I have with some data with missing values (i.e. NA values), the simplified format is below (code for input at the end):
#> id x country
#> 1 1 2.0 USA
#> 2 2 4.0 USA
#> 3 3 3.5 JPN
#> 4 4 NA JPN
For each country, I'd like to take the mean of x, and a count of usable values of x (i.e. not NA), so I've used group_by, and it works for the mean:
df <- df %>% group_by(country) %>%
mutate(mean_x = mean(x, na.rm = TRUE),
#count_x = count(x))
)
df
#> # A tibble: 4 x 4
#> # Groups: country [2]
#> id x country mean_x
#> <dbl> <dbl> <fct> <dbl>
#> 1 1 2 USA 3
#> 2 2 4 USA 3
#> 3 3 3.5 JPN 3.5
#> 4 4 NA JPN 3.5
but when I try to add the count(), I'm getting an error
library(tidyverse)
df <- data.frame(id = c(1, 2, 3, 4),
x = c(2, 4, 3.5, NA),
country = c("USA", "USA", "JPN", "JPN")
)
df
df <- df %>% group_by(country) %>%
mutate(mean_x = mean(x, na.rm = TRUE),
count_x = count(x))
)
df
#> Error in UseMethod("summarise_") : no applicable method for 'summarise_' applied to an
#> object of class "c('double', 'numeric')"
My desired output would be:
#> id x country mean_x count
#> <dbl> <dbl> <fct> <dbl>
#> 1 1 2 USA 3 2
#> 2 2 4 USA 3 2
#> 3 3 3.5 JPN 3.5 1
#> 4 4 NA JPN 3.5 1
Reproducible code below:
library(tidyverse)
df <- data.frame(id = c(1, 2, 3, 4),
x = c(2, 4, 3.5, NA),
country = c("USA", "USA", "JPN", "JPN")
)
df
df <- df %>% group_by(country) %>%
mutate(mean_x = mean(x, na.rm = TRUE),
count_x = count(x))
)
df
count is not the right function here. The first argument to count is a dataframe or tibble specifically. However, what you are passing is a vector hence you get the error. Also count summarises the dataframe so that you have only one row per group. See for example,
library(dplyr)
df %>%
group_by(country) %>%
mutate(mean_x = mean(x, na.rm = TRUE)) %>%
count(country)
# country n
# <fct> <int>
#1 JPN 2
#2 USA 2
If you want to add a new column without summarising, use add_count instead
df %>%
group_by(country) %>%
mutate(mean_x = mean(x, na.rm = TRUE)) %>%
add_count(country)
# id x country mean_x n
# <dbl> <dbl> <fct> <dbl> <int>
#1 1 2 USA 3 2
#2 2 4 USA 3 2
#3 3 3.5 JPN 3.5 2
#4 4 NA JPN 3.5 2
However, both of this function don't do what you need. To count non-NA values per group, you need
df %>%
group_by(country) %>%
mutate(mean_x = mean(x, na.rm = TRUE),
count = length(na.omit(x)))
#OR
#count = sum(!is.na(x)))#as #Humpelstielzchen mentioned
# id x country mean_x count
# <dbl> <dbl> <fct> <dbl> <int>
#1 1 2 USA 3 2
#2 2 4 USA 3 2
#3 3 3.5 JPN 3.5 1
#4 4 NA JPN 3.5 1
We can also create the 'count' with a group_by n()
library(dplyr)
df %>%
group_by(country) %>%
mutate(mean_x = mean(x, na.rm = TRUE)) %>%
summarise(n = n())
# A tibble: 2 x 2
# country n
# <fct> <int>
#1 JPN 2
#2 USA 2
Related
I have this sample dataset and i want to convert it into the following format:
Type <- c("AGE", "AGE", "REGION", "REGION", "REGION", "DRIVERS", "DRIVERS")
Level <- c("18-25", "26-70", "London", "Southampton", "Newcastle", "1", "2")
Estimate <- c(1.5,1,2,3,1,2,2.5)
df_before <- data.frame(Type, Level, Estimate)
Type Level Estimate
1 AGE 18-25 1.5
2 AGE 26-70 1.0
3 REGION London 2.0
4 REGION Southampton 3.0
5 REGION Newcastle 1.0
6 DRIVERS 1 2.0
7 DRIVERS 2 2.5
Basically, I would like to to transform the dataset into the following format. I have tried with the function dcast() but it seems that is not working.
