Hierarchical clustering with specific number of data in each cluster - r

I'm clustering a set of words using "Hierarchical Clustering". I want each cluster to contain a certain number of words, for example 2 words, or 3 words.
I'm trying to modify existing code for this clustering.
I just put the value of max(d) to Inf as well
Lm[min(d),] <- sl
Lm[,min(d)] <- sl
if (length(cluster)>2){#if it's already clustered with more than 2 points
#then dont't cluster them again by setting values to Inf
Lm[min(d), min(d)] <- Inf
Lm[max(d), max(d)] <- Inf
Lm[max(d),] <- Inf
Lm[,max(d)] <- Inf
Lm[min(d),] <- Inf
Lm[,min(d)] <- Inf
}
However, it doesn't give me the expected results, I was wondering if it's correct approach? How can I do this type of clustering with constraint in r ?
example of results that I got
row V1 V2
166 -194 -38
167 166 -1
……..
240 239 239
241 240 240
242 241 241
243 242 242
244 243 243

This will be tough to optimize, or it can produce arbitrarily bad results. Because your size constraint goes against the principles of clustering.
Consider the one-dimensional data set -100, -1, 1, 100. Assuming you want to limit the cluster size to 2 elements. Hierarchical clustering will first merge -1 and +1 because they are closest. Now they have reached maximum size, so the only option is now to cluster -100 and +100, the worst possible result - this cluster is as big as the entire data set.

Just to give you an example of what I meant with partitional clustering:
library(cluster)
data("ruspini")
desired_cluster_size <- 3L
corresponding_num_clusters <- round(nrow(ruspini) / desired_cluster_size)
km <- kmeans(ruspini, corresponding_num_clusters)
table(km$cluster)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
3 3 2 4 2 2 2 1 3 3 2 3 2 3 3 2 6 3 2 1 3 6 2 8 4
This definitely can't guarantee how many observations you'll have in each group,
and it's not deterministic,
but it at least gives you an approximation.
In the tabulated results you can see that many clusters (1 through 25) ended up with 2 or 3 elements.

Related

How to sort a data frame by column?

I want sort a data frame by datas of a column (the first column, called Initial). My data frame it's:
I called my dataframe: t2
Initial Final Changes
1 1 200
1 3 500
3 1 250
24 25 175
21 25 180
1 5 265
3 3 147
I am trying with code:
t2 <- t2[order(t2$Initial, t2$Final, decreasing=False),]
But, the result is of the type:
Initial Final Changes
3 1 250
3 3 147
21 25 180
24 25 175
1 5 265
1 1 200
1 3 500
And when I try with code:
t2 <- t2[order(t2$Initial, t2$Final, decreasing=TRUE),]
The result is:
Initial Final Changes
1 5 265
1 1 200
1 3 500
24 25 175
21 25 180
3 1 250
3 3 147
I don't understand what happen.
Can you help me, please?
It is possible that the column types are factors, in that case, convert it to numeric and should work
library(dplyr)
t2 %>%
arrange_at(1:2, ~ desc(as.numeric(as.character(.))))
Or with base R
t2[1:2] <- lapply(t2[1:2], function(x) as.numeric(as.character(x)))
t2[do.call(order, c(t2[1:2], decreasing = TRUE)), ]
Or the OP's code should work as well
Noticed that decreasing = False in the first option OP tried (may be a typo). In R, it is upper case, FALSE
t2[order(t2$Initial, t2$Final, decreasing=FALSE),]

How to resample data by clusters (block sampling) with replacement in R using Sampling package

