I perform a hierarchical cluster analysis based on 'average linkage' In base r, I use
dist_mat <- dist(cdata, method = "euclidean")
hclust_avg <- hclust(dist_mat, method = "average")
I want to calculate the gap statistics to decide optimal number of clusters. I use the 'cluster' library and the clusGap function. Since I can't pass the hclust solution nor specify average hiearchical clustering in the clusGap function, I use these lines:
cluster_fun <- function(x, k) list(cluster = cutree(hclust(dist(x, method = "euclidean"), method="average"), k = k))
gap_stat <- clusGap(cdata, FUN=cluster_fun, K.max=10, B=50)
print(gap_stat)
However, here I can't check the cluster solution. So, my question is - can I be sure that the gap statistic is calculated on the same solution as hclust_avg?
Is there a better way of doing this?
Yes it should be the same. In the clusGap function, it calls the cluster_fun for each k you provided, then calculates the pooled within cluster sum of squares around, as described in the paper
This is the bit of code called inside clusGap that calls your custom function:
W.k <- function(X, kk) {
clus <- if (kk > 1)
FUNcluster(X, kk, ...)$cluster
else rep.int(1L, nrow(X))
0.5 * sum(vapply(split(ii, clus), function(I) {
xs <- X[I, , drop = FALSE]
sum(dist(xs)^d.power/nrow(xs))
}, 0))
}
And from here, the gap statistics is calculated.
You can calculate the gap statistic using some custom code, but for the sake of reproducibility, etc, it might be easier to use this?
Thanhs for solving it. I must say this is good enough solution but you can try below given code as well.
# Gap Statistic for K means
def optimalK(data, nrefs=3, maxClusters=15):
"""
Calculates KMeans optimal K using Gap Statistic
Params:
data: ndarry of shape (n_samples, n_features)
nrefs: number of sample reference datasets to create
maxClusters: Maximum number of clusters to test for
Returns: (gaps, optimalK)
"""
gaps = np.zeros((len(range(1, maxClusters)),))
resultsdf = pd.DataFrame({'clusterCount':[], 'gap':[]})
for gap_index, k in enumerate(range(1, maxClusters)):
# Holder for reference dispersion results
refDisps = np.zeros(nrefs)
# For n references, generate random sample and perform kmeans getting resulting dispersion of each loop
for i in range(nrefs):
# Create new random reference set
randomReference = np.random.random_sample(size=data.shape)
# Fit to it
km = KMeans(k)
km.fit(randomReference)
refDisp = km.inertia_
refDisps[i] = refDisp
# Fit cluster to original data and create dispersion
km = KMeans(k)
km.fit(data)
origDisp = km.inertia_
# Calculate gap statistic
gap = np.log(np.mean(refDisps)) - np.log(origDisp)
# Assign this loop's gap statistic to gaps
gaps[gap_index] = gap
resultsdf = resultsdf.append({'clusterCount':k, 'gap':gap}, ignore_index=True)
return (gaps.argmax() + 1, resultsdf)
score_g, df = optimalK(cluster_df, nrefs=5, maxClusters=30)
plt.plot(df['clusterCount'], df['gap'], linestyle='--', marker='o', color='b');
plt.xlabel('K');
plt.ylabel('Gap Statistic');
plt.title('Gap Statistic vs. K');
Related
I recently tried to perform a GMM in R on a multivariate matrix (400 obs of 196 var), which elements belong to known categories. The Mclust() function (from package mclust) gave very poor results (around 30% of individuals were well classified, whereas with k-means the result reaches more than 90%).
Here is my code :
library(mclust)
X <- read.csv("X.csv", sep = ",", h = T)
y <- read.csv("y.csv", sep = ",")
gmm <- Mclust(X, G = 5) #I want 5 clusters
cl_gmm <- gmm$classification
cl_gmm_lab <- cl_gmm
for (k in 1:nclusters){
ii = which(cl_gmm == k) # individuals of group k
counts=table(y[ii]) # number of occurences for each label
imax = which.max(counts) # Majority label
maj_lab = attributes(counts)$dimnames[[1]][imax]
print(paste("Group ",k,", majority label = ",maj_lab))
cl_gmm_lab[ii] = maj_lab
}
conf_mat_gmm <- table(y,cl_gmm_lab) # CONFUSION MATRIX
The problem seems to come from the fact that every other model than "EII" (spherical, equal volume) is "NA" when looking at gmm$BIC.