AGE Estimate_AGE REGION Estimate_REGION DRIVERS Estimate_DRIVERS
1 18-25 1.5 London 2 1 2.0
2 26-70 1.0 Southampton 3 2 2.5
3 <NA> NA Newcastle 1 <NA> NA
df_before %>%
group_by(Type) %>%
mutate(id = row_number(), Estimate = as.character(Estimate))%>%
pivot_longer(-c(Type, id)) %>%
pivot_wider(id, names_from = c(Type, name))%>%
type.convert(as.is = TRUE)
# A tibble: 3 x 7
id AGE_Level AGE_Estimate REGION_Level REGION_Estimate DRIVERS_Level DRIVERS_Estimate
<int> <chr> <dbl> <chr> <int> <int> <dbl>
1 1 18-25 1.5 London 2 1 2
2 2 26-70 1 Southampton 3 2 2.5
3 3 NA NA Newcastle 1 NA NA
In data.table:
library(data.table)
setDT(df_before)
dcast(melt(df_before, 'Type'), rowid(Type, variable)~Type + variable)
Note that you will get alot of warning because of the type mismatch. You could use reshape2::melt to avoid this.
Anyway your datafram is not in a standard format.
In Base R >=4.0
transform(df_before, id = ave(Estimate, Type, FUN = seq_along)) |>
reshape(v.names = c('Level', 'Estimate'), dir = 'wide', timevar = 'Type', sep = "_")
id Level_AGE Estimate_AGE Level_REGION Estimate_REGION Level_DRIVERS Estimate_DRIVERS
1 1 18-25 1.5 London 2 1 2.0
2 2 26-70 1.0 Southampton 3 2 2.5
5 3 <NA> NA Newcastle 1 <NA> NA
IN base R <4
reshape(transform(df_before, id = ave(Estimate, Type, FUN = seq_along)),
v.names = c('Level', 'Estimate'), dir = 'wide', timevar = 'Type', sep = "_")
Update:
The exact output as the desired output:
df_before %>%
group_by(Type) %>%
mutate(id = row_number()) %>%
pivot_wider(
names_from = Type,
values_from = c(Level, Estimate)
) %>%
select(AGE = Level_AGE, Estimate_AGE, REGION = Level_REGION,
Estimate_REGION, DRIVERS = Level_DRIVERS, Estimate_DRIVERS) %>%
type.convert(as.is=TRUE)
AGE Estimate_AGE REGION Estimate_REGION DRIVERS Estimate_DRIVERS
<chr> <dbl> <chr> <int> <int> <dbl>
1 18-25 1.5 London 2 1 2
2 26-70 1 Southampton 3 2 2.5
3 NA NA Newcastle 1 NA NA
First answer:
Main aspect is to group by Type as already provided Onyambu's solution. After that we could use one pivot_wider:
library(dplyr)
library(tidyr)
df_before %>%
group_by(Type) %>%
mutate(id = row_number()) %>%
pivot_wider(
names_from = Type,
values_from = c(Level, Estimate)
)
id Level_AGE Level_REGION Level_DRIVERS Estimate_AGE Estimate_REGION Estimate_DRIVERS
<int> <chr> <chr> <chr> <dbl> <dbl> <dbl>
1 1 18-25 London 1 1.5 2 2
2 2 26-70 Southampton 2 1 3 2.5
3 3 NA Newcastle NA NA 1 NA
We can try this:
library(tidyverse)
Type <- c("AGE", "AGE", "REGION", "REGION", "REGION", "DRIVERS", "DRIVERS")
Level <- c("18-25", "26-70", "London", "Southampton", "Newcastle", "1", "2")
