Related
I am trying to link up my excel data set to R for statistical analysis. I am running on OSX Sierra (10.12.6) with R studio (1.0.153) and Java 8 (update 144).
The function "read_excel" was able to open my excel document a week ago. When I moved the excel and the R document together to another folder, it no longer worked. Reloading the libraries has had no effect. After multiple attempts (and restarting R studio and computer), something finally worked but function "lmer" was no longer found. After reloading library "lme4", "read_excel" no longer worked!
I have also tried using "read.xlsx" and "readWorksheet(loadWorkbook(...))", which didn't work. "read.csv" also did not work properly since the commas were creating disorganized columns and I am dealing with a larger excel workbook with ongoing changes.
Reading on Stack, question Importing .xlsx file into R has not resolved my issue! Please help!
Libraries loaded:
library(multcomp)
library(nlme)
library(XLConnect)
library(XLConnectJars)
library(lme4)
library(car)
library(rJava)
library(xlsx)
library(readxl)
R data file:
Dataset <- read_excel("Example.xlsx",sheet="testing")
#alternative line: Dataset <- read.xlsx("~/Desktop/My Stuff/Sample/Example.xlsx", sheet=7)
Dataset$AAA <- as.factor(Dataset$AAA)
Dataset$BBB <- as.factor(Dataset$BBB)
Dataset$CCC <- as.numeric(Dataset$CCC)
Dataset$DDD <- as.numeric(Dataset$DDD)
Dataset_lme = lmer(CCC ~ AAA + BBB + (1|DDD), data=Dataset)
While you called the library, try and see if adding readxl::read_excel(path = "yourPath",sheet=1), or even remove the sheet reference. It will automatically take the first sheet.
Perhaps, when you moved the excel and R file to another folder, the pathway should be change either.
Try change the pathway, or replace the pathay by file.choose() and search the excel file manually.
You called the package "xlsx", which can do the thing what you need. Maybe you're typing it wrong.
Dataset <- read.xlsx("Example.xlsx",sheetName="testing")
or
Dataset <- read.xlsx("Example.xlsx",sheetIndex="number of the excel sheet")
I hope it helps.
Try activating library(tidyverse) and library(readr) then use the read_excel().This should work.
Thank you in advance for your're help. I am using R to analyse some data that is initially created in Matlab. I am using the package "R.Matlab" and it is fantastic for 1 file, but I am struggling to import multiple files.
The working script for a single file is as follows...
install.packages("R.matlab")
library(R.matlab)
x<-("folder_of_files")
path <- system.file("/home/ashley/Desktop/Save/2D Stream", package="R.matlab")
pathname <- file.path(x, "Test0000.mat")
data1 <- readMat(pathname)
And this works fantastic. The format of my files is 'Name_0000.mat' where between files the name is a constant and the 4 digits increase, but not necesserally by 1.
My attempt to load multiple files at once was along these lines...
for (i in 1:length(temp))
data1<-list()
{data1[[i]] <- readMat((get(paste(temp[i]))))}
And also in multiple other ways that included and excluded path and pathname from the loop, all of which give me the same error:
Error in get(paste(temp[i])) :
object 'Test0825.mat' not found
Where 0825 is my final file name. If you change the length of the loop it is always just the name of the final one.
I think the issue is that when it pastes the name it looks for that object, which as of yet does not exist so I need to have the pasted text in speach marks, yet I dont know how to do that.
Sorry this was such a long post....Many thanks
I'm working on a R script which has to load data (obviously). The data loading takes a lot of effort (500MB) and I wonder if I can avoid having to go through the loading step every time I rerun the script, which I do a lot during the development.
I appreciate that I could do the whole thing in the interactive R session, but developing multi-line functions is just so much less convenient on the R prompt.
Example:
#!/usr/bin/Rscript
d <- read.csv("large.csv", header=T) # 500 MB ~ 15 seconds
head(d)
How, if possible, can I modify the script, such that on subsequent executions, d is already available? Is there something like a cache=T statement as in R markdown code chunks?
Sort of. There are a few answers:
Use a faster csv read: fread() in the data.table() package is beloved by many. Your time may come down to a second or two.
Similarly, read once as csv and then write in compact binary form via saveRDS() so that next time you can do readRDS() which will be faster as you do not have to load and parse the data again.
Don't read the data but memory-map it via package mmap. That is more involved but likely very fast. Databases uses such a technique internally.
Load on demand, and eg the package SOAR package is useful here.
Direct caching, however, is not possible.
Edit: Actually, direct caching "sort of" works if you save your data set with your R session at the end. Many of us advise against that as clearly reproducible script which make the loading explicit are preferably in our view -- but R can help via the load() / save() mechanism (which lots several objects at once where saveRSS() / readRDS() work on a single object.
