function.
create_multi_balanced_groups <- function(data, cols, k, num_tries){
# Extract the variables of interest
# We assume these are numeric but we could add a check
data_to_balance <- data[, cols]
# Standardize all columns
# And calculate rowwise sums
data_std <- data_to_balance %>%
dplyr::mutate_all(.funs = function(x){(x-mean(x))/sd(x)}) %>%
dplyr::mutate(total = rowSums(across(where(is.numeric))))
# Create `num_tries` unique numerically balanced splits
data_std <- data_std %>%
groupdata2::fold(
k = k,
num_fold_cols = num_tries,
num_col = "total"
)
# The new fold column names ".folds_1", ".folds_2", etc.
fold_col_names <- paste0(".folds_", seq_len(num_tries))
# Remove total column
data_std <- data_std %>%
dplyr::select(-total)
# Calculate score for each split
# This could probably be done more efficiently without a for loop
variance_scores <- c()
for (fcol in fold_col_names){
score <- data_std %>%
dplyr::group_by(!!as.name(fcol)) %>%
dplyr::summarise(across(where(is.numeric), mean)) %>%
dplyr::summarise(across(where(is.numeric), sd)) %>%
sum()
variance_scores <- append(variance_scores, score)
}
# Get the fold column with the lowest score
lowest_fcol_index <- which.min(variance_scores)
best_fcol <- fold_col_names[[lowest_fcol_index]]
# Add the best fold column / grouping factor to the original data
data[["group"]] <- data_std[[best_fcol]]
# Return the original data and the score of the best fold column
list(data, min(variance_scores))
}
# Run with 20 splits
set.seed(1)
data_grouped_and_score <- create_multi_balanced_groups(
data = data,
cols = c("A", "B", "C", "D", "E", "F", "G", "H"),
k = 25,
num_tries = 20
)
# Check data
data_grouped_and_score[[1]]
> # A tibble: 500 x 9
> A B C D E F G H group
> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>
> 1 5.86 6.54 0.500 2.88 5.70 9.67 2.29 3.01 2
> 2 0.0895 4.69 5.71 0.343 8.95 7.73 5.76 9.58 1
> 3 2.94 1.78 2.06 6.66 9.54 0.600 4.26 0.771 16
> 4 2.77 1.52 0.723 8.11 8.95 1.37 6.32 6.24 7
> 5 8.14 2.49 0.467 8.51 0.889 6.28 4.47 8.63 13
> 6 2.60 8.23 9.17 5.14 2.85 8.54 8.94 0.619 23
> 7 7.24 0.260 6.64 8.35 8.59 0.0862 1.73 8.10 5
> 8 9.06 1.11 6.01 5.35 2.01 9.37 7.47 1.01 1
> 9 9.49 5.48 3.64 1.94 3.24 2.49 3.63 5.52 7
> 10 0.731 0.230 5.29 8.43 5.40 8.50 3.46 1.23 10
> # … with 490 more rows
# Check score
data_grouped_and_score[[2]]
> 1.552656
By commenting out the num_col = "total" line, we can run this without the numerical balancing. For me, this gave a score of 1.615257.
Disclaimer: I am the author of the groupdata2 package. The fold() function can also balance a categorical column (cat_col) and keep all data points with the same ID in the same fold (id_col) (e.g. to avoid leakage in cross-validation). There's a very similar partition() function as well.

remove duplicate two criterion interval R

I am working on cleaning and processing of data with R. I would like to remove the duplicates from a matrix. See the example below.
I would like to remove duplicate according to two criterion, and if it is possible using an interval (If the RT ± 0.1 and the m.z ± 0.001 for a same row is detected more than one time in the table, so remove the extra row).
RT m.z
1 2.02 326.1988
2 2.03 326.1989
3 2.06 326.1990
4 2.03 331.1533
5 2.03 375.1785
6 2.03 301.2852
7 2.04 301.2852
8 2.06 301.2852
9 2.07 357.2609
10 2.07 308.0327
11 2.08 218.2221
12 2.08 312.3617
13 2.10 473.3453
14 2.15 388.3929
I would like a out put like that:
RT m.z
1 2.02 326.1988
2
3 2.06 326.1990
4 2.03 331.1533
5 2.03 375.1785
6 2.03 301.2852
7
8 2.06 301.2852
9 2.07 357.2609
10 2.07 308.0327
11 2.08 218.2221
12 2.08 312.3617
13 2.10 473.3453
14 2.15 388.3929
If you can help that will help me a lot.
Thanks in advance.
This is a way to do it with dplyr. Not sure if it's the most efficient way.
df <- read.table(textConnection("RT m.z
1 2.02 326.1988
2 2.03 326.1989
3 2.06 326.1990
4 2.03 331.1533
5 2.03 375.1785
6 2.03 301.2852
7 2.04 301.2852
8 2.06 301.2852
9 2.07 357.2609
10 2.07 308.0327
11 2.08 218.2221
12 2.08 312.3617
13 2.10 473.3453
14 2.15 388.3929"))
Now with the same data you provided.
library(dplyr)
# This calculates the difference in RT and m.z between consecutive rows
# and looks for absolute differences on which we filter further down the chain
df %>% mutate(
rtdiff = abs(lag(RT) - RT),
mzdiff = abs(lag(m.z) - m.z)
) %>%
# This replaces the NAs in the first row
# with large values so filter does not have to deal with NAs
mutate(rtdiff = replace(rtdiff, is.na(rtdiff), 999),
mzdiff = replace(mzdiff, is.na(mzdiff), 999)) %>%
# Remove the rows that don't meet your condition
filter(!(rtdiff < 0.02 & mzdiff < 0.0002)) %>%
# select only the columns you need and lose the rest
select(RT, m.z)
giving us:
RT m.z
1 2.02 326.1988
2 2.06 326.1990
3 2.03 331.1533
4 2.03 375.1785
5 2.03 301.2852
6 2.06 301.2852
7 2.07 357.2609
8 2.07 308.0327
9 2.08 218.2221
10 2.08 312.3617
11 2.10 473.3453
12 2.15 388.3929
Hi It seems I have intercalated value between my replicates.
So I propose a small change in the Maiasaura code.
for (i in 1:100){
reduced.list.pre.filtering = reduced.list.pre.filtering %>% mutate(
rtdiff = abs(lag(RT..min.,i) - RT..min.),
mzdiff = abs(lag(Max..m.z,i) - Max..m.z)) %>%
mutate(rtdiff = replace(rtdiff, is.na(rtdiff), 999),
mzdiff = replace(mzdiff, is.na(mzdiff), 999)) %>%
filter(!(rtdiff < setRT & mzdiff < setmz )) %>%
select(RT..min., Max..m.z)}
Like that we check all the 100 followed values of a row. Hope it gonna helps somebody else. Do not hesitate if you have a better solution.

Resources