Similar questions have been asked before in other forms. Some can be found here and here. However, I cant seem to adapt them when using a facet wrap displaying multiple density plots.
I tried adapting the other examples, but failed... I also tried using the ggpattern package, but when there is a large amount of data, it takes several minutes on my machine to create a plot.
I am trying to create a gradient under the density curve... but with the gradient pointing down. Something like in the example image below:
Some example data to work with:
library(ggplot2)
set.seed(321)
# create data
varNames <- c("x1", "x2", "x3")
df <- data.frame(
var = sample(varNames, 100, replace = T),
val = runif(100)
)
# create plot
ggplot(df, aes(x = val)) +
geom_density(aes(colour = var, fill = var)) +
facet_wrap(~var) +
theme_bw() +
theme(legend.position = "none")
You can use teunbrand's function, but you will need to apply it to each facet. Here simply looping over it with lapply
library(tidyverse)
library(polyclip)
#> polyclip 1.10-0 built from Clipper C++ version 6.4.0
## This is teunbrands function copied without any change!!
## from https://stackoverflow.com/a/64695516/7941188
fade_polygon <- function(x, y, n = 100) {
poly <- data.frame(x = x, y = y)
# Create bounding-box edges
yseq <- seq(min(poly$y), max(poly$y), length.out = n)
xlim <- range(poly$x) + c(-1, 1)
# Pair y-edges
grad <- cbind(head(yseq, -1), tail(yseq, -1))
# Add vertical ID
grad <- cbind(grad, seq_len(nrow(grad)))
# Slice up the polygon
grad <- apply(grad, 1, function(range) {
# Create bounding box
bbox <- data.frame(x = c(xlim, rev(xlim)),
y = c(range[1], range[1:2], range[2]))
# Do actual slicing
slice <- polyclip::polyclip(poly, bbox)
# Format as data.frame
for (i in seq_along(slice)) {
slice[[i]] <- data.frame(
x = slice[[i]]$x,
y = slice[[i]]$y,
value = range[3],
id = c(1, rep(0, length(slice[[i]]$x) - 1))
)
}
slice <- do.call(rbind, slice)
})
# Combine slices
grad <- do.call(rbind, grad)
# Create IDs
grad$id <- cumsum(grad$id)
return(grad)
}
## now here starts the change, loop over your variables. I'm creating the data frame directly instead of keeping the density object
dens <- lapply(split(df, df$var), function(x) {
dens <- density(x$val)
data.frame(x = dens$x, y = dens$y)
}
)
## we need this one for the plot, but still need the list
dens_df <- bind_rows(dens, .id = "var")
grad <- bind_rows(lapply(dens, function(x) fade_polygon(x$x, x$y)), .id = "var")
ggplot(grad, aes(x, y)) +
geom_line(data = dens_df) +
geom_polygon(aes(alpha = value, group = id),
fill = "blue") +
facet_wrap(~var) +
scale_alpha_continuous(range = c(0, 1))
Created on 2021-12-05 by the reprex package (v2.0.1)
I am attempting to create three contour plots, each illustrating the following function applied to two input vectors and a fixed alpha:
alphas <- c(1, 5, 25)
x_vals <- seq(0, 25, length.out = 100)
y_vals <- seq(0, 50, length.out = 100)
my_function <- function(x, y, alpha) {
z <- (1 / (x + alpha)) * (1 / (y + alpha))
}
for each alpha in the vector alphas, I am creating a contour plot of z values—relative to the minimal z value—over x and y axes.
I do so with the following code (probably not best practices; I'm still learning the basics with R):
plots <- list()
for(i in seq_along(alphas)) {
z_table <- sapply(x_vals, my_function, y = y_vals, alpha = alphas[i])
x <- rep(x_vals, each = 100)
y <- rep(y_vals, 100)
z <- unlist(flatten(list(z_table)))
z_rel <- z / min(z)
d <- data.frame(cbind(x, y, z_rel))
plots[[i]] <- ggplot(data = d, aes(x = x, y = y, z = z_rel)) +
geom_contour_filled()
}
When alpha = 1:
When alpha = 25:
I want to display these plots in one grouping using ggarrange(), with one logarithmic color scale (as relative z varies so much from plot to plot). Is there a way to do this?
