I am using "argparse" library in R for command line arguments.
# Create parser
parser = ArgumentParser(description='command line args')
# Add command line arguments
parser$add_argument("is_local", nargs='?', type="logical",
help="whether to use local or server path", default=FALSE)
parser$add_argument("alert", nargs='?', type="double",
help="alert threshold", default=0.99)
I am trying to call it on command line such as:
Rscript my_func.R TRUE 0.99
However boolean argument does not change. Any idea how to parse boolean argument in R?
Thanks!
I don't know R, but the description of this package says it's a wrapper for the Python argparse.
I would recommend changing these:
parser$add_argument("is_local", nargs='?', type="logical",
help="whether to use local or server path", default=FALSE)
parser$add_argument("alert", nargs='?', type="double",
help="alert threshold", default=0.99)
to
parser$add_argument("--local", action='store_true'),
help="whether to use local or server path")
parser$add_argument("--alert", type="double",
help="alert threshold", default=0.99)
which would be called with
Rscript my_func.R --local --alert 0.99
store_true is illustrated on the basic docs page, https://github.com/trevorld/r-argparse
If I read the R correctly, your is_local should be giving you a warning
"You almost certainly want to use action='store_true' or action='store_false' instead"
A store_true argument sets the attribute to TRUE if present, and the default FALSE if absent. It should be an optional (--) and not set the nargs.
(It is possible to have an argument that takes strings 'true' and 'false' (or any other pair in your native language) and converts them to logical values, but requires more coding.)
I made --alert a flagged argument as well, without the nargs. Its value will be the default if absent, and the convert the string to a double if provided. It could be a '?' positional, but while learning I think it's best to stick with optionals unless you want the argument to be required.
The R-argparse docs aren't very complete. You may need to refer to the Python docs, and experiment to get the translation right.
https://docs.python.org/3/library/argparse.html
Thanks for your time and help!
I would like to share my workaround for the problem as I find original argparse (action) usage a bit complicated.
# Convert str input to boolean
str2bool = function(input_str)
{
if(input_str == "0")
{
input_str = FALSE
}
else if(input_str == "1")
{
input_str = TRUE
}
return(input_str)
}
# Create parser
parser = ArgumentParser(description='command line args')
# Add command line arguments
parser$add_argument("is_local", nargs='?', type="character",
help="whether to use local or server path", default="1")
parser$add_argument("alert", nargs='?', type="double",
help="alert threshold", default=0.99)
# Parse arguments
args = parser$parse_args()
# Convert str arguments
args$is_local = str2bool(args$is_local)
# Call on CMD line
Rscript my_func.R 1 0.99 #equivalent Rscript my_func.R TRUE 0.99
Rscript my_func.R 0 0.99 #equivalent Rscript my_func.R FALSE 0.99
Below is the sample example given in the official docs of package argparse:
parser <- ArgumentParser(description='Process some integers')
parser$add_argument('integers', metavar='N', type="integer", nargs='+',
help='an integer for the accumulator')
parser$add_argument('--sum', dest='accumulate', action='store_const',
const='sum', default='max',
help='sum the integers (default: find the max)')
parser$print_help()
# default args for ArgumentParser()$parse_args are commandArgs(TRUE)
# which is what you'd want for an Rscript but not for interactive use
args <- parser$parse_args(c("--sum", "1", "2", "3"))
accumulate_fn <- get(args$accumulate)
print(accumulate_fn(args$integers))
Here is the link for the argparse pdf https://cran.r-project.org/web/packages/argparse/argparse.pdf
I hope it might help.
Related
I have this simple routine where I want to remove some dirs from $PATH:
test.py
import os
import shutil
# remove babel from PATH
bins = ["babel", "obabel"]
env_path = os.environ["PATH"].split(":")[:]
for abin in bins:
bpath = shutil.which(abin)
try:
rr = os.path.dirname(bpath) # <- mypy error
except TypeError:
rr = None
try:
env_path.remove(rr) # <- mypy error
except ValueError:
pass
os.environ["PATH"] = ":".join(env_path)
This does work, however mypy complains:
mypy --ignore-missing-imports test.py
test.py:10: error: Value of type variable "AnyStr" of "dirname" cannot be "Optional[str]"
test.py:14: error: Argument 1 to "remove" of "list" has incompatible type "Optional[str]"; expected "str"
Found 2 errors in 1 file (checked 1 source file)
I understand that bpath can be a str or None (hence the try), so I tried bpath: Optional[str] but that gave me others mypy errors.