This is my dummy data:
income <- as.data.frame.vector <- sample(1000:10000, 1000, replace=TRUE)
individuals <- as.data.frame.vector <- sample(1:50,1000,replace=TRUE)
datatest <- as.data.frame (cbind (income, individuals))
I know I can sample by individual rows with this code:
sample <- datatest[sample(nrow(datatest), replace=TRUE),]
Now, I want to extract random samples with replacement and equal probabilities of the dataset but sampling complete blocks of observations with the same individual code.
Note that there are 50 individuals, but 1000 observations. Some observations belong to the same individual, so I want to sample by individuals (clusters, in this case), not observations. I don't mind if the extracted samples differ slightly in the number of observations. How can I do that?
I have tried:
library(sampling)
samplecluster <- cluster (datatest, clustername=c("individuals"), size=50,
method="srswr")
But the outcome is not the sampled data. Am I missing something?
Well, it seems I was indeed missing something. After the cluster command you need to apply the getdata command (all from the Sampling Package). This way I do get the sample as I wanted, plus some additional columns.
samplecluster <- cluster (datatest, clustername=c("personid"), size=50, method="srswr")
Gives you:
head(samplecluster)
individuals ID_unit Replicates Prob
1 1 259 2 0.63583
2 1 178 2 0.63583
3 1 110 2 0.63583
4 1 153 2 0.63583
5 1 941 2 0.63583
6 1 667 2 0.63583
Then using getdata, I also get the original data on income sampled by whole clusters:
datasample <- getdata (datatest, samplecluster)
head(datasample)
income individuals ID_unit Replicates Prob
1 8567 1 259 2 0.63583
2 2701 1 178 2 0.63583
3 4998 1 110 2 0.63583
4 3556 1 153 2 0.63583
5 2893 1 941 2 0.63583
6 7581 1 667 2 0.63583
I am not sure if I am missing something. If you just want some of your individuals, you can create a smaller sample of them:
ind.sample <- sample(1:50, size = 10)
print(ind.sample)
# [1] 17 43 38 39 28 23 35 47 9 13
my.sample <- datatest[datatest$individuals %in% ind.sample) ,]
head(my.sample)
# income individuals
#21 9072 17
#97 5928 35
#122 9130 43
#252 4388 43
#285 8083 28
#287 1065 35
I guess a more generic approach would be to generate random indexes;
ind.unique <- unique(individuals)
ind.sample.index <- sample(1:length(ind.unique), size = 10)
ind.sample <- ind.unique[ind.sample.index]
print(ind.sample[order(ind.sample)])
my.sample <- datatest[datatest$individuals %in% ind.sample, ]
ind.counts <- aggregate(income ~ individuals, my.sample, FUN = length)
print(ind.counts)
I think its important to note that the dataset still needs to be expanded to include all the replicates.
sw<-data.frame(datasample[rep(seq_len(dim(datasample)[1]), datasample$Replicates),, drop = FALSE], row.names=NULL)
Might be helpful to someone

How can I filter out rows from linear regression based on another linear regression

I would like to conduct a linear regression that will have three steps: 1) Running the regression on all data points 2) Taking out the 10 outiers as found by using the absolute distanse value of rstandard 3) Running the regression again on the new data frame.
I know how to do it manually but these is very awkwarding. Is there a way to do it automatically? Can it be done for taking out columns as well?
Here is my toy data frame and code (I'll take out 2 top outliers):
df <- read.table(text = "userid target birds wolfs
222 1 9 7
444 1 8 4
234 0 2 8
543 1 2 3
678 1 8 3
987 0 1 2
294 1 7 16
608 0 1 5
123 1 17 7
321 1 8 7
226 0 2 7
556 0 20 3
334 1 6 3
225 0 1 1
999 0 3 11
987 0 30 1 ",header = TRUE)
model<- lm(target~ birds+ wolfs,data=df)
rstandard <- abs(rstandard(model))
df<-cbind(df,rstandard)
g<-subset(df,rstandard > sort(unique(rstandard),decreasing=T)[3])
g
userid target birds wolfs rstandard
4 543 1 2 3 1.189858
13 334 1 6 3 1.122579
modelNew<- lm(target~ birds+ wolfs,data=df[-c(4,13),])
I don't see how you could do this without estimating two models, the first to identify the most influential cases and the second on the data without those cases. You could simplify your code and avoid cluttering the workspace, however, by doing it all in one shot, with the subsetting process embedded in the call to estimate the "final" model. Here's code that does this for the example you gave:
model <- lm(target ~ birds + wolfs,
data = df[-(as.numeric(names(sort(abs(rstandard(lm(target ~ birds + wolfs, data=df))), decreasing=TRUE)))[1:2]),])
Here, the initial model, evaluation of influence, and ensuing subsetting of the data are all built into the code that comes after the first data =.
Also, note that the resulting model will differ from the one your code produced. That's because your g did not correctly identify the two most influential cases, as you can see if you just eyeball the results of abs(rstandard(lm(target ~ birds + wolfs, data=df))). I think it has to do with your use of unique(), which seems unnecessary, but I'm not sure.