Package ‘R.cache’ R.cache
start_year <- 2000
end_year <- 2013
brics_countries <- c("BR","RU", "IN", "CN", "ZA")
indics <- c("NY.GDP.PCAP.CD", "TX.VAL.TECH.CD", "SP.POP.TOTL", "IP.JRN.ARTC.SC",
"GB.XPD.RSDV.GD.ZS", "BX.GSR.CCIS.ZS", "BX.GSR.ROYL.CD", "BM.GSR.ROYL.CD")
key <- list(brics_countries, indics, start_year, end_year)
brics_data <- loadCache(key)
if (is.null(brics_data)) {
brics_data <- WDI(country=brics_countries, indicator=indics,
start=start_year, end=end_year, extra=FALSE, cache=NULL)
saveCache(brics_data, key=key, comment="brics_data")
}
I use exists to check if the object is present and load conditionally, i.e.:
if (!exists(d))
{
d <- read.csv("large.csv", header=T)
# Any further processing on loading
}
# The rest of the script
If you want to load/process the file again, just use rm(d) before sourcing. Just be careful that you do not use object names that are already used elsewhere, otherwise it will pick that up and not load.
I wrote up some of the common ways of caching in R in "Caching in R" and published it to R-Bloggers. For your purpose, I would recommend just using saveRDS() or qs() from the 'qs' (quick serialization) package. My package, 'mustashe', uses qs() for reading and writing files, so you could just use mustashe::stash(), too.
I have what I think is a common enough issue, on optimising workflow in R. Specifically, how can I avoid the common issue of having a folder full of output (plots, RData files, csv, etc.), without, after some time, having a clue where they came from or how they were produced? In part, it surely involves trying to be intelligent about folder structure. I have been looking around, but I'm unsure of what the best strategy is. So far, I have tackled it in a rather unsophisticated (overkill) way: I created a function metainfo (see below) that writes a text file with metadata, with a given file name. The idea is that if a plot is produced, this command is issued to produce a text file with exactly the same file name as the plot (except, of course, the extension), with information on the system, session, packages loaded, R version, function and file the metadata function was called from, etc. The questions are:
(i) How do people approach this general problem? Are there obvious ways to avoid the issue I mentioned?
(ii) If not, does anyone have any tips on improving this function? At the moment it's perhaps clunky and not ideal. Particularly, getting the file name from which the plot is produced doesn't necessarily work (the solution I use is one provided by #hadley in 1). Any ideas would be welcome!
The function assumes git, so please ignore the probable warning produced. This is the main function, stored in a file metainfo.R:
MetaInfo <- function(message=NULL, filename)
{
# message - character string - Any message to be written into the information
# file (e.g., data used).
# filename - character string - the name of the txt file (including relative
# path). Should be the same as the output file it describes (RData,
# csv, pdf).
#
if (is.null(filename))
{
stop('Provide an output filename - parameter filename.')
}
filename <- paste(filename, '.txt', sep='')
# Try to get as close as possible to getting the file name from which the
# function is called.
source.file <- lapply(sys.frames(), function(x) x$ofile)
source.file <- Filter(Negate(is.null), source.file)
t.sf <- try(source.file <- basename(source.file[[length(source.file)]]),
silent=TRUE)
if (class(t.sf) == 'try-error')
{
source.file <- NULL
}
func <- deparse(sys.call(-1))
# MetaInfo isn't always called from within another function, so func could
# return as NULL or as general environment.
if (any(grepl('eval', func, ignore.case=TRUE)))
{
func <- NULL
}
time <- strftime(Sys.time(), "%Y/%m/%d %H:%M:%S")
git.h <- system('git log --pretty=format:"%h" -n 1', intern=TRUE)
meta <- list(Message=message,
Source=paste(source.file, ' on ', time, sep=''),
Functions=func,
System=Sys.info(),
Session=sessionInfo(),
Git.hash=git.h)
sink(file=filename)
print(meta)
sink(file=NULL)
}
which can then be called in another function, stored in another file, e.g.:
source('metainfo.R')
RandomPlot <- function(x, y)
{
fn <- 'random_plot'
pdf(file=paste(fn, '.pdf', sep=''))
plot(x, y)
MetaInfo(message=NULL, filename=fn)
dev.off()
}
x <- 1:10
y <- runif(10)
RandomPlot(x, y)
This way, a text file with the same file name as the plot is produced, with information that could hopefully help figure out how and where the plot was produced.
In terms of general R organization: I like to have a single script that recreates all work done for a project. Any project should be reproducible with a single click, including all plots or papers associated with that project.