Anyway, how to bring peace to mypy here?
Apparently, based on the suggestions from the comments, this seems to have worked:
for abin in bins:
bpath = shutil.which(abin)
if bpath:
rr = os.path.dirname(bpath)
else:
rr = ""
try:
env_path.remove(rr)
except ValueError:
pass
No complains from mypy.
I can't get optparse to work with short arguments. What's wrong with this?
library("optparse")
packageVersion("optparse")
option_list = list(
make_option(c("-f", "--file"), action = "store", type="character", default=NULL)
)
opt_parser = OptionParser(option_list=option_list)
parse_args(opt_parser, args=c("--file=anyfile.txt")) # this works
parse_args(opt_parser, args=c("-f anyfile.txt")) # but this does not
[1] ‘1.7.1’
Error in getopt_options(object, args) :
Error in getopt(spec = spec, opt = args) :
short flag "f" requires an argument, but has none
args is a character vector. From help:
A character vector containing command line options to be parsed. Default is everything after the Rscript program in the command line. If positional_arguments is not FALSE then parse_args will look for positional arguments at the end of this vector.
args=c("-f", "anyfile.txt")
I am trying to evaluate strings within a for loop within an R script using JuliaCall::julia_eval. While I was able to accomplish this in R using the deSolve package, I am running into issues when converting the code to one that is compatible with Julia. The base code for the correctly functioning R deSolve code is shown below.
library(deSolve)
library(dplyr)
Combine <- c(" - 1*0.4545*(H2O2^1) - 1*27000000*(`$OH`^1)*(H2O2^1)", " - 1*3100000000*(`1,4-dioxane`^1)*(`$OH`^1)",
" - 1*33000*(TOC^1)*(`$OH`^1)", "2*0.4545*(H2O2^1) - 1*3100000000*(`1,4-dioxane`^1)*(`$OH`^1) - 1*33000*(TOC^1)*(`$OH`^1) - 1*27000000*(`$OH`^1)*(H2O2^1) - 1*8500000*(`$OH`^1)*(`HCO3-`^1) - 1*390000000*(`$OH`^1)*(`CO3 2-`^1)",
" - 1*8500000*(`$OH`^1)*(`HCO3-`^1)", " - 1*390000000*(`$OH`^1)*(`CO3 2-`^1)"
)
time <- seq(from=0, to=0.01, by = 1E-4)
State <- c(H2O2 = 0.000294117647058824, `1,4-dioxane` = 0.00000113494,
TOC = 0, `$OH` = 0, `HCO3-` = 0.003766104, `CO3 2-` = 0.0000167638711956647)
ODEcreater2 <- function(t, state, parameters){
with(as.list(c(state)),{
for (i in 1:6) { #
dY[i] <- eval(parse(text=Combine[i]))}
return(list(dY))
} )}
out1<- ode(y = state, times = time, func = ODEcreater2, parms = NULL)
I am trying to use replicate the code and run it in Julia to improve the speed of the ODE solver by using diffeqr vs. deSolve. Unfortunately, I am running into evaluating the string/expression within a for loop in julia_call.
library(diffeqr)
diffeqr::diffeq_setup()
library(JuliaCall)
julia <- julia_setup()
ODEcreater <- JuliaCall::julia_eval("
function (dY,t,state)
for i in 1:6
dY[i] = eval(Meta.parse(:Combine[i]))
end
end")
tspan <- list(1E-6, 1E-3)
sol = diffeqr::ode.solve(ODEcreater,state,tspan, abstol=1e-8, reltol=1e-8)
Does anyone have any insight into the best way to evaluate the strings within the for loop? I have been investigating metaexpressions on the JuliaLang website but am still lost.