You can build a data frame with all the data for all alphas combined, with a column indicating the alpha, so you can facet your graph:
I basically removed the plot[[i]] part, and stacked up the d's created in the former loop:
d = numeric()
for(i in seq_along(alphas)) {
z_table <- sapply(x_vals, my_function, y = y_vals, alpha = alphas[i])
x <- rep(x_vals, each = 100)
y <- rep(y_vals, 100)
z <- unlist(flatten(list(z_table)))
z_rel <- z / min(z)
d <- rbind(d, cbind(x, y, z_rel))}
d = as.data.frame(d)
Then we create the alphas column:
d$alpha = factor(paste("alpha =", alphas[rep(1:3, each=nrow(d)/length(alphas))]),
levels = paste("alpha =", alphas[1:3]))
Then build the log scale inside the contour:
ggplot(data = d, aes(x = x, y = y, z = z_rel)) +
geom_contour_filled(breaks=round(exp(seq(log(1), log(1400), length = 14)),1)) +
facet_wrap(~alpha)
Output:
I'm attempting to use library(scales) and scale_color_gradientn() to create a custom mapping of colors to a continuous variable, in an attempt to limit the effect of outliers on the coloring of my plot. This works for a single plot, but does not work when I use a loop to generate several plots and store them in a list.
Here is a minimal working example:
library(ggplot2)
library(scales)
data1 <- as.data.frame(cbind(x = rnorm(100),
y = rnorm(100),
v1 = rnorm(100, mean = 2, sd = 1),
v2 = rnorm(100, mean = -2, sd = 1)))
#add outliers
data1[1,"v1"] <- 200
data1[2,"v1"] <- -200
data1[1,"v2"] <- 50
data1[2,"v2"] <- -50
#define color palette
cols <- colorRampPalette(c("#3540FF","black","#FF3535"))(n = 100)
#simple color scale
col2 <- scale_color_gradient2(low = "#3540FF",
mid = "black",
high = "#FF3535"
)
#outlier-adjusted color scale
{
aa <- min(data1$v1)
bb <- quantile(data1$v1, 0.05)
cc <- quantile(data1$v1, 0.95)
dd <- max(data1$v1)
coln <- scale_color_gradientn(colors = cols[c(1,5,95,100)],
values = rescale(c(aa,bb,cc,dd),
limits = c(aa,dd))
)
}
Plots:
1. Plot with simple scales - outliers cause scales to stretch out.
ggplot(data1, aes(x = x, y = y, color = v1))+
geom_point()+
col2
2. Plot with outlier-adjusted scales - correct color scaling.
ggplot(data1, aes(x = x, y = y, color = v1))+
geom_point()+
coln
3. The scales for v1 do not work for v2 as the data is different.
ggplot(data1, aes(x = x, y = y, color = v2))+
geom_point()+
coln
#loop to produce list of plots each with own scale
{
plots <- list()
k <- 1
for (i in c("v1","v2")){
aa <- min(data1[,i])
bb <- quantile(data1[,i],0.05)
cc <- quantile(data1[,i], 0.95)
dd <- max(data1[,i])
colm <- scale_color_gradientn(colors = cols[c(1,5,95,100)],
values = rescale(c(aa,bb,cc,dd),
limits = c(aa,dd)))
plots[[k]] <- ggplot(data1, aes_string(x = "x",
y = "y",
color = i
))+
geom_point()+
colm
k <- k + 1
}
}
4. First plot has the wrong scales.
plots[[1]]
5. Second plot has the correct scales.
plots[[2]]
So I'm guessing this has something to do with the scale_color_gradientn() function being called when the plotting takes place, rather than within the loop.
If anyone can help with this, it'd be much appreciated. In base R I would bin the continuous data and assigning hex colors into a vector used for fill color, but I'm unsure how I can apply this within ggplot.
You need to use a closure (function with associated environment):
{
plots <- list()
k <- 1
for (i in c("v1", "v2")){
colm <- function() {
aa <- min(data1[, i])
bb <- quantile(data1[, i], 0.05)
cc <- quantile(data1[, i], 0.95)
dd <- max(data1[, i])
scale_color_gradientn(colors = cols[c(1, 5, 95, 100)],
values = rescale(c(aa, bb, cc, dd),
limits = c(aa, dd)))
}
plots[[k]] <- ggplot(data1, aes_string(x = "x",
y = "y",
color = i)) +
geom_point() +
colm()
k <- k + 1
}
}
plots[[1]]
plots[[2]]
I have the following example:
require(mvtnorm)
require(ggplot2)
set.seed(1234)
xx <- data.frame(rmvt(100, df = c(13, 13)))
ggplot(data = xx, aes(x = X1, y= X2)) + geom_point() + geom_density2d()
Here is what I get:
However, I would like to get the density contour from the mutlivariate t density given by the dmvt function. How do I tweak geom_density2d to do that?