So, to stay organized: keep a different directory for each project, each project has its own functions.R script to store non-package functions associated with that project, and each project has a master script that starts like
## myproject
source("functions.R")
source("read-data.R")
source("clean-data.R")
etc... all the way through. This should help keep everything organized, and if you get new data you just go to early scripts to fix up headers or whatever and rerun the entire project with a single click.
There is a package called Project Template that helps organize and automate the typical workflow with R scripts, data files, charts, etc. There is also a number of helpful documents like this one Workflow of statistical data analysis by Oliver Kirchkamp.
If you use Emacs and ESS for your analyses, learning Org-Mode is a must. I use it to organize all my work. Here is how it integrates with R: R Source Code Blocks in Org Mode.
There is also this new free tool called Drake which is advertised as "make for data".
I think my question belies a certain level of confusion. Having looked around, as well as explored the suggestions provided so far, I have reached the conclusion that it is probably not important to know where and how a file is produced. You should in fact be able to wipe out any output, and reproduce it by rerunning code. So while I might still use the above function for extra information, it really is a question of being ruthless and indeed cleaning up folders every now and then. These ideas are more eloquently explained here. This of course does not preclude the use of Make/Drake or Project Template, which I will try to pick up on. Thanks again for the suggestions #noah and #alex!
There is also now an R package called drake (Data Frames in R for Make), independent from Factual's Drake. The R package is also a Make-like build system that links code/dependencies with output.
install.packages("drake") # It is on CRAN.
library(drake)
load_basic_example()
plot_graph(my_plan)
make(my_plan)
Like it's predecessor remake, it has the added bonus that you do not have to keep track of a cumbersome pile of files. Objects generated in R are cached during make() and can be reloaded easily.
readd(summ_regression1_small) # Read objects from the cache.
loadd(small, large) # Load objects into your R session.
print(small)
But you can still work with files as single-quoted targets. (See 'report.Rmd' and 'report.md' in my_plan from the basic example.)
There is package developed by RStudio called pins that might address this problem.
I am trying to learn R and want to bring in an SPSS file, which I can open in SPSS.
I have tried using read.spss from foreign and spss.get from Hmisc. Both error messages are the same.
Here is my code:
## install.packages("Hmisc")
library(foreign)
## change the working directory
getwd()
setwd('C:/Documents and Settings/BTIBERT/Desktop/')
## load in the file
## ?read.spss
asq <- read.spss('ASQ2010.sav', to.data.frame=T)
And the resulting error:
Error in read.spss("ASQ2010.sav", to.data.frame = T) : error
reading system-file header In addition: Warning message: In
read.spss("ASQ2010.sav", to.data.frame = T) : ASQ2010.sav: position
0: character `\000' (
Also, I tried saving out the SPSS file as a SPSS 7 .sav file (was previously using SPSS 18).
Warning messages: 1: In read.spss("ASQ2010_test.sav", to.data.frame =
T) : ASQ2010_test.sav: Unrecognized record type 7, subtype 14
encountered in system file 2: In read.spss("ASQ2010_test.sav",
to.data.frame = T) : ASQ2010_test.sav: Unrecognized record type 7,
subtype 18 encountered in system file
I had a similar issue and solved it following a hint in read.spss help.
Using package memisc instead, you can import a portable SPSS file like this:
data <- as.data.set(spss.portable.file("filename.por"))
Similarly, for .sav files:
data <- as.data.set(spss.system.file('filename.sav'))
although in this case I seem to miss some string values, while the portable import works seamlessly. The help page for spss.portable.file claims:
The importer mechanism is more flexible and extensible than read.spss and read.dta of package "foreign", as most of the parsing of the file headers is done in R. They are also adapted to load efficiently large data sets. Most importantly, importer objects support the labels, missing.values, and descriptions, provided by this package.
The read.spss seems to be outdated a little bit, so I used package called memisc.
To get this to work do this:
install.packages("memisc")
data <- as.data.set(spss.system.file('yourfile.sav'))
You may also try this:
setwd("C:/Users/rest of your path")
library(haven)
data <- read_sav("data.sav")
and if you want to read all files from one folder:
temp <- list.files(pattern = "*.sav")
read.all <- sapply(temp, read_sav)
I know this post is old, but I also had problems loading a Qualtrics SPSS file into R. R's read.spss code came from PSPP a long time ago, and hasn't been updated in a while. (And Hmisc's code uses read.spss(), too, so no luck there.)
The good news is that PSPP 0.6.1 should read the files fine, as long as you specify a "String Width" of "Short - 255 (SPSS 12.0 and earlier)" on the "Download Data" page in Qualtrics. Read it into PSPP, save a new copy, and you should be in business. Awkward, but free.
