This question already has answers here:
random unit vector in multi-dimensional space
(5 answers)
Closed 3 years ago.
Given gunction float frand(), that generates uniformly-distributed random floating point value, in range [0.0, 1.0)
How can I create uniformly-distributed random 3D unit vector, and 4D unit quaternion?
(so that a 3D vector lies on a unit sphere, and 4D - on a unit hypersphere, and vectors are uniformly-distributed among correspoiding surface)
You should pick components of your vector from Gaussian distribution (mean = 0, deviation = 1) using your frand() function and then normalize it.
Another simpler approach is to generate random vector (x, y, z...) as x = frand(); y = frand(); ... and discard it (generate new one), if it is longer than 1. Then normalize this vector. This will eliminate the cases that skew the distribution. I however find this method ugly, because it's unnecessary example of Las Vegas algorithm, which might not terminate.
Check out this answer to similar question: random unit vector in multi-dimensional space
Related
For 2-dimensional sampled curves (an array of 2D points) there exists the Rahmer-Douglas-Peucker algorithm which only keeps "important" points. It works by calculating the perpendicular distance of each point (or sample) to a line that connects the first and the last point of. If the maximum distance is larger than a value epsilon the point is kept and the array is split into 2 parts. For both parts the operation is repeated (maximal perpendicular distance, if larger than epsilon etc.) The smaller epsilon the more detail is kept.
I am trying to write a function that can also do this for higher arrays of higher dimensional points. But I am unsure how to define distance. Or if this is actually a good idea.
I guess there exist lots of complicated and elegant algorithms that fit the curves to beziers and NURBS and what not. But are there also relatively simple ones?
I would prefer not to use beziers, but simply to identify "important" N-dimensional points.
You could extend your 2D algorithm using algebra and the L2 norm. Let's say you want to calculate the distance from a point X to a line segment PQ (where X, P and Q are defined as N-dimensional vectors).
First you can calculate the vector "proj" as:
Then, the distance is the module of the vector V = PX-proj.
For this calculation you only need the dot product between vectors, and that is well defined for N-dimensional spaces.
Using this approach I have successfuly used Rahmer-Douglas-Peucker algorithm in 3D.
This question already has answers here:
Angle between two vectors in R
(9 answers)
Closed 3 years ago.
I want to calculate the angular distance between two points, with respect to a third point (i.e., the number of angular degrees by which bearings to each of these points differ, from the third point).
In other words, I need an angle between two vectors with a single origin, but in my dataset I only have the x,y coordinates for the points.
I have tried the atan2 function, but it calculates the angle with reference to the x axis, which is different from what I need.
I would be surprised if there was no ready function that takes x,y point coordinates as input and returns the angular distance but I can't find a suitable one.
Well assume (o1,o2) = (-1,1), (a1,a2) = (3,2), (b1,b2) = (-5,5)
Then angle = atan2(b1-o1,b2-o2) - atan2(a1-o1,a2-o2)
I would like to know the angular difference between the orientation of two 3D matrices (4x4). Two matrices that are both oriented in the same direction would be zero, and two matrices that are oriented in opposite directions would be 180º. By 'orientation' I am referring to the direction that an object transformed by the matrix would be facing. So I'm only concerned with rotation, not translation or scale.
Specifically, I am using instances of WebKitCSSMatrix which refer to the 16 3D matrix values as .m11 through .m44.
in that case compare only one axis from the matrices
extract direction vector from your matrix
which one it is depends on your mesh models
it is the one the object is going forward
in mine models it is usually Z-axis
but I also see that other people often use X-axis
look here: matrix vectors extraction
I am not familiar with your matrix library
but there is a chance that your matrices are transposed !!!
so if it not works like it should extract the transposed vectors ... (rows instead columns)
compute the difference
just compute this: angle = acos ( (V1.V2)/(|V1|.|V2|) )
where V1,V2 are the direction vectors
I have a set of points (with unknow coordinates) and the distance matrix. I need to find the coordinates of these points in order to plot them and show the solution of my algorithm.
I can set one of these points in the coordinate (0,0) to simpify, and find the others. Can anyone tell me if it's possible to find the coordinates of the other points, and if yes, how?
Thanks in advance!
EDIT
Forgot to say that I need the coordinates on x-y only
The answers based on angles are cumbersome to implement and can't be easily generalized to data in higher dimensions. A better approach is that mentioned in my and WimC's answers here: given the distance matrix D(i, j), define
M(i, j) = 0.5*(D(1, j)^2 + D(i, 1)^2 - D(i, j)^2)
which should be a positive semi-definite matrix with rank equal to the minimal Euclidean dimension k in which the points can be embedded. The coordinates of the points can then be obtained from the k eigenvectors v(i) of M corresponding to non-zero eigenvalues q(i): place the vectors sqrt(q(i))*v(i) as columns in an n x k matrix X; then each row of X is a point. In other words, sqrt(q(i))*v(i) gives the ith component of all of the points.
The eigenvalues and eigenvectors of a matrix can be obtained easily in most programming languages (e.g., using GSL in C/C++, using the built-in function eig in Matlab, using Numpy in Python, etc.)