Until now I did not find any solution to this problem...are you familiar with this issue?
Here is the link for the data: https://drive.google.com/file/d/1j6lpqwQhUyv2qTpm7KbiMRO-0lXC3aKt/view?usp=sharing
Here is the link for the labels: https://docs.google.com/spreadsheets/d/1AVGgjS6h7v6diLFx4CxzxsvsiEm3EHG7/edit?usp=sharing&ouid=103045667565084056710&rtpof=true&sd=true
I finally found the answer. GMMs simply cannot apply every model when two much explenatory variables are involved. The right thing to do is first reduce dimensions and select an optimal number of dimensions that make it possible to properly apply GMMs while preserving as much informations as possible about the data.
Like the Question speaks, I'm making a Visualization tool that is bound to work for any dataset provided. What should be the Optimal K value I should select and How?
So you can use Calinski criterion from vegan package, also your phrasing of question is little debatable. I am hoping this is what you expecting, please comment in case of otherwise.
For example, You can do:
n = 100
g = 6
set.seed(g)
d <- data.frame(
x = unlist(lapply(1:g, function(i) rnorm(n/g, runif(1)*i^2))),
y = unlist(lapply(1:g, function(i) rnorm(n/g, runif(1)*i^2))))
require(vegan)
fit <- cascadeKM(scale(d, center = TRUE, scale = TRUE), 1, 10, iter = 1000)
plot(fit, sortg = TRUE, grpmts.plot = TRUE)
calinski.best <- as.numeric(which.max(fit$results[2,]))
cat("Calinski criterion optimal number of clusters:", calinski.best, "\n")
This would result in value of 5, which means you can use 5 clusters, the algorithm works with the fundamentals on withiness and betweeness of k means clustering. You can also write a manual code basis on that.
From the documentation from here:
criterion: The criterion that will be used to select the best
partition. The default value is "calinski", which refers to the
Calinski-Harabasz (1974) criterion. The simple structure index ("ssi")
is also available. Other indices are available in function clustIndex
(package cclust). In our experience, the two indices that work best
and are most likely to return their maximum value at or near the
optimal number of clusters are "calinski" and "ssi".
A manual code would look like something as below:
At the first iteration since there is no SSB( Betweeness of the variance).
wss <- (nrow(d)-1)*sum(apply(d,2,var))
#TSS = WSS ##No betweeness at first observation, total variance equal to withness variance, TSS is total sum of squares, WSS is within sum of squress
for (i in 2:15) wss[i] <- sum(kmeans(d,centers=i)$withinss) #from second observation onward, since TSS would remain constant and between sum of squares will increase, correspondingly withiness would decrease.
#Plotting the same using the plot command for 15 iterations.(This is not constant, you have to decide what iterations you can do here.
plot(1:15, wss, type="b", xlab="Number of Clusters",
ylab="Within groups sum of squares",col="mediumseagreen",pch=12)
An output of above can look like this, Here after the point at which the line become constant is the point that you have to pick for optimum cluster size, in this case it is 5 :
I want to do a Kmeans clustering on a dataset (namely, Sample_Data) with three variables (columns) such as below:
A B C
1 12 10 1
2 8 11 2
3 14 10 1
. . . .
. . . .
. . . .
in a typical way, after scaling the columns, and determining the number of clusters, I will use this function in R:
Sample_Data <- scale(Sample_Data)
output_kmeans <- kmeans(Sample_Data, centers = 5, nstart = 50)
But, what if there is a preference for the variables? I mean that, suppose variable (column) A, is more important than the two other variables?
how can I insert their weights in the model?
Thank you all
You have to use a kmeans weighted clustering, like the one presented in flexclust package:
https://cran.r-project.org/web/packages/flexclust/flexclust.pdf
The function
cclust(x, k, dist = "euclidean", method = "kmeans",
weights=NULL, control=NULL, group=NULL, simple=FALSE,
save.data=FALSE)
Perform k-means clustering, hard competitive learning or neural gas on a data matrix.
weights An optional vector of weights to be used in the fitting process. Works only in combination with hard competitive learning.
A toy example using iris data:
library(flexclust)
data(iris)
cl <- cclust(iris[,-5], k=3, save.data=TRUE,weights =c(1,0.5,1,0.1),method="hardcl")
cl
kcca object of family ‘kmeans’
call:
cclust(x = iris[, -5], k = 3, method = "hardcl", weights = c(1, 0.5, 1, 0.1), save.data = TRUE)
cluster sizes:
1 2 3
50 59 41
As you can see from the output of cclust, also using competitive learning the family is always kmenas.