Estimate <- c(1.5, 1, 2, 3, 1, 2, 2.5)
df_before <- data.frame(Type, Level, Estimate)
data <-
df_before %>% group_split(Type)
data <-
map2(
data, map(data, ~ unique(.$Type)),
~ mutate(., "{.y}" := Level, "Estimate_{.y}" := Estimate) %>%
select(-c("Type", "Level", "Estimate"))
)
#get the longest number of rows to be able to join the columns
max_rows <- map_dbl(data, nrow) %>%
max()
#add rows if needed
map_if(
data, ~ nrow(.) < max_rows,
~ rbind(., NA)
) %>%
bind_cols()
#> # A tibble: 3 × 6
#> AGE Estimate_AGE DRIVERS Estimate_DRIVERS REGION Estimate_REGION
#> <chr> <dbl> <chr> <dbl> <chr> <dbl>
#> 1 18-25 1.5 1 2 London 2
#> 2 26-70 1 2 2.5 Southampton 3
#> 3 <NA> NA <NA> NA Newcastle 1
Created on 2021-12-07 by the reprex package (v2.0.1)
A solution based on tidyr::pivot_wider and purrr::map_dfc:
library(tidyverse)
Type <- c("AGE", "AGE", "REGION", "REGION", "REGION", "DRIVERS", "DRIVERS")
Level <- c("18-25", "26-70", "London", "Southampton", "Newcastle", "1", "2")
Estimate <- c(1.5,1,2,3,1,2,2.5)
df_before <- data.frame(Type, Level, Estimate)
df_before %>%
pivot_wider(names_from=Type, values_from=c(Level, Estimate), values_fn=list) %>%
map_dfc(~ c(unlist(.x), rep(NA, max(table(df_before$Type))-length(unlist(.x)))))
#> # A tibble: 3 × 6
#> Level_AGE Level_REGION Level_DRIVERS Estimate_AGE Estimate_REGION
#> <chr> <chr> <chr> <dbl> <dbl>
#> 1 18-25 London 1 1.5 2
#> 2 26-70 Southampton 2 1 3
#> 3 <NA> Newcastle <NA> NA 1
#> # … with 1 more variable: Estimate_DRIVERS <dbl>
Another solution, based on dplyr:: group_split and purrr::map_dfc:
library(tidyverse)
df_before %>%
mutate(maxn = max(table(.$Type))) %>%
group_by(Type) %>% group_split() %>%
map_dfc(
~ data.frame(c(.x$Level, rep(NA, .x$maxn[1] - nrow(.x))),
c(.x$Estimate, rep(NA, .x$maxn[1] - nrow(.x)))) %>%
set_names(c(.x$Type[1], paste0("Estimate_", .x$Type[1])))) %>%
type.convert(as.is=T)
#> AGE Estimate_AGE DRIVERS Estimate_DRIVERS REGION Estimate_REGION
#> 1 18-25 1.5 1 2.0 London 2
#> 2 26-70 1.0 2 2.5 Southampton 3
#> 3 <NA> NA NA NA Newcastle 1
I have a tibble, df, I would like to take the tibble and group it and then use dplyr::pull to create vectors from the grouped dataframe. I have provided a reprex below.
df is the base tibble. My desired output is reflected by df2. I just don't know how to get there programmatically. I have tried to use pull to achieve this output but pull did not seem to recognize the group_by function and instead created a vector out of the whole column. Is what I'm trying to achieve possible with dplyr or base r. Note - new_col is supposed to be a vector created from the name column.