This is not an easy question to answer: because the contours need to be calculated and the ellipse drawn using the ellipse package.
Done with elliptical t-densities to illustrate the plotting better.
nu <- 5 ## this is the degrees of freedom of the multivariate t.
library(mvtnorm)
library(ggplot2)
sig <- matrix(c(1, 0.5, 0.5, 1), ncol = 2) ## this is the sigma parameter for the multivariate t
xx <- data.frame( rmvt(n = 100, df = c(nu, nu), sigma = sig)) ## generating the original sample
rtsq <- rowSums(x = matrix(rt(n = 2e6, df = nu)^2, ncol = 2)) ## generating the sample for the ellipse-quantiles. Note that this is a cumbersome calculation because it is the sum of two independent t-squared random variables with the same degrees of freedom so I am using simulation to get the quantiles. This is the sample from which I will create the quantiles.
g <- ggplot( data = xx
, aes( x = X1
, y = X2
)
) + geom_point(colour = "red", size = 2) ## initial setup
library(ellipse)
for (i in seq(from = 0.01, to = 0.99, length.out = 20)) {
el.df <- data.frame(ellipse(x = sig, t = sqrt(quantile(rtsq, probs = i)))) ## create the data for the given quantile of the ellipse.
names(el.df) <- c("x", "y")
g <- g + geom_polygon(data=el.df, aes(x=x, y=y), fill = NA, linetype=1, colour = "blue") ## plot the ellipse
}
g + theme_bw()
This yields:
I still have a question: how does one reduce the size of the plotting ellispe lines?
I have a set of (2-dimensional) data points that I run through a classifier that uses higher order polynomial transformations. I want to visualize the results as a 2 dimensional scatterplot of the points with the classifier superimbosed on top, preferably using ggplot2 as all other visualizations are made by this. Pretty much like this one that was used in the ClatechX online course on machine learning (the background color is optional).
I can display the points with colors and symbols and all, that's easy but I can't figure out how to draw anything like the classifiers (the intersection of the classifiing hyperplane with the plane representing my threshold). The only thing I found was stat_function and that only takes a function with a single argument.
Edit:
The example that was asked for in the comments:
sample data:
"","x","y","x","x","y","value"
"1",4.17338115745224,0.303530843229964,1.26674990184152,17.4171102853774,0.0921309727918932,-1
"2",4.85514814266935,3.452660451876,16.7631779801937,23.5724634872656,11.9208641959486,1
"3",3.51938610081561,3.41200957307592,12.0081790673332,12.3860785266141,11.6418093267617,1
"4",3.18545089452527,0.933340128976852,2.97310914874565,10.1470974014319,0.87112379635852,-16
"5",2.77556006214581,2.49701633118093,6.93061880335166,7.70373365857888,6.23509055818427,-1
"6",2.45974169578403,4.56341833807528,11.2248303614692,6.05032920997851,20.8247869282818,1
"7",2.73947941488586,3.35344674880616,9.18669833727041,7.50474746458339,11.2456050970786,-1
"8",2.01721803518012,3.55453519499861,7.17027250203368,4.06916860145595,12.6347204524838,-1
"9",3.52376445778646,1.47073399974033,5.1825201951431,12.4169159539591,2.1630584979922,-1
"10",3.77387718763202,0.509284208528697,1.92197605658768,14.2421490273294,0.259370405056702,-1
"11",4.15821685106494,1.03675272315741,4.31104264382058,17.2907673804804,1.0748562089743,-1
"12",2.57985028671101,3.88512040604837,10.0230289934507,6.65562750184287,15.0941605694935,1
"13",3.99800728890114,2.39457673509605,9.5735352407471,15.9840622821066,5.73399774026327,1
"14",2.10979392635636,4.58358959294856,9.67042948411309,4.45123041169019,21.0092935565863,1
"15",2.26988795562647,2.96687697409652,6.73447830932721,5.15239133109813,8.80235897942413,-1
