Creating dynamic tasks in airflow (in composer) based on bigquery response - airflow

I am trying to create a airflow DAG which generates task depending on the response from server.
Here is my approach :
getlist of tables from bigquery -> loop through the list and create tasks
This is my latest code and I have tried all possible code found in stack overflow. Nothing seems to work. What am I doing wrong?
with models.DAG(dag_id="xt", default_args=default_args, schedule_interval="0 1 * * *", catchup=True) as dag:
tables = get_tables_from_bq()
bridge = DummyOperator(
task_id='bridge',
dag=dag
)
for t in tables:
sql = ("SELECT * FROM `{project}.{dataset}.{table}` LIMIT 5;".format(
project=project, dataset=dataset, table=t))
materialize_t = BigQueryOperator(bql=sql,
destination_dataset_table=dataset+'.' + table_prefix + t,
task_id = 'x_' + t,
bigquery_conn_id = 'bigquery_default',
use_legacy_sql = False,
write_disposition = 'WRITE_APPEND',
create_disposition = 'CREATE_IF_NEEDED',
query_params = {},
allow_large_results = True,
dag = dag)
bridge >> materialize_t
Even the run option is not showing with this code. I tried multiple codes and finally reached here but still no luck. Any help???

I don't know if it is a typo in the copy and paste of the DAG but tables = get_tables_from_bq() should be before with models.DAG(...) Also, bridge >> materialize_t seems to miss indentation and therefore be outside the with models.DAG(...) scope. On a side note, you do not need the bridge task.

Related

Airflow: How to template or pass the output of a Python Callable function as arguments to other tasks?

I'm new to Airflow and working on making my ETL pipeline more re-usable. Originally, I had a few lines of top-level code that would determine the job_start based on a few user input parameters, but I found through much searching that this would trigger at every heartbeat which was causing some unwanted behavior in truncating the table.
Now I am investigating wrapping this top level code into a Python Callable so it is secure from the refresh, but I am unsure of the best way to pass the output to my other tasks. The gist of my code is below:
def get_job_dts():
#Do something to determine the appropriate job_start_dt and job_end_dt
#Package up as a list as inputs to other PythonCallables using op_args
job_params = [job_start_dt, job_end_dt]
return job_params
t0 = PythonOperator(
task_id = 'get_dates'
python_callable = get_job_dts
dag=dag
)
t1 = PythonOperator(
task_id = 'task_1'
,python_callable=first_task
,op_args=job_params #<-- How do I send job_params to op_args??
,dag=dag
)
t0 >> t1
I've searched around and hear mentions of jinja templates, variables, or xcoms, but I'm fuzzy on how to implement it. Does anyone have an example I could look at where I can save that list into a variable that can be used by my other tasks?
The best way to do this is to push your value into XCom in get_job_dts, and pull the value back from Xcom in first_task.
def get_job_dts(**kwargs):
#Do something to determine the appropriate job_start_dt and job_end_dt
#Package up as a list as inputs to other PythonCallables using op_args
job_params = [job_start_dt, job_end_dt]
# Push job_params into XCom
kwargs['ti'].xcom_push(key='job_params', value=job_params)
return job_params
def first_task(ti, **kwargs):
# Pull job_params into XCom
job_params = ti.xcom_pull(key='job_params')
# And then do the rest
t0 = PythonOperator(
task_id = 'get_dates'
python_callable = get_job_dts
dag=dag
)
t1 = PythonOperator(
task_id = 'task_1',
provide_context=True,
python_callable=first_task,
op_args=job_params,
dag=dag
)
t0 >> t1
As RyantheCoder mentioned, XCOM is the way to go. My implementation is geared towards the tutorial where I implicitly perform a push automatically from a return value in a PythonCallable.
I am still confused by the difference in passing in (ti, **kwargs) vs. using (**context) to the function that is pulling. Also, where does "ti" come from?
Any clarifications appreciated.
def get_job_dts(**kwargs):
#Do something to determine the appropriate job_start_dt and job_end_dt
#Package up as a list as inputs to other PythonCallables using op_args
job_params = [job_start_dt, job_end_dt]
# Automatically pushes to XCOM, refer to: Airflow XCOM tutorial: https://airflow.apache.org/concepts.html?highlight=xcom#xcoms
return job_params
def first_task(**context):
# Change task_ids to whatever task pushed the XCOM vars you need, rest are standard notation
job_params = job_params = context['task_instance'].xcom_pull(task_ids='get_dates')
# And then do the rest
t0 = PythonOperator(
task_id = 'get_dates'
python_callable = get_job_dts
dag=dag
)
t1 = PythonOperator(
task_id = 'task_1',
provide_context=True,
python_callable=first_task,
dag=dag
)
t0 >> t1
As you mentioned changing task start time and end time dynamically, I supposed what you need is to create dynamic dag rather than just pass the args to dag. Especially, changing start time and interval without changing dag name will cause unexpected result, it will highly suggested not to do so. So you can refer to this link to see if this strategy can help.