library(tidyverse)
library(reprex)
df <- tibble(group = c(1,1,1,1,2,2,2,3,3,3,3,3),
name = c('Jim','Deb','Bill','Ann','Joe','Jon','Jane','Jake','Sam','Gus','Trixy','Don'),
type = c(1,2,3,4,3,2,1,2,3,1,4,5))
df
#> # A tibble: 12 x 3
#> group name type
#> <dbl> <chr> <dbl>
#> 1 1 Jim 1
#> 2 1 Deb 2
#> 3 1 Bill 3
#> 4 1 Ann 4
#> 5 2 Joe 3
#> 6 2 Jon 2
#> 7 2 Jane 1
#> 8 3 Jake 2
#> 9 3 Sam 3
#> 10 3 Gus 1
#> 11 3 Trixy 4
#> 12 3 Don 5
# Desired Output - New Col is a column of vectors
df2 <- tibble(group=c(1,2,3),name=c("Jim","Jane","Gus"), type=c(1,1,1), new_col = c("'Jim','Deb','Bill','Ann'","'Joe','Jon','Jane'","'Jake','Sam','Gus','Trixy','Don'"))
df2
#> # A tibble: 3 x 4
#> group name type new_col
#> <dbl> <chr> <dbl> <chr>
#> 1 1 Jim 1 'Jim','Deb','Bill','Ann'
#> 2 2 Jane 1 'Joe','Jon','Jane'
#> 3 3 Gus 1 'Jake','Sam','Gus','Trixy','Don'
Created on 2020-11-14 by the reprex package (v0.3.0)
Maybe this is what you are looking for:
library(dplyr)
df <- tibble(group = c(1,1,1,1,2,2,2,3,3,3,3,3),
name = c('Jim','Deb','Bill','Ann','Joe','Jon','Jane','Jake','Sam','Gus','Trixy','Don'),
type = c(1,2,3,4,3,2,1,2,3,1,4,5))
df %>%
group_by(group) %>%
mutate(new_col = name, name = first(name, order_by = type), type = first(type, order_by = type)) %>%
group_by(name, type, .add = TRUE) %>%
summarise(new_col = paste(new_col, collapse = ","))
#> `summarise()` regrouping output by 'group', 'name' (override with `.groups` argument)
#> # A tibble: 3 x 4
#> # Groups: group, name [3]
#> group name type new_col
#> <dbl> <chr> <dbl> <chr>
#> 1 1 Jim 1 Jim,Deb,Bill,Ann
#> 2 2 Jane 1 Joe,Jon,Jane
#> 3 3 Gus 1 Jake,Sam,Gus,Trixy,Don
EDIT If new_col should be a list of vectors then you could do `summarise(new_col = list(c(new_col)))
df %>%
group_by(group) %>%
mutate(new_col = name, name = first(name, order_by = type), type = first(type, order_by = type)) %>%
group_by(name, type, .add = TRUE) %>%
summarise(new_col = list(c(new_col)))
Another option would be to use tidyr::nest:
df %>%
group_by(group) %>%
mutate(new_col = name, name = first(name, order_by = type), type = first(type, order_by = type)) %>%
nest(new_col = new_col)
I am trying to find a way to rename my factor levels (1, 2, 3) with girl, boy, other in the dplyr tibble output.
This is the code:
library(dplyr)
df1 %>%
dplyr::group_by(sex)%>%
dplyr::summarise(percent=100*n()/nrow(df1), n=n())
And my result is:
# A tibble: 3 x 3
sexs percent n
<int> <dbl> <int>
1 1 52.1 731
2 2 47.1 661
3 NA 0.855 12
The desired result would be:
# A tibble: 3 x 3
sexs percent n
<int> <dbl> <int>
Girl 1 52.1 731
Boy 2 47.1 661
Other NA 0.855 12
I happen to love the forcats package because when I get done I can actually see what I did. Another solution by simply adding to the pipe before your existiung code.