,
You can read SPSS file from R using above solutions or the one you are currently using. Just make sure that the command is fed with the file, that it can read properly. I had same error and the problem was, SPSS could not access that file. You should make sure the file path is correct, file is accessible and it is in correct format.
library(foreign)
asq <- read.spss('ASQ2010.sav', to.data.frame=TRUE)
As far as warning message is concerned, It does not affect the data. The record type 7 is used to store features in newer SPSS software to make older SPSS software able to read new data. But does not affect data. I have used this numerous times and data is not lost.
You can also read about this at http://r.789695.n4.nabble.com/read-spss-warning-message-Unrecognized-record-type-7-subtype-18-encountered-in-system-file-td3000775.html#a3007945
It looks like the R read.spss implementation is incomplete or broken. R2.10.1 does better than R2.8.1, however. It appears that R gets upset about custom attributes in a sav file even with 2.10.1 (The latest I have). R also may not understand the character encoding field in the file, and in particular it probably does not work with SPSS Unicode files.
You might try opening the file in SPSS, deleting any custom attributes, and resaving the file.
You can see whether there are custom attributes with the SPSS command
display attributes.
If so, delete them (see VARIABLE ATTRIBUTE and DATAFILE ATTRIBUTE commands), and try again.
HTH,
Jon Peck
If you have access to SPSS, save file as .csv, hence import it with read.csv or read.table. I can't recall any problem with .sav file importing. So far it was working like a charm both with read.spss and spss.get. I reckon that spss.get will not give different results, since it depends on foreign::read.spss
Can you provide some info on SPSS/R/Hmisc/foreign version?
Another solution not mentioned here is to read SPSS data in R via ODBC. You need:
IBM SPSS Statistics Data File Driver. Standalone driver is enough.
Import SPSS data using RODBC package in R.
See the example here. However I have to admit that, there could be problems with very big data files.
For me it works well using memisc!
install.packages("memisc")
load('memisc')
Daten.Februar <-as.data.set(spss.system.file("NPS_Februar_15_Daten.sav"))
names(Daten.Februar)
I agree with #SDahm that the haven package would be the way to go. I myself have struggled a bit with string values when starting to use it, so I thought I'd share my approach on that here, too.
The "semantics" vignette has some useful information on this topic.
library(tidyverse)
library(haven)
# Some interesting information in here
vignette('semantics')
# Get data from spss file
df <- read_sav(path_to_file)
# get value labels
df <- map_df(.x = df, .f = function(x) {
if (class(x) == 'labelled') as_factor(x)
else x})
# get column names
colnames(df) <- map(.x = spss_file, .f = function(x) {attr(x, 'label')})
There is no such problem with packages you are using. The only requirement for read a spss file is to put the file into a PORTABLE format file. I mean, spss file have *.sav extension. You need to transform your spss file in a portable document that uses *.por extension.
There is more info in http://www.statmethods.net/input/importingdata.html
In my case this warning was combined with a appearance of a new variable before first column of my data with values -100, 2, 2, 2, ..., a shift in the correspondence between labels and values and the deletion of the last variable. A solution that worked was (using SPSS) to create a new dump variable in the last column of the file, fill it with random values and execute the following code:
(filename is the path to the sav file and in my case the original SPSS file had 62 columns, thus 63 with the additional dumb variable)
library(memisc)
data <- as.data.set(spss.system.file(filename))
copyofdata = data
for(i in 2:63){
names(data)[i] <- names(copyofdata)[i-1]
}
data[[1]] <- NULL
newcopyofdata = data
for(i in 2:62){
labels(data[[i]]) <- labels(newcopyofdata[[i-1]])
}
labels(data[[1]]) <- NULL
Hope the above code will help someone else.
Turn your UNICODE in SPSS off
Open SPSS without any data open and run the code below in your syntax editor
SET UNICODE OFF.
Open the data set and resave it to remove the Unicode
read.spss('yourdata.sav', to.data.frame=T) works correctly then
I just came came across an SPSS file that I couldn't get open using haven, foreign, or memisc, but readspss::read.por did the trick for me:
download.file("http://www.tcd.ie/Political_Science/elections/IMSgeneral92.zip",
"IMSgeneral92.zip")
unzip("IMSgeneral92.zip", exdir = "IMSgeneral92")
# rio, haven, foreign, memisc pkgs don't work on this file! But readspss does:
if(!require(readspss)) remotes::install_git("https://github.com/JanMarvin/readspss.git")
ims92 <- readspss::read.por("IMSgeneral92/IMS_Nov7 92.por", convert.factors = FALSE)
Nice! Thanks, #JanMarvin!
1)
I've found the program, stat-transfer, useful for importing spss and stata files into R.
It resolves the issue you mention by converting spss to R dataset. Also very useful for subsetting super large datasets into smaller portions consumable by R. Not free, but a very useful tool for working with datasets from different programs -- especially if you don't have access to them.
2)
Memisc package also has an spss function worth trying.