As mentioned in the duplicate question https://stackoverflow.com/a/58766919/1544203 , building the string and then doing
sprintf("function f(du,u,p,t)\n%s\nend", paste(Combine, collapse="\n"))
from the R side builds a single string which matches the format that works. This is also optimal since it excludes any extra function calls from the generated function.
from julia docs:
parse(str; raise=true, depwarn=true)
Parse the expression string greedily, returning a single expression. An error is thrown if there are additional
characters after the first expression. If raise is true (default), syntax errors will raise an error; otherwise, parse
will return an expression that will raise an error upon evaluation. If depwarn is false, deprecation warnings will be
suppressed.
julia> Meta.parse("x = 3")
:(x = 3)
so, Meta.parse accepts a string and returns an expression. this should evaluate correctly:
eval(Meta.parse(Combine[i]))
one problem i see is the use of non-valid julia variable names, like $OH
I would like to run this Python code from R:
>>> import nlmpy
>>> nlm = nlmpy.mpd(nRow=50, nCol=50, h=0.75)
>>> nlmpy.exportASCIIGrid("raster.asc", nlm)
Nlmpy is a Python package to build neutral landscape models. The example comes from the website
To run this Python code from R, I 'm trying to use the package rPithon. However, I obtain this error message:
if (pithon.available())
{
nRow <- 50
nCol <- 50
h <- 0.75
# this file contains the definition of function concat
pithon.load("C:/Users/Anaconda2/Lib/site-packages/nlmpy/nlmpy.py")
pithon.call( "mpd", nRow, nCol, h)
} else {
print("Unable to execute python")
}
Error in pithon.get("_r_call_return", instance.name = instname) :
Couldn't retrieve variable: Traceback (most recent call last):
File "C:/Users/Documents/R/win-library/3.3/rPithon/pythonwrapperscript.py", line 110, in <module>
reallyReallyLongAndUnnecessaryPrefix.data = json.dumps([eval(reallyReallyLongAndUnnecessaryPrefix.argData)])
File "C:\Users\ANACON~1\lib\json\__init__.py", line 244, in dumps
return _default_encoder.encode(obj)
File "C:\Users\ANACON~1\lib\json\encoder.py", line 207, in encode
chunks = self.iterencode(o, _one_shot=True)
File "C:\Users\ANACON~1\lib\json\encoder.py", line 270, in iterencode
return _iterencode(o, 0)
File "C:\Users\ANACON~1\lib\json\encoder.py", line 184, in default
raise TypeError(repr(o) + " is not JSON serializable")
TypeError: array([[ 0.36534654, 0.31962481, 0.44229946, ..., 0.11513079,
0.07156331, 0.00286971], [ 0.41534291, 0.41333479, 0.48118995, ..., 0.19203674,
0.04192771, 0.03679473], [ 0.5188
Is this error caused by a syntax issue in my code ? I work with the Anaconda 4.2.0 platform for Windows which uses the Python 2.7 version.
I haven't used the nlmpy package hence, I am not sure what would be your expected output. However, this code successfully communicates between R and Python.
There are two files,
nlmpyInR.R
command ="python"
path2script="path_to_your_pythoncode/nlmpyInPython.py"
nRow <-50
nCol <-50
h <- 0.75
# Build up args in a vector
args = c(nRow, nCol, h)
# Add path to script as first arg
allArgs = c(path2script, args)
Routput = system2(command, args=allArgs, stdout=TRUE)
#The command would be python nlmpyInPython.py 50 50 0.75
print(paste("The Output is:\n", Routput))
nlmpyInPython.py
import sys
import nlmpy
#Getting the arguments from the command line call
nRow = sys.argv[1]
nCol = sys.argv[2]
h = sys.argv[3]
nlm = nlmpy.mpd(nRow, nCol, h)
pyhtonOutput = nlmpy.exportASCIIGrid("raster.asc", nlm)
#Whatever you print will get stored in the R's output variable.
print pyhtonOutput
The cause of the error that you're getting is hinted at by the
"is not JSON serializable" line. Your R code calls the mpd
function with certain arguments, and that function itself will
execute correctly. The rPithon library will then try to send the
return value of the function back to R, and to do this it will try
to create a JSON object
that describes the return value.
This works well for integers, floating point values, arrays, etc,
but not every kind of Python object can be converted to such a
JSON representation. And because rPithon can't convert the return value
of mpd this way, an error is generated.
You can still use rPithon to call the mpd function though. The following
code creates a new Python function that performs two steps: first
it calls the mpd function with the specified parameters, and then it
exports the result to a file, of which the filename is also an argument.
Using rPithon, the new function is then called from R. Because myFunction doesn't return anything, representing the return value in JSON format will not be a problem.
library("rPithon")
pythonCode = paste("import nlmpy.nlmpy as nlmpy",
"",
"def myFunction(nRow, nCol, h, fileName):",
" nlm = nlmpy.mpd(nRow, nCol, h)",
" nlmpy.exportASCIIGrid(fileName, nlm)",
sep = "\n")
pithon.exec(pythonCode)
nRow <- 50
nCol <- 50
h <- 0.75
pithon.call("myFunction", nRow, nCol, h, "outputraster.asc")
Here, the Python code defined as an R string, and executed using
pithon.exec. You could also put that Python code in a separate file
and use pithon.load to process the code so that the myFunction
function is known.