library(dplyr)
library(forcats)
sex <- sample(1:2, 100, replace = TRUE)
sex[[88]] <- NA
df1 <- data.frame(sex)
df1 %>%
mutate(newsex = fct_explicit_na(fct_recode(as_factor(sex),
Girl = "1",
Boy = "2" ),
na_level = "Other")) %>%
group_by(newsex, sex) %>%
summarise(percent = 100 * n() / nrow(df1), n=n())
#> # A tibble: 3 x 4
#> # Groups: newsex [3]
#> newsex sex percent n
#> <fct> <int> <dbl> <int>
#> 1 Girl 1 56 56
#> 2 Boy 2 43 43
#> 3 Other NA 1 1
Created on 2020-05-11 by the reprex package (v0.3.0)
When posting please provide some sample data to work with, it will help others test and make sure everything is working properly. This problem is relatively simple so it shouldn't be a problem.
If you want to replace the NA with literally any other number you can do this
df1 %>%
dplyr::mutate(sex = ifelse(is.na(sex), 0, sex),
sex = factor(sex,
levels = c(1,2,0),
labels = c("Girl", "Boy", "Other"))) %>%
dplyr::group_by(sex)%>%
dplyr::summarise(percent=100*n()/nrow(df1), n=n())
Otherwise you can use case_when to assign the factors and then convert the column to a factor
df1 %>%
dplyr::mutate(sex = case_when(
sex == 1 ~ "Girl",
sex == 2 ~ "Boy",
is.na(sex) ~ "Other") %>%
as_factor(.)) %>%
dplyr::group_by(sex)%>%
dplyr::summarise(percent=100*n()/nrow(df1), n=n())
Why doesn't dplyr like this format of 'beta linalool' in my function as compared to beta.linalool?
It took me a few hours of troubleshooting to figure out what the problem was. Is there any way to use data where variables are labeled as more than one word or should I just move everything to the beta.linalool type format?
Everything I have learned has been from Programming with dplyr.
library(ggplot2)
library(readxl)
library(dplyr)
library(magrittr)
Data3<- read_excel("Desktop/Data3.xlsx")
Data3 %>% filter(Variety=="CS 420A"&`Red Blotch`=="-")%>% group_by(`Time Point`)%>%
summarise(m=mean(`beta linalool`),SD=sd(`beta linalool`))
# A tibble: 4 x 3
`Time Point` m SD
<chr> <dbl> <dbl>
1 End 0.00300 0.000117
2 Mid 0.00385 0.000353
3 Must 0.000254 0.00000633
4 Start 0.000785 0.000283
Now when I work it into a function:
cwine<-function(df,v,rb,c){
c<-enquo(c)
df %>% filter(Variety==v&`Red Blotch`==rb)%>%
group_by(`Time Point`) %>%
summarise_(m=mean(!!c),SD=sd(!!c)) %>%
}
cwine(Data3,"CS 420A","-",'beta linalool')
# A tibble: 4 x 3
`Time Point` m SD
<chr> <dbl> <dbl>
1 End NA NA
2 Mid NA NA
3 Must NA NA
4 Start NA NA
Warning messages:
1: In mean.default(~"beta linalool") :
argument is not numeric or logical: returning NA #this statement is repeated 4 more times
5: In var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm = na.rm) :
NAs introduced by coercion #this statement is repeated 4 more times
The problem lies in that beta linalool is typed in as 'beta linalool'. I figured this out by trying this methodology on the iris dataset and seeing that Petal.Length is not 'Petal Width':
my_function<-function(ds,x,y,c){
c<-enquo(c)
ds %>%filter(Sepal.Length>x&Sepal.Width<y) %>%
group_by(Species) %>%
summarise(m=mean(!!c),SD=sd(!!c))
}
my_function2(iris,5,4,Petal.Length)
# A tibble: 3 x 3
Species m SD
<fct> <dbl> <dbl>
1 setosa 1.53 0.157
2 versicolor 4.32 0.423
3 virginica 5.57 0.536
In fact my function works fine on a different variable:
> cwine(Data2,"CS 420A","-",nerol)
# A tibble: 4 x 3
`Time Point` m SD
<chr> <dbl> <dbl>
1 End 0.000453 0.0000338
2 Mid 0.000659 0.0000660
3 Must 0.000560 0.0000234
4 Start 0.000927 0.0000224
Is dplyr just that sensitive or am I missing something?