Printing only certain panels in R lattice

I am plotting a quantile-quantile plot for a certain data that I have. I would like to print only certain panels that satisfy a condition that I put in for panel.qq(x,y,...).
Let me give you an example. The following is my code,
qq(y ~ x|cond,data=test.df,panel=function(x,y,subscripts,...){
if(length(unique(test.df[subscripts,2])) > 3 ){panel.qq(x,y,subscripts,...})})
Here y is the factor and x is the variable that will be plotted on X and y axis. Cond is the conditioning variable. What I would like is, only those panels be printed that pass the condition in the panel function, which is
if(length(unique(test.df[subscripts,2])) > 3).
I hope this information helps. Thanks in advance.
Added Sample data,
y x cond
1 1 6 125
2 2 5 125
3 1 5 125
4 2 6 125
5 1 3 125
6 2 8 125
7 1 8 125
8 2 3 125
9 1 5 125
10 2 6 125
11 1 5 124
12 2 6 124
13 1 6 124
14 2 5 124
15 1 5 124
16 2 6 124
17 1 4 124
18 2 7 124
19 1 0 123
20 2 11 123
21 1 0 123
22 2 11 123
23 1 0 123
24 2 11 123
25 1 0 123
26 2 11 123
27 1 0 123
28 2 2 123
So this is the sample data. What I would like is to not have a panel for 123 as the number of unique values for 123 is 3, while for others its 4. Thanks again.
Yeah, I think it is a subset problem, not a lattice one. You don't include an example, but it looks like you want to keep only rows where there are more than 3 rows for each value of whatever is in column 2 of your data frame. If so, here is a data.table solution.
library(data.table)
test.dt <- as.data.table(test.df)
test.dt.subset <- test.dt[,N:=.N,by=c2][N>3]
Where c2 is that variable in the second column. The last line of code first adds a variable, N, for the count of rows (.N) for each value of c2, then subsets for N>3.
UPDATE: And since a data table is also a data frame, you can use test.dt.subset directly as the data source in the call to qq (or other lattice function).
UPDATE 2: Here is one way to do the same thing without data.table:
d <- data.frame(x=1:15,y=1:15%%2, # example data frame
c2=c(1,2,2,3,3,3,4,4,4,4,5,5,5,5,5))
d$N <- 1 # create a column for count
split(d$N,d$c2) <- lapply(split(d$x,d$c2),length) # populate with count
d
d[d$N>3,] # subset
I did something very similar to DaveTurek.
My sample dataframe above is test.df
test.df.list <- split(test.df,test.df$cond,drop=F)
final.test.df <- do.call("rbind",lapply(test.df.list,function(r){
if(length(unique(r$x)) > 3){r}})
So, here I am breaking the test.df as a list of data.frames by the conditioning variable. Next, in the lapply I am checking the number of unique values in each of subset dataframe. If this number is greater than 3 then the dataframe is given /taken back if not it is ignored. Next, a do.call to bind all the dfs back to one big df to run the quantile quantile plot on it.
In case anyone wants to know the qq function call after getting the specific data. then it is,
trellis.device(postscript,file="test.ps",color=F,horizontal=T,paper='legal')
qq(y ~ x|cond,data=final.test.df,layout=c(1,1),pch=".",cex=3)
dev.off()
Hope this helps.

Error in the output file of a for loops in r

I'm trying to perform a resample of a list using the for loops in R for generating a data frame that records the output of each trial.
I get the for loops to work without error, but I am sure I am making a mistake somewhere as I should not be getting the result for the jth entry that I get as possible outcomes.
Here's how I am generating my list:
set1=rep(0,237) # repeat 0's 237 times
set2=rep(1,33) # repeats 1s 33 times
aa=c(set1,set2) # put the two lists together
table(aa) # just a test count to make sure I have it set up right
Now I want to take a random sample set of size j out of aa and record how many 0's and 1's I get each time I perform this task (let's say n number of trials).
Here's how I have set it up:
n=1000
j=27
output=matrix(0,nrow=2,ncol=n)
for (i in 1:n){
trial<-sample(aa,j,replace=F)
counts=table(trial)
output[,i]=counts
}
Checking the output,
table(output[1,])
# 17 18 19 20 21 22 23 24 25 26 27
1 1 9 17 46 135 214 237 205 111 24
table(output[2,])
# 1 2 3 4 5 6 7 8 9 10 27
111 205 237 214 135 46 17 9 1 1 24
I do not think I am getting the right answer from the distribution for the jth value (in this case 27) for either of the expected number of 0's or 1's (should be close to 0 as oppose to the high number it returns).
Any suggestions as to where I am going wrong would be greatly appreciated.
If you have only 0s in trial length(counts)==1 and the value gets recycled when you assign to output. Try this:
for (i in 1:n){
trial<-sample(aa,j,replace=F)
trial <- factor(trial, levels=0:1)
counts=table(trial)
output[,i]=counts
}
Of course, you could more efficiently use rhyper:
table(rhyper(1000, table(aa)[1], table(aa)[2], 27))

Resources