Airflow - run sql procedures (SQL Server)

I am triggering the task manually from the UI and it shows the task as success but nothing happens in the database. Basically I am calling a simple procedure (with no params) that copy values from the staging table to the main and delete the contents in the staging table.
from airflow import DAG
from airflow.operators.mssql_operator import MsSqlOperator
from datetime import datetime
dag = DAG("sql_proc_0", "Testing running of SQL procedures",
schedule_interval = None, catchup = False,
start_date = datetime(2019, 1, 1))
# [dbo].[LoadData] is the name of the procedure
sql_command = """
EXECUTE [dbo].[LoadData]
"""
task = MsSqlOperator(task_id = 'run_test_proc', mssql_conn_id = 'mssql_azure_test',
sql = sql_command, dag = dag, database = 'TestDB')
Basically auto_commit=False is set by default. When it is set to True, it works (it took me 2 hours to figure this out and after posting it in SO!)
task = MsSqlOperator(task_id='run_test_proc',mssql_conn_id='mssql_azure_test',
sql=sql_command,dag=dag,
database='TestDB',
auto_commit=True)

How to create operators from list in Airflow?

I need to copy tables from MySQL to BigQuery daily.
My workflow is:
MySqlToGoogleCloudStorageOperator
GoogleCloudStorageToBigQueryOperator
This works for a single process (say Categories).
Example:
BQ_TABLE_NAME_CATEGORIES = Variable.get("tables_categories")
...
import_categories_op = MySqlToGoogleCloudStorageOperator(
task_id='import_categories',
mysql_conn_id='c_mysql',
google_cloud_storage_conn_id='gcp_a',
approx_max_file_size_bytes = 100000000, #100MB per file
sql = 'import_categories.sql',
bucket=GCS_BUCKET_ID,
filename=file_name_categories,
dag=dag)
gcs_to_bigquery_categories_op = GoogleCloudStorageToBigQueryOperator(
dag=dag,
task_id='load_categories_to_BigQuery',
bucket=GCS_BUCKET_ID,
destination_project_dataset_table=table_name_template_categories,
source_format='NEWLINE_DELIMITED_JSON',
source_objects=[uri_template_categories_read_from],
schema_fields=Categories(),
src_fmt_configs={'ignoreUnknownValues': True},
create_disposition='CREATE_IF_NEEDED',
write_disposition='WRITE_TRUNCATE',
skip_leading_rows = 1,
google_cloud_storage_conn_id=CONNECTION_ID,
bigquery_conn_id=CONNECTION_ID)
import_categories_op >> gcs_to_bigquery_categories_op
Now, Say I want to scale it up and have it work with 20 more tables.. Is there a way to do it without writing the same code 20 times?
I'm looking for a way to do something like:
BQ_TABLE_NAME_CATEGORIES = Variable.get("tables_categories")
BQ_TABLE_NAME_PRODUCTS = Variable.get("tables_products")
....
BQ_TABLE_NAME_ORDERS = Variable.get("tables_orders")
list = [BQ_TABLE_NAME_CATEGORIES,BQ_TABLE_NAME_PRODUCTS,BQ_TABLE_NAME_PRODUCTS ]
for item in list:
GENERATE THE OPERATORS PER TABLE
so that will create import_categories_op , import_products_op , import_orders_op etc..