"16",1.11802248633467,0.114183261757717,0.127659454208164,1.24997427994995,0.0130378172656312,-1
"17",0.310411276295781,2.09426849964075,0.650084557879535,0.0963551604515758,4.38596054858751,-1
"18",1.93197490065359,1.72926536411978,3.340897280049,3.73252701675543,2.99035869954433,-1
"19",3.45879891654477,1.13636834081262,3.93046958599847,11.9632899450912,1.29133300600123,-1
"20",0.310697768582031,0.730971727753058,0.227111284709427,0.0965331034018534,0.534319666774291,-1
"21",3.88408110360615,0.915658151498064,3.55649052359657,15.0860860193904,0.838429850404852,-1
"22",0.287852146429941,2.16121324687265,0.622109872005114,0.0828588582043242,4.67084269845782,-1
"23",2.80277011333965,1.22467750683427,3.4324895146344,7.85552030822994,1.4998349957458,-1
"24",0.579150241101161,0.57801398797892,0.334756940497835,0.335415001767533,0.334100170299295-,1
"25",2.37193428212777,1.58276639413089,3.7542178708388,5.62607223873297,2.50514945839009,-1
"26",0.372461311053485,2.51207412336953,0.935650421453748,0.138727428231681,6.31051640130279,-1
"27",3.56567220995203,1.03982002707198,3.70765737388213,12.7140183088242,1.08122568869998,-1
"28",0.634770628530532,2.26303249713965,1.43650656059435,0.402933750845047,5.12131608311011,-1
"29",2.43812176748179,1.91849716124125,4.67752968967431,5.94443775306852,3.68063135769073,-1
"30",1.08741064323112,3.01656032912433,3.28023980783858,1.18246190701233,9.0996362192467,-1
"31",0.98,2.74,2.6852,0.9604,7.5076,1
"32",3.16,1.78,5.6248,9.9856,3.1684,1
"33",4.26,4.28,18.2328,18.1476,18.3184,-1
The code to generate a classifier:
perceptron_train <- function(data, maxIter=10000) {
set.seed(839)
X <- as.matrix(data[1:5])
Y <- data["value"]
d <- dim(X)
X <- cbind(rep(1, d[1]), X)
W <- rep(0, d[2] + 1)
count <- 0
while (count < maxIter){
H <- sign(X %*% W)
indexs <- which(H != Y)
if (length(indexs) == 0){
break
} else {
i <- sample(indexs, 1)
W <- W + 0.1 * (X[i,] * Y[i,])
}
count <- count + 1
point <- as.data.frame(data[i,])
plot_it(data, point, W, paste("plot", sprintf("%05d", count), ".png", sep=""))
}
W
}
The code to generate the plot:
plot_it <- function(data, point, weights, name = "plot.png") {
line <- weights_to_line(weights)
point <- point
png(name)
p = ggplot() + geom_point(data = data, aes(x, y, color = value, size = 2)) + theme(legend.position = "none")
p = p + geom_abline(intercept = line[2], slope = line[1])
print(p)
dev.off()
}
This was solved using material from the question and answers from Issues plotting a fitted SVM model's decision boundary using ggplot2's stat_contour(). I skipped the call to geom_point for the grid-entires and some of the aesthetical definitions like scale_fill_manual and scale_colour_manual. Removing the dots for the grid entries solved the problem with the vanishing contour-line in my case.
train_and_plot_svm <- function(train, kernel = "sigmoid", type ="C", cost, gamma) {
fit <- svm(as.factor(value) ~ x + y, data = train, kernel = kernel, type = type, cost = cost)
grid <- expand.grid (x = seq(from = -0.1, to = 15, length = 100), y = seq(from = -0.1, to = 15, length = 100))
decisionValues <- as.vector(attributes(predict(fit, grid, decision.values = TRUE))$decision)
p <- predict(fit, grid)
grid$value <- p
grid$z <- decisionValues
p <- ggplot() + stat_contour(data = grid, aes(x = x, y = y, z = z), breaks = c(0))
p <- p + geom_point(data = train, aes(x, y, colour = as.factor(value)), alpha = 0.7)
p <- p + xlim(0,15) + ylim(0,15) + theme(legend.position="none")
}
Note that this function doesn't return the result of the svm training but the ggplot2 object.
This is, what I got: