How does lapply extract sub-elements from a list? More specifically, how does lapply extract sub-elements from a list of lists versus a list of vectors? Even more specifically, suppose I have the following:
my_list_of_lists <- list(list(a = 1, b = 2), list(a = 2, c = 3), list(b = 4, c = 5))
my_list_of_lists[[1]][["a"]] # just checking
# [1] 1
# that's what I expected
and apply the following:
lapply(my_list_of_lists, function(x) x[["a"]])
# [[1]]
# [1] 1
#
# [[2]]
# [1] 2
#
# [[3]]
# NULL
So lapply extracts the a element from each of the 3 sublists, returning each in its own list, contained in the length=3 list. At this point, my mental model is the following: lapply applies FUN to each element of my_list, returning FUN(my_list[[i]]) for i in 1:3. Great! So I expect my mental model should work for lists of vectors as well. For example,
my_list_of_vecs <- list(c(a = 1, b = 2), c(a = 2, c = 3), c(b = 4, c = 5))
my_list_of_vecs[[1]][["a"]] # Just checking
# [1] 1
# that's what I expected
and apply the following:
lapply(my_list_of_vecs, function(x) x[["a"]])
# Error in x[["a"]] : subscript out of bounds
# Wait...What!?
What's going on here!? Shouldn't this just work? I found a section in help(lapply) which might be relevant:
For historical reasons, the calls created by lapply are unevaluated,
and code has been written (e.g., bquote) that relies on this. This
means that the recorded call is always of the form FUN(X[[i]], ...),
with i replaced by the current (integer or double) index. This is not
normally a problem, but it can be if FUN uses sys.call or match.call
or if it is a primitive function that makes use of the call. This
means that it is often safer to call primitive functions with a
wrapper, so that e.g. lapply(ll, function(x) is.numeric(x)) is
required to ensure that method dispatch for is.numeric occurs
correctly.
I really don't know how to make sense of this.
I think it's related to the fact that you can use both [[ and [ extraction of single elements from a vector but you can ONLY use [ extraction of ranges of elements. For example,
my_list_of_vecs[[1]][1:2]
# a b
# 1 2
my_list_of_vecs[[1]][[1:2]]
# Error in my_list_of_vecs[[1]][[1:2]] :
# attempt to select more than one element in vectorIndex
So under the hood, lapply must be using function(x) x[["a"]] over a range. Is that right?
Debugging doesn't help me here since these functions rely on .Internal functions.
I'm writing an estimation procedure in R loops through a list of variables names from a data.frame that the user declares. I'm trying to avoid requiring the user to enquote the variables to make their life easier (the goal is to upload this to CRAN, so we care a lot about user experience).
To prevent R from trying to evaluate the variable names, I constructed the function alt() that is like an alternative to c() and list(), but does not evaluate the elements.
My question is how I can elegantly do away with the alt() function, so users can learn one less function. Here is a simple MWE that hopefully illustrates the problem:
## Construct non-evaluating list function
alt <- function(...) {
alt <- as.list(substitute(list(...)))
return(alt[-1])
}
## Construct function that enquotes non-evaluated vectors
## contained in 'alt()'. Perhaps enquoting variable names
## is unavoidable because the data set is stored as a
## data.frame, but at least the user will not have to do it.
restring <- function(vector) {
vector <- deparse(vector)
if (substr(vector, start = 1, stop = 2) == "c(") {
vector <- substr(vector, 3, nchar(vector) - 1)
vector <- strsplit(vector, ", ")[[1]]
}
return(vector)
}
## Example of a function that loops over the list above
## for a given data set. The function simply prints out
## the columns declared in each element of 'alt()'.
test <- function(data, vlist) {
for (i in 1:length(vlist)) {
print(paste0("Data set ", i, ":"))
print(data[, restring(vlist[[i]])])
}
}
## Construct example data
N <- 4
df <- data.frame(x1 = c(1, 2),
x2 = c(3, 4))
## Example of user-declared list of variables to loop over
vlist <- alt(x1, c(x1, x2))
## Output from running this example
> test(df, vlist)
[1] "Data set 1:"
[1] 1 2
[1] "Data set 2:"
x1 x2
1 1 3
2 2 4
The user could also have declared
test(df, alt(x1, c(x1, x2)))
But it would be nice if I did not have to require the user to use a different function to declare these lists of variables. If it could work using standard R functions, like
test(df, list(x1, c(x1, x2)))
that would be great, but I haven't been able to find a way other than performing some ungainly string manipulations using deparse(substitute()), similar to the restring() function (not sure how CRAN feels about that).
Any thoughts on this non-standard evaluation issue would be appreciated. Also, if alt() is easy enough to use that it is not worth removing, that would also be good to know.
A more compact option would be en_exprs from rlang
library(rlang)
alt1 <- function(...) enexprs(...)
test(df, alt1(x1, c(x1, x2)))
#[1] "Data set 1:"
#[1] 1 2
#[1] "Data set 2:"
# x1 x2
#1 1 3
#2 2 4
Or without using any external package, quote the expressions in a list
test(df, list(quote(x1), quote(c(x1, x2))))
#[1] "Data set 1:"
#[1] 1 2
#[1] "Data set 2:"
# x1 x2
#1 1 3
#2 2 4
I am trying to write a program in R to sum n random number. However, when I try it for some numbers it won't work.
For example,
## rm(list=ls())
random.sum <- function(n) {
x[1:n] <- ceiling(10*runif(n))
cat("x:", x[1:n], "\n")
return(sum(x))
}
x <- rep(100, 10)
show(random.sum(10))
show(random.sum(5))
when I try to sum 10 random numbers it will give me the correct sum which is
show(random.sum(10))
x: 1 3 10 1 3 2 8 6 7 9
[1] 50
However, when I try it for the next one which is 5, it won't work,
show(random.sum(5))
x: 7 5 6 2 9
[1] 529
I am not sure what I am doing wrong
The easiest way would be something like this (updated as per #Axeman's comment):
sum(sample(1:10, 10, replace = TRUE))
where the first "10" is your n and min and max define the value range for runif.
Also keep x local to the function:
random.sum <- function(n) {
x <- sample(1:10, 10, replace = TRUE)
cat("x:", x, "\n")
return(sum(x))
}
The reason for your error is the variable scoping rules of R. Your variable x in global scope is copied upon modification, but maintains the dimension of the global declaration. If you sum over only the first n elements with sum(x[1:n]) you will get the correct answer.
Now, that begs the question, are you trying to modify the global object x inside the function? If that is your intent, the superassignment operator <<- can be used. See the R intro section 10.5 "Assignments within functions" for details.
Let's say I want to multiply each even element of a vector by 2 and each odd element of a vector by 3. Here is some code that can do this:
v <- 0:10
idx <- v %% 2 == 0
v[idx] <- v[idx] * 2
v[!idx] <- v[!idx] * 3
This would get difficult if I had more than two cases. It seems like the apply family of functions never deals with vectors so I don't know a better way to do this problem. Maybe using an apply function would work if I made transformations on the data, but it seems like that shouldn't be something that I would need to do to solve this simple problem.
Any ideas?
Edit: Sorry for the confusion. I am not specifically interested in the "%%" operator. I wanted to put some concrete code in my question, but, based on the responses to the question, was too specific. I wanted to figure out how to apply some arbitrary function to each member of the list. This was not possible with apply() and I thought sapply() only worked with lists.
You can do:
v <- v * c(2, 3)[v %% 2 + 1]
It is generalizable to any v %% n, e.g.:
v <- v * c(2, 3, 9, 1)[v %% 4 + 1]
Also it does not require that length(v) be a multiple of n.
You can use vector multiplication to do what you want:
tmp <- 1:10
tmp * rep(c(3,2), length(tmp)/2)
This is easy to extend to three or more cases:
tmp * rep(c(3,2,4), length(tmp)/3)
Easiest would be:
v*c(2,3) # as suggested by flodel in a comment.
The term to search for in the documentation is "argument recycling" ... a feature of the R language. Only works for dyadic infix functions (see ?Ops). For non-dyadcic vectorized functions that would not error out with some of the arguments and where you couldn't depend on the structure of "v" to be quite so regular, you could use ifelse:
ifelse( (1:length(v)) %% 2 == 0, func1(v), func2(v) )
This constructs two vectors and then chooses elements in the first or second based on the truth value of hte first argument. If you were trying to answer the question in the title of your posting then you should look at:
?sapply
Here is an answer allowing any set of arbitrary functions to be applied to defined groups within a vector.
# source data
test <- 1:9
# categorisations of source data
cattest <- rep(1:3,each=3)
#[1] 1 1 1 2 2 2 3 3 3
Make the function to differentially apply functions:
categ <- function(x,catg) {
mapply(
function(a,b) {
switch(b,
a * 2,
a * 3,
a / 2
)
},
x,
catg
)
}
# where cattest = 1, multiply by 2
# where cattest = 2, multiply by 3
# where cattest = 3, divide by 2
The result:
categ(test,cattest)
#[1] 2.0 4.0 6.0 12.0 15.0 18.0 3.5 4.0 4.5
Still trying to get into the R logic... what is the "best" way to unpack (on LHS) the results from a function returning multiple values?
I can't do this apparently:
R> functionReturningTwoValues <- function() { return(c(1, 2)) }
R> functionReturningTwoValues()
[1] 1 2
R> a, b <- functionReturningTwoValues()
Error: unexpected ',' in "a,"
R> c(a, b) <- functionReturningTwoValues()
Error in c(a, b) <- functionReturningTwoValues() : object 'a' not found
must I really do the following?
R> r <- functionReturningTwoValues()
R> a <- r[1]; b <- r[2]
or would the R programmer write something more like this:
R> functionReturningTwoValues <- function() {return(list(first=1, second=2))}
R> r <- functionReturningTwoValues()
R> r$first
[1] 1
R> r$second
[1] 2
--- edited to answer Shane's questions ---
I don't really need giving names to the result value parts. I am applying one aggregate function to the first component and an other to the second component (min and max. if it was the same function for both components I would not need splitting them).
(1) list[...]<- I had posted this over a decade ago on r-help. Since then it has been added to the gsubfn package. It does not require a special operator but does require that the left hand side be written using list[...] like this:
library(gsubfn) # need 0.7-0 or later
list[a, b] <- functionReturningTwoValues()
If you only need the first or second component these all work too:
list[a] <- functionReturningTwoValues()
list[a, ] <- functionReturningTwoValues()
list[, b] <- functionReturningTwoValues()
(Of course, if you only needed one value then functionReturningTwoValues()[[1]] or functionReturningTwoValues()[[2]] would be sufficient.)
See the cited r-help thread for more examples.
(2) with If the intent is merely to combine the multiple values subsequently and the return values are named then a simple alternative is to use with :
myfun <- function() list(a = 1, b = 2)
list[a, b] <- myfun()
a + b
# same
with(myfun(), a + b)
(3) attach Another alternative is attach:
attach(myfun())
a + b
ADDED: with and attach
I somehow stumbled on this clever hack on the internet ... I'm not sure if it's nasty or beautiful, but it lets you create a "magical" operator that allows you to unpack multiple return values into their own variable. The := function is defined here, and included below for posterity:
':=' <- function(lhs, rhs) {
frame <- parent.frame()
lhs <- as.list(substitute(lhs))
if (length(lhs) > 1)
lhs <- lhs[-1]
if (length(lhs) == 1) {
do.call(`=`, list(lhs[[1]], rhs), envir=frame)
return(invisible(NULL))
}
if (is.function(rhs) || is(rhs, 'formula'))
rhs <- list(rhs)
if (length(lhs) > length(rhs))
rhs <- c(rhs, rep(list(NULL), length(lhs) - length(rhs)))
for (i in 1:length(lhs))
do.call(`=`, list(lhs[[i]], rhs[[i]]), envir=frame)
return(invisible(NULL))
}
With that in hand, you can do what you're after:
functionReturningTwoValues <- function() {
return(list(1, matrix(0, 2, 2)))
}
c(a, b) := functionReturningTwoValues()
a
#[1] 1
b
# [,1] [,2]
# [1,] 0 0
# [2,] 0 0
I don't know how I feel about that. Perhaps you might find it helpful in your interactive workspace. Using it to build (re-)usable libraries (for mass consumption) might not be the best idea, but I guess that's up to you.
... you know what they say about responsibility and power ...
Usually I wrap the output into a list, which is very flexible (you can have any combination of numbers, strings, vectors, matrices, arrays, lists, objects int he output)
so like:
func2<-function(input) {
a<-input+1
b<-input+2
output<-list(a,b)
return(output)
}
output<-func2(5)
for (i in output) {
print(i)
}
[1] 6
[1] 7
I put together an R package zeallot to tackle this problem. zeallot includes a multiple assignment or unpacking assignment operator, %<-%. The LHS of the operator is any number of variables to assign, built using calls to c(). The RHS of the operator is a vector, list, data frame, date object, or any custom object with an implemented destructure method (see ?zeallot::destructure).