The difference is related to cluster assignment during training phase:
If method is "kmeans", the classic kmeans algorithm as given by
MacQueen (1967) is used, which works by repeatedly moving all cluster
centers to the mean of their respective Voronoi sets. If "hardcl",
on-line updates are used (AKA hard competitive learning), which work
by randomly drawing an observation from x and moving the closest
center towards that point (e.g., Ripley 1996).
The weights parameter is just a sequence of numbers, in general I use number between 0.01 (minimum weight) and 1 (maximum weight).
I had the same problem and the answer here is not satisfying for me.
What we both wanted was an observation-weighted k-means clustering in R. A good readable example for our question is this link: https://towardsdatascience.com/clustering-the-us-population-observation-weighted-k-means-f4d58b370002
However the solution to use the flexclust package is not satisfying simply b/c the used algorithm is not the "standard" k-means algorithm but the "hard competitive learning" algorithm. The difference are well described above and in the package description.
I looked through many sites and did not find any solution/package in R in order to use to perform a "standard" k-means algorithm with weighted observations. I was also wondering why the flexclust package explicitly do not support weights with the standard k-means algorithm. If anyone has an explanation for this, please feel free to share!
So basically you have two options: First, rewrite the flexclust-algorithm to enable weights within the standard approach. Or second, you can estimate weighted cluster centroids as starting centroids and perform a standard k-means algorithm with only one iteration, then compute new weighted cluster centroids and perform a k-means with one iteration and so on until you reach convergence.
I used the second alternative b/c it was the easier way for me. I used the data.table package, hope you are familiar with it.
rm(list=ls())
library(data.table)
### gen dataset with sample-weights
dataset <- data.table(iris)
dataset[, weights:= rep(c(1, 0.7, 0.3, 4, 5),30)]
dataset[, Species := NULL]
### initial hclust for estimating weighted centroids
clustering <- hclust(dist(dataset[, c(1:4)], method = 'euclidean'),
method = 'ward.D2')
no_of_clusters <- 4
### estimating starting centroids (weighted)
weighted_centroids <- matrix(NA, nrow = no_of_clusters,
ncol = ncol(dataset[, c(1:4)]))
for (i in (1:no_of_clusters))
{
weighted_centroids[i,] <- sapply(dataset[, c(1:4)][cutree(clustering, k =
no_of_clusters) == i,], weighted.mean, w = dataset[cutree(clustering, k = no_of_clusters) == i, weights])
}
### performing weighted k-means as explained in my post
iter <- 0
cluster_i <- 0
cluster_iminus1 <- 1
## while loop: if number of iteration is smaller than 50 and cluster_i (result of
## current iteration) is not identical to cluster_iminus1 (result of former
## iteration) then continue
while(identical(cluster_i, cluster_iminus1) == F && iter < 50){
# update iteration
iter <- iter + 1
# k-means with weighted centroids and one iteration (may generate warning messages
# as no convergence is reached)
cluster_kmeans <- kmeans(x = dataset[, c(1:4)], centers = weighted_centroids, iter = 1)$cluster
# estimating new weighted centroids
weighted_centroids <- matrix(NA, nrow = no_of_clusters,
ncol=ncol(dataset[,c(1:4)]))
for (i in (1:no_of_clusters))
{
weighted_centroids[i,] <- sapply(dataset[, c(1:4)][cutree(clustering, k =
no_of_clusters) == i,], weighted.mean, w = dataset[cutree(clustering, k = no_of_clusters) == i, weights])
}
# update cluster_i and cluster_iminus1
if(iter == 1) {cluster_iminus1 <- 0} else{cluster_iminus1 <- cluster_i}
cluster_i <- cluster_kmeans
}
## merge final clusters to data table
dataset[, cluster := cluster_i]
If you want to increase the weight of a variable (column), just multiply it with a constant c > 1.
It's trivial to show that this increases the weight in the SSQ optimization objective.