I'm trying to write an R script that takes in 3 arguments when run with Rscript: input file name, whether it has a header or not (values are 'header' or 'no_header', and a positive integer (the number of replacements; its for a bootstrap application). So, when I run it this way:
Rscript bootstrapWithReplacement.R survival.csv header 50
it should, before running, check if:
1) The script indeed took in 3 parameters;
2) whether the first parameter is a file;
3) whether the second parameter has a 'header' or 'no_header' value, and
4) if the number passed is a positive integer.
Here is my code so far:
pcArgs <- commandArgs()
snOffset <- grep('--args', pcArgs)
inputFile <- pcArgs[snOffset+1]
headerSpec <- pcArgs[snOffset+2] ## header/no_header
numberOfResamples <- pcArgs[snOffset+3] ## positive integer
check.integer <- function(N){
!length(grep("[^[:digit:]]", as.character(N)))
}
if (!file_test("-f",inputFile)) {stop("inputFile not defined. Proper use: Rscript bootstrapWithReplacementFile.R survival.csv header 50.")}
if (!exists("headerSpec")) {stop("headerSpec not defined. Proper use: Rscript bootstrapWithReplacementFile.R survival.csv header 50.")}
if (!exists("numberOfResamples")) {stop("numberOfResamples not defined. Proper use: Rscript bootstrapWithReplacementFile.R survival.csv header 50.")}
if ((headerSpec != 'header') == TRUE & (headerSpec != 'no_header') == TRUE) {stop("headerSpec not properly defined. Correct values: 'header' OR 'no_header'.")}
if (check.integer(numberOfResamples) != TRUE | (numberOfResamples>0) != TRUE) {stop("numberOfResamples not properly defined. Must be an integer larger than 0.")}
if (headerSpec == 'header') {
inputData<-read.csv(inputFile)
for (i in 1:numberOfResamples) {write.csv(inputData[sample(nrow(inputData),replace=TRUE),], paste("./bootstrap_",i,"_",inputFile,sep=""), row.names=FALSE)}
}
if (headerSpec == 'no_header') {
inputData<-read.table(inputFile,header=FALSE)
for (i in 1:numberOfResamples) {write.table(inputData[sample(nrow(inputData),replace=TRUE),], paste("./bootstrap_",i,"_",inputFile,sep=""),
sep=",", row.names=FALSE, col.names=FALSE)}
}
My problem is, the check for the existence of a file works, but for the header or integer don't.
Also, how can I, in the beginning, check if all three arguments have been passed?
Thanks!
As Vincent said, you should use the trailingOnly argument to commandArgs to simplify things.
As Konrad said, never, ever, ever compare directly to TRUE and FALSE.
Also, use assertive for doing assertions.
library(assertive)
library(methods)
cmd_args <- commandArgs(TRUE)
if(length(cmd_args) < 3)
{
stop("Not enough arguments. Please supply 3 arguments.")
}
inputFile <- cmd_args[1]
if (!file_test("-f", inputFile))
{
stop("inputFile not defined, or not correctly named."
}
headerSpec <- match.arg(cmd_args[2], c("header", "no_header"))
numberOfResamples <- as.numeric(cmd_args[3])
assert_all_numbers_are_whole_numbers(numberOfResamples)
assert_all_are_positive(numberOfResamples)
message("Success!")
I managed to solve all the checks, here's how:
if ((length(pcArgs) == 8) == FALSE) {stop("Not enough arguments. Please supply 3 arguments. Proper use example: Rscript bootstrapWithReplacementFile.R survival.csv header 50.")}
if (!file_test("-f",inputFile)) {stop("inputFile not defined, or not correctly named. Proper use example: Rscript bootstrapWithReplacementFile.R survival.csv header 50.")}
if ((headerSpec != 'header') == TRUE & (headerSpec != 'no_header') == TRUE) {stop("headerSpec not properly defined. Correct values: 'header' OR 'no_header'.")}
if (check.integer(numberOfResamples) != TRUE | (numberOfResamples>0) != TRUE) {stop("numberOfResamples not properly defined. Must be an integer larger than 0.")}
Thanks everyone!