Here are a handful of examples based on the original post,
library(zeallot)
functionReturningTwoValues <- function() {
return(c(1, 2))
}
c(a, b) %<-% functionReturningTwoValues()
a # 1
b # 2
functionReturningListOfValues <- function() {
return(list(1, 2, 3))
}
c(d, e, f) %<-% functionReturningListOfValues()
d # 1
e # 2
f # 3
functionReturningNestedList <- function() {
return(list(1, list(2, 3)))
}
c(f, c(g, h)) %<-% functionReturningNestedList()
f # 1
g # 2
h # 3
functionReturningTooManyValues <- function() {
return(as.list(1:20))
}
c(i, j, ...rest) %<-% functionReturningTooManyValues()
i # 1
j # 2
rest # list(3, 4, 5, ..)
Check out the package vignette for more information and examples.
functionReturningTwoValues <- function() {
results <- list()
results$first <- 1
results$second <-2
return(results)
}
a <- functionReturningTwoValues()
I think this works.
There's no right answer to this question. I really depends on what you're doing with the data. In the simple example above, I would strongly suggest:
Keep things as simple as possible.
Wherever possible, it's a best practice to keep your functions vectorized. That provides the greatest amount of flexibility and speed in the long run.
Is it important that the values 1 and 2 above have names? In other words, why is it important in this example that 1 and 2 be named a and b, rather than just r[1] and r[2]? One important thing to understand in this context is that a and b are also both vectors of length 1. So you're not really changing anything in the process of making that assignment, other than having 2 new vectors that don't need subscripts to be referenced:
> r <- c(1,2)
> a <- r[1]
> b <- r[2]
> class(r)
[1] "numeric"
> class(a)
[1] "numeric"
> a
[1] 1
> a[1]
[1] 1
You can also assign the names to the original vector if you would rather reference the letter than the index:
> names(r) <- c("a","b")
> names(r)
[1] "a" "b"
> r["a"]
a
1
[Edit] Given that you will be applying min and max to each vector separately, I would suggest either using a matrix (if a and b will be the same length and the same data type) or data frame (if a and b will be the same length but can be different data types) or else use a list like in your last example (if they can be of differing lengths and data types).
> r <- data.frame(a=1:4, b=5:8)
> r
a b
1 1 5
2 2 6
3 3 7
4 4 8
> min(r$a)
[1] 1
> max(r$b)
[1] 8
If you want to return the output of your function to the Global Environment, you can use list2env, like in this example:
myfun <- function(x) { a <- 1:x
b <- 5:x
df <- data.frame(a=a, b=b)
newList <- list("my_obj1" = a, "my_obj2" = b, "myDF"=df)
list2env(newList ,.GlobalEnv)
}
myfun(3)
This function will create three objects in your Global Environment:
> my_obj1
[1] 1 2 3
> my_obj2
[1] 5 4 3
> myDF
a b
1 1 5
2 2 4
3 3 3
Lists seem perfect for this purpose. For example within the function you would have
x = desired_return_value_1 # (vector, matrix, etc)
y = desired_return_value_2 # (vector, matrix, etc)
returnlist = list(x,y...)
} # end of function
main program
x = returnlist[[1]]
y = returnlist[[2]]
Yes to your second and third questions -- that's what you need to do as you cannot have multiple 'lvalues' on the left of an assignment.
How about using assign?
functionReturningTwoValues <- function(a, b) {
assign(a, 1, pos=1)
assign(b, 2, pos=1)
}
You can pass the names of the variable you want to be passed by reference.
> functionReturningTwoValues('a', 'b')
> a
[1] 1
> b
[1] 2
If you need to access the existing values, the converse of assign is get.
[A]
If each of foo and bar is a single number, then there's nothing wrong with c(foo,bar); and you can also name the components: c(Foo=foo,Bar=bar). So you could access the components of the result 'res' as res[1], res[2]; or, in the named case, as res["Foo"], res["BAR"].
[B]
If foo and bar are vectors of the same type and length, then again there's nothing wrong with returning cbind(foo,bar) or rbind(foo,bar); likewise nameable. In the 'cbind' case, you would access foo and bar as res[,1], res[,2] or as res[,"Foo"], res[,"Bar"]. You might also prefer to return a dataframe rather than a matrix:
data.frame(Foo=foo,Bar=bar)
and access them as res$Foo, res$Bar. This would also work well if foo and bar were of the same length but not of the same type (e.g. foo is a vector of numbers, bar a vector of character strings).
[C]
If foo and bar are sufficiently different not to combine conveniently as above, then you shuld definitely return a list.