One option would be convert it to symbol and evaluate it
library(tidyverse)
cwine <- function(df,v,rb,c){
df %>%
filter(Variety==v & `Red Blotch` == rb)%>%
group_by(`Time Point`) %>%
summarise(m = mean(!!rlang::sym(c)),
SD = sd(!! rlang::sym(c)))
}
cwine(Data3,"CS 420A","-",'beta linalool')
# A tibble: 2 x 3
# `Time Point` m SD
# <int> <dbl> <dbl>
#1 2 -2.11 2.23
#2 4 0.0171 NA
Also, if we want to pass it by converting to quosure (enquo), it works, when we pass the variable name with backquotes (usually, unquoted version works, but here there is a space between words and to evaluate it as it is, backquote is needed)
cwine <- function(df,v,rb,c){
c1 <- enquo(c)
df %>%
filter(Variety==v & `Red Blotch` == rb)%>%
group_by(`Time Point`) %>%
summarise(m = mean(!! c1 ),
SD = sd(!! c1))
}
cwine(Data3,"CS 420A","-",`beta linalool`)
# A tibble: 2 x 3
# `Time Point` m SD
# <int> <dbl> <dbl>
#1 2 -2.11 2.23
#2 4 0.0171 NA
data
set.seed(24)
Data3 <- tibble(Variety = sample(c("CS 420A", "CS 410A"), 20, replace = TRUE),
`Red Blotch` = sample(c("-", "+"), 20, replace = TRUE),
`Time Point` = sample(1:4, 20, replace = TRUE),
`beta linalool` = rnorm(20))
I'm trying to assess which unit in a pair is the "winner". group_by() %>% mutate() is close to the right thing, but it's not quite there. in particular
dat %>% group_by(pair) %>% mutate(winner = ifelse(score[1] > score[2], c(1, 0), c(0, 1))) doesn't work.
The below does, but is clunky with an intermediate summary data frame. Can we improve this?
library(tidyverse)
set.seed(343)
# units within pairs get scores
dat <-
data_frame(pair = rep(1:3, each = 2),
unit = rep(1:2, 3),
score = rnorm(6))
# figure out who won in each pair
summary_df <-
dat %>%
group_by(pair) %>%
summarize(winner = which.max(score))
# merge back and determine whether each unit won
dat <-
left_join(dat, summary_df, "pair") %>%
mutate(won = as.numeric(winner == unit))
dat
#> # A tibble: 6 x 5
#> pair unit score winner won
#> <int> <int> <dbl> <int> <dbl>
#> 1 1 1 -1.40 2 0
#> 2 1 2 0.523 2 1
#> 3 2 1 0.142 1 1
#> 4 2 2 -0.847 1 0
#> 5 3 1 -0.412 1 1
#> 6 3 2 -1.47 1 0
Created on 2018-09-26 by the reprex
package (v0.2.0).
maybe related to Weird group_by + mutate + which.max behavior
You could do:
dat %>%
group_by(pair) %>%
mutate(won = score == max(score),
winner = unit[won == TRUE]) %>%
# A tibble: 6 x 5
# Groups: pair [3]
pair unit score won winner
<int> <int> <dbl> <lgl> <int>
1 1 1 -1.40 FALSE 2
2 1 2 0.523 TRUE 2
3 2 1 0.142 TRUE 1
4 2 2 -0.847 FALSE 1
5 3 1 -0.412 TRUE 1
6 3 2 -1.47 FALSE 1
Using rank:
dat %>% group_by(pair) %>% mutate(won = rank(score) - 1)
More for fun (and slightly faster), using the outcome of the comparison (score[1] > score[2]) to index a vector with 'won alternatives' :
dat %>% group_by(pair) %>%
mutate(won = c(0, 1, 0)[1:2 + (score[1] > score[2])])