Note that this particular method always places the first point at the origin, but any rotation, reflection, or translation of the points will also satisfy the original distance matrix.
Step 1, arbitrarily assign one point P1 as (0,0).
Step 2, arbitrarily assign one point P2 along the positive x axis. (0, Dp1p2)
Step 3, find a point P3 such that
Dp1p2 ~= Dp1p3+Dp2p3
Dp1p3 ~= Dp1p2+Dp2p3
Dp2p3 ~= Dp1p3+Dp1p2
and set that point in the "positive" y domain (if it meets any of these criteria, the point should be placed on the P1P2 axis).
Use the cosine law to determine the distance:
cos (A) = (Dp1p2^2 + Dp1p3^2 - Dp2p3^2)/(2*Dp1p2* Dp1p3)
P3 = (Dp1p3 * cos (A), Dp1p3 * sin(A))
You have now successfully built an orthonormal space and placed three points in that space.
Step 4: To determine all the other points, repeat step 3, to give you a tentative y coordinate.
(Xn, Yn).
Compare the distance {(Xn, Yn), (X3, Y3)} to Dp3pn in your matrix. If it is identical, you have successfully identified the coordinate for point n. Otherwise, the point n is at (Xn, -Yn).
Note there is an alternative to step 4, but it is too much math for a Saturday afternoon
If for points p, q, and r you have pq, qr, and rp in your matrix, you have a triangle.
Wherever you have a triangle in your matrix you can compute one of two solutions for that triangle (independent of a euclidean transform of the triangle on the plane). That is, for each triangle you compute, it's mirror image is also a triangle that satisfies the distance constraints on p, q, and r. The fact that there are two solutions even for a triangle leads to the chirality problem: You have to choose the chirality (orientation) of each triangle, and not all choices may lead to a feasible solution to the problem.
Nevertheless, I have some suggestions. If the number entries is small, consider using simulated annealing. You could incorporate chirality into the annealing step. This will be slow for large systems, and it may not converge to a perfect solution, but for some problems it's the best you and do.
The second suggestion will not give you a perfect solution, but it will distribute the error: the method of least squares. In your case the objective function will be the error between the distances in your matrix, and actual distances between your points.
This is a math problem. To derive coordinate matrix X only given by its distance matrix.
However there is an efficient solution to this -- Multidimensional Scaling, that do some linear algebra. Simply put, it requires a pairwise Euclidean distance matrix D, and the output is the estimated coordinate Y (perhaps rotated), which is a proximation to X. For programming reason, just use SciKit.manifold.MDS in Python.
The "eigenvector" method given by the favourite replies above is very general and automatically outputs a set of coordinates as the OP requested, however I noticed that that algorithm does not even ask for a desired orientation (rotation angle) for the frame of the output points, the algorithm chooses that orientation all by itself!
People who use it might want to know at what angle the frame will be tipped before hand so I found an equation which gives the answer for the case of up to three input points, however I have not had time to generalize it to n-points and hope someone will do that and add it to this discussion. Here are the three angles the output sides will form with the x-axis as a function of the input side lengths:
angle side a = arcsin(sqrt(((c+b+a)*(c+b-a)*(c-b+a)*(-c+b+a)*(c^2-b^2)^2)/(a^4*((c^2+b^2-a^2)^2+(c^2-b^2)^2))))*180/Pi/2
angle side b = arcsin(sqrt(((c+b+a)*(c+b-a)*(c-b+a)*(-c+b+a)*(c^2+b^2-a^2)^2)/(4*b^4*((c^2+b^2-a^2)^2+(c^2-b^2)^2))))*180/Pi/2
angle side c = arcsin(sqrt(((c+b+a)*(c+b-a)*(c-b+a)*(-c+b+a)*(c^2+b^2-a^2)^2)/(4*c^4*((c^2+b^2-a^2)^2+(c^2-b^2)^2))))*180/Pi/2
Those equations also lead directly to a solution to the OP's problem of finding the coordinates for each point because: the side lengths are already given from the OP as the input, and my equations give the slope of each side versus the x-axis of the solution, thus revealing the vector for each side of the polygon answer, and summing those sides through vector addition up to a desired vertex will produce the coordinate of that vertex. So if anyone can extend my angle equations to handling beyond three input lengths (but I note: that might be impossible?), it might be a very fast way to the general solution of the OP's question, since slow parts of the algorithms that people gave above like "least square fitting" or "matrix equation solving" might be avoidable.
I'm experimenting with using axis-angle vectors for rotations in my hobby game engine. This is a 3-component vector along the axis of rotation with a length of the rotation in radians. I like them because:
Unlike quats or rotation matrices, I can actually see the numbers and visualize the rotation in my mind
They're a little less memory than quaternions or matrices.
I can represent values outside the range of -Pi to Pi (This is important if I store an angular velocity)
However, I have a tight loop that updates the rotation of all of my objects (tens of thousands) based on their angular velocity. Currently, the only way I know to combine two rotation axis vectors is to convert them to quaternions, multiply them, and then convert the result back to an axis/angle. Through profiling, I've identified this as a bottleneck. Does