Yes, in fact it's exactly what you described. Simply instantiate your operators in your for loop. Make sure your task ids are unique and you're set:
BQ_TABLE_NAME_CATEGORIES = Variable.get("tables_categories")
BQ_TABLE_NAME_PRODUCTS = Variable.get("tables_products")
list = [BQ_TABLE_NAME_CATEGORIES, BQ_TABLE_NAME_PRODUCTS]
for table in list:
import_op = MySqlToGoogleCloudStorageOperator(
task_id=`import_${table}`,
mysql_conn_id='c_mysql',
google_cloud_storage_conn_id='gcp_a',
approx_max_file_size_bytes = 100000000, #100MB per file
sql = `import_${table}.sql`,
bucket=GCS_BUCKET_ID,
filename=file_name,
dag=dag)
gcs_to_bigquery_op = GoogleCloudStorageToBigQueryOperator(
dag=dag,
task_id=`load_${table}_to_BigQuery`,
bucket=GCS_BUCKET_ID,
destination_project_dataset_table=table_name_template,
source_format='NEWLINE_DELIMITED_JSON',
source_objects=[uri_template_read_from],
schema_fields=Categories(),
src_fmt_configs={'ignoreUnknownValues': True},
create_disposition='CREATE_IF_NEEDED',
write_disposition='WRITE_TRUNCATE',
skip_leading_rows = 1,
google_cloud_storage_conn_id=CONNECTION_ID,
bigquery_conn_id=CONNECTION_ID)
import_op >> gcs_to_bigquery_op
You can simplify this if you store all tables in a single variable:
// bq_tables = "table_products,table_orders"
BQ_TABLES = Variable.get("bq_tables").split(',')
for table in BQ_TABLES:
...
Edit: Task references vs IDs
Luis asked about how only the task IDs need to change (and not the references to the tasks). Actually, you don't even need to refer to your tasks for anything but adding some details to them after creation (like upstream and downstream dependencies), because they're stored in the DAG object on creation, and that's all the DAG parser is looking for. Once the DAG parser finds a DAG object in the global scope, it uses it. It doesn't know what names the tasks were referred to as in the global scope, it only knows that those tasks are listed on the DAG object, and that they list each other upstream or downstream.
I would have made this a comment on this answer, but I wanted to show the following code to explain what I mean a bit more obviously (in which I use with DAG to avoid assigning each task to the dag, and the bitwise-shift operator upstream/downstream assignment to avoid needing to even refer to the tasks by a reference, and python3's formatted f-strings):
// bq_tables = "table_products,table_orders"
BQ_TABLES = Variable.get("bq_tables").split(',')
with DAG('…dag_id…', …) as dag:
for table in BQ_TABLES:
MySqlToGoogleCloudStorageOperator(
task_id=f'import_{table}',
sql=f'import_{table}.sql',
… # all params except notably there's no `dag=dag` in here.
) >> GoogleCloudStorageToBigQueryOperator( # Yup, …
task_id=f'load_{table}_to_BigQuery',
… # again all but `dag=dag` in here.
)
Sure, it could have been t1=…; t2=…; t1>>t2; … but why name references?

How to trigger operator inside Python function using Airflow?