For example, your function might fit a linear model and
also calculate predicted values, so you could have
LM<-lm(....) ; foo<-summary(LM); bar<-LM$fit
and then you would return list(Foo=foo,Bar=bar) and then access the summary as res$Foo, the predicted values as res$Bar
source: http://r.789695.n4.nabble.com/How-to-return-multiple-values-in-a-function-td858528.html
Year 2021 and this is something I frequently use.
tidyverse package has a function called lst that assigns name to the list elements when creating the list.
Post which I use list2env() to assign variable or use the list directly
library(tidyverse)
fun <- function(){
a<-1
b<-2
lst(a,b)
}
list2env(fun(), envir=.GlobalEnv)#unpacks list key-values to variable-values into the current environment
This is only for the sake of completeness and not because I personally prefer it. You can pipe %>% the result, evaluate it with curly braces {} and write variables to the parent environment using double-arrow <<-.
library(tidyverse)
functionReturningTwoValues() %>% {a <<- .[1]; b <<- .[2]}
UPDATE:
Your can also use the multiple assignment operator from the zeallot package:: %<-%
c(a, b) %<-% list(0, 1)
I will post a function that returns multiple objects by way of vectors:
Median <- function(X){
X_Sort <- sort(X)
if (length(X)%%2==0){
Median <- (X_Sort[(length(X)/2)]+X_Sort[(length(X)/2)+1])/2
} else{
Median <- X_Sort[(length(X)+1)/2]
}
return(Median)
}
That was a function I created to calculate the median. I know that there's an inbuilt function in R called median() but nonetheless I programmed it to build other function to calculate the quartiles of a numeric data-set by using the Median() function I just programmed. The Median() function works like this:
If a numeric vector X has an even number of elements (i.e., length(X)%%2==0), the median is calculated by averaging the elements sort(X)[length(X)/2] and sort(X)[(length(X)/2+1)].
If Xdoesn't have an even number of elements, the median is sort(X)[(length(X)+1)/2].
On to the QuartilesFunction():
QuartilesFunction <- function(X){
X_Sort <- sort(X) # Data is sorted in ascending order
if (length(X)%%2==0){
# Data number is even
HalfDN <- X_Sort[1:(length(X)/2)]
HalfUP <- X_Sort[((length(X)/2)+1):length(X)]
QL <- Median(HalfDN)
QU <- Median(HalfUP)
QL1 <- QL
QL2 <- QL
QU1 <- QU
QU2 <- QU
QL3 <- QL
QU3 <- QU
Quartiles <- c(QL1,QU1,QL2,QU2,QL3,QU3)
names(Quartiles) = c("QL (1)", "QU (1)", "QL (2)", "QU (2)","QL (3)", "QU (3)")
} else{ # Data number is odd
# Including the median
Half1DN <- X_Sort[1:((length(X)+1)/2)]
Half1UP <- X_Sort[(((length(X)+1)/2)):length(X)]
QL1 <- Median(Half1DN)
QU1 <- Median(Half1UP)
# Not including the median
Half2DN <- X_Sort[1:(((length(X)+1)/2)-1)]
Half2UP <- X_Sort[(((length(X)+1)/2)+1):length(X)]
QL2 <- Median(Half2DN)
QU2 <- Median(Half2UP)
# Methods (1) and (2) averaged
QL3 <- (QL1+QL2)/2
QU3 <- (QU1+QU2)/2
Quartiles <- c(QL1,QU1,QL2,QU2,QL3,QU3)
names(Quartiles) = c("QL (1)", "QU (1)", "QL (2)", "QU (2)","QL (3)", "QU (3)")
}
return(Quartiles)
}
This function returns the quartiles of a numeric vector by using three methods:
Discarding the median for the calculation of the quartiles when the number of elements of the numeric vector Xis odd.
Keeping the median for the calculation of the quartiles when the number of elements of the numeric vector Xis odd.
Averaging the results obtained by using methods 1 and 2.
When the number of elements in the numeric vector X is even, the three methods coincide.
The result of the QuartilesFunction() is a vector that depicts the first and third quartiles calculated by using the three methods outlined.
With R 3.6.1, I can do the following
fr2v <- function() { c(5,3) }
a_b <- fr2v()
(a_b[[1]]) # prints "5"
(a_b[[2]]) # prints "3"
To obtain multiple outputs from a function and keep them in the desired format you can save the outputs to your hard disk (in the working directory) from within the function and then load them from outside the function:
myfun <- function(x) {
df1 <- ...
df2 <- ...
save(df1, file = "myfile1")
save(df2, file = "myfile2")
}
load("myfile1")
load("myfile2")