I have the following likelihood function which I used in a rather complex model (in practice on a log scale):
library(plyr)
dcustom=function(x,sd,L,R){
R. = (log(R) - log(x))/sd
L. = (log(L) - log(x))/sd
ll = pnorm(R.) - pnorm(L.)
return(ll)
}
df=data.frame(Range=seq(100,500),sd=rep(0.1,401),L=200,U=400)
df=mutate(df, Likelihood = dcustom(Range, sd,L,U))
with(df,plot(Range,Likelihood,type='l'))
abline(v=200)
abline(v=400)
In this function, the sd is predetermined and L and R are "observations" (very much like the endpoints of a uniform distribution), so all 3 of them are given. The above function provides a large likelihood (1) if the model estimate x (derived parameter) is in between the L-R range, a smooth likelihood decrease (between 0 and 1) near the bounds (of which the sharpness is dependent on the sd), and 0 if it is too much outside.
This function works very well to obtain estimates of x, but now I would like to do the inverse: draw a random x from the above function. If I would do this many times, I would generate a histogram that follows the shape of the curve plotted above.
The ultimate goal is to do this in C++, but I think it would be easier for me if I could first figure out how to do this in R.
There's some useful information online that helps me start (http://matlabtricks.com/post-44/generate-random-numbers-with-a-given-distribution, https://stats.stackexchange.com/questions/88697/sample-from-a-custom-continuous-distribution-in-r) but I'm still not entirely sure how to do it and how to code it.
I presume (not sure at all!) the steps are:
transform likelihood function into probability distribution
calculate the cumulative distribution function
inverse transform sampling
Is this correct and if so, how do I code this? Thank you.
One idea might be to use the Metropolis Hasting Algorithm to obtain a sample from the distribution given all the other parameters and your likelihood.
# metropolis hasting algorithm
set.seed(2018)
n_sample <- 100000
posterior_sample <- rep(NA, n_sample)
x <- 300 # starting value: I chose 300 based on your likelihood plot
for (i in 1:n_sample){
lik <- dcustom(x = x, sd = 0.1, L = 200, R =400)
# propose a value for x (you can adjust the stepsize with the sd)
x.proposed <- x + rnorm(1, 0, sd = 20)
lik.proposed <- dcustom(x = x.proposed, sd = 0.1, L = 200, R = 400)
r <- lik.proposed/lik # this is the acceptance ratio
# accept new value with probablity of ratio
if (runif(1) < r) {
x <- x.proposed
posterior_sample[i] <- x
}
}
# plotting the density
approximate_distr <- na.omit(posterior_sample)
d <- density(approximate_distr)
plot(d, main = "Sample from distribution")
abline(v=200)
abline(v=400)
# If you now want to sample just a few values (for example, 5) you could use
sample(approximate_distr,5)
#[1] 281.7310 371.2317 378.0504 342.5199 412.3302
im now performing Location Model using non-parametric smoothing to estimate the paramneters.....one of the smoothed paramater is the lamdha that i have to optimize...
so in that case, i decide to use "nlminb function" to achieve it.....
however, my programing give me the same "$par" value even though it was iterate 150 time and make 200 evaluation (by default)..... which is it choose "the start value as $par" (that is 0.000001 ...... i think, there must be something wrong with my written program....
my programing look like:- (note: w is the parameter that i want to optimize and LOO is
stand for leave-one-out
BEGIN
Myfunc <- function(w, n1, n2, v1, v2, g)
{ ## open loop for main function
## DATA generation
# generate data from group 1 and 2
# for each group: discretise the continuous to binary
# newdata <- combine the groups 1 and 2
## MODEL construction
countError <- 0
n <- nrow(newdata)
for (k in 1:n)
{# open loop for leave-one-out
# construct model based on n-1 object using smoothing method
# classify omitted object
countError <- countError + countE
} # close loop for LOO process
Error <- countError / n # error rate counted from LOO procedure
return(Error) # The Average ERROR Rate from LOO procedure
} # close loop for Myfunc
library(stats)
nlminb(start=0.000001, Myfunc, lower=0.000001, upper=0.999999,
control=list(eval.max=100, iter.max=100))
END
could someone help me......
your concerns and guidances is highly appreciated and really100 needed......
Hashibah,
Statistic PhD Student
In your question, provide a nlminb with a univariate starting value. If you are doing univariate optimisation, it is probably worth looking at optimize. If your function is multivariate, then you need to call nlminb slightly differently.
You need define the objective function such that you provide the parameters to optimize over as a vector which is the first argument. Other inputs to the objective function should be provided as subsequent arguments.
For example (modified from the nlminb help page):
X <- rnbinom(100, mu = 10, size = 10)
hdev <- function(par, x) {
-sum(dnbinom(x, mu = par[1], size = par[2], log = TRUE))
}
nlminb(start = c(9, 12), hdev, x = X)