I have the following code:
def chunck_import(**kwargs):
...
for i in range(1, num_pages + 1):
start = lower + chunks * i
end = start + chunks
if i>1:
start = start + 1
logging.info(start, end)
if end > max_current:
end = max_current
where = 'where orders_id between {0} and {1}'.format(start,end)
logging.info(where)
import_orders_products_op = MySqlToGoogleCloudStorageOperator(
task_id='import_orders_and_upload_to_storage_orders_products_{}'.format(i),
mysql_conn_id='mysql_con',
google_cloud_storage_conn_id='gcp_con',
provide_context=True,
approx_max_file_size_bytes = 100000000, #100MB per file
sql = 'import_orders.sql',
params={'WHERE': where},
bucket=GCS_BUCKET_ID,
filename=file_name_orders_products,
dag=dag)
start_task_op = DummyOperator(task_id='start_task', dag=dag)
chunck_import_op = PythonOperator(
task_id='chunck_import',
provide_context=True,
python_callable=chunck_import,
dag=dag)
start_task_op >> chunck_import_op
This code uses PythonOperator to calculate how many runs I need from the MySqlToGoogleCloudStorageOperator and create the WHERE cluster of the SQL then it needs to execute it.
The problem is that the MySqlToGoogleCloudStorageOperator isn't being executed.
I can't actually do
chunck_import_op >> import_orders_products_op
How can I make the MySqlToGoogleCloudStorageOperator be executed inside the PythonOperator?
I think at the end of your for loop, you'll want to call import_orders_products_op.execute(context=kwargs) possibly preceded by import_orders_products_op.pre_execute(context=kwargs). This is a bit complicated in that it skips the render_templates() call of the task_instance, and actually if you instead made a task_instance to put each of these tasks in, you could call run or _raw_run_task instead but these both require information from the dagrun (which you can get in the python callable's context like kwargs['dag_run'])
Looking at what you've passed to the operators it looks like as is you'll need the templating step to load the import_orders.sql file and fill in the WHERE parameter. Alternatively it's okay within the callable itself to load the file into a string, replace the {{ params.WHERE }} part (and any others) manually without Jinja2 (or you could spend time to figure out the right jinja2 calls), and then set the import_orders_products_op.sql=the_string_you_loaded before calling import_orders_products_op.pre_execute(context=kwargs) and import_orders_products_op.execute(context=kwargs).

Airflow: How to push xcom value from BigQueryOperator?

This is my operator:
bigquery_check_op = BigQueryOperator(
task_id='bigquery_check',
bql=SQL_QUERY,
use_legacy_sql = False,
bigquery_conn_id=CONNECTION_ID,
trigger_rule='all_success',
xcom_push=True,
dag=dag
)
When I check the Render page in the UI. Nothing appears there.
When I run the SQL in the console it return value 1400 which is correct.
Why the operator doesn't push the XCOM?
I can't use BigQueryValueCheckOperator. This operator is designed to FAIL against a check of value. I don't want nothing to fail. I simply want to branch the code based on the return value from the query.
Here is how you might be able to accomplish this with the BigQueryHook and the BranchPythonOperator:
from airflow.operators.python_operator import BranchPythonOperator
from airflow.contrib.hooks import BigQueryHook
def big_query_check(**context):
sql = context['templates_dict']['sql']
bq = BigQueryHook(bigquery_conn_id='default_gcp_connection_id',
use_legacy_sql=False)
conn = bq.get_conn()
cursor = conn.cursor()
results = cursor.execute(sql)
# Do something with results, return task_id to branch to
if results == 0:
return "task_a"
else:
return "task_b"
sql = "SELECT COUNT(*) FROM sales"
branching = BranchPythonOperator(
task_id='branching',
python_callable=big_query_check,
provide_context= True,
templates_dict = {"sql": sql}
dag=dag,
)
First we create a python callable that we can use to execute the query and select which task_id to branch too. Second, we create the BranchPythonOperator.
The simplest answer is because xcom_push is not one of the params in BigQueryOperator nor BaseOperator nor LoggingMixin.
The BigQueryGetDataOperator does return (and thus push) some data but it works by table and column name. You could chain this behavior by making the query you run output to a uniquely named table (maybe use {{ds_nodash}} in the name), and then use the table as a source for this operator, and then you can branch with the BranchPythonOperator.
You might instead try to use the BigQueryHook's get_conn().cursor() to run the query and work with some data inside the BranchPythonOperator.
Elsewhere we chatted and came up with something along the lines of this for putting in the callable of a BranchPythonOperator:
cursor = BigQueryHook(bigquery_conn_id='connection_name').get_conn().cursor()
# one of these two:
cursor.execute(SQL_QUERY) # if non-legacy
cursor.job_id = cursor.run_query(bql=SQL_QUERY, use_legacy_sql=False) # if legacy
result=cursor.fetchone()
return "task_one" if result[0] is 1400 else "task_two" # depends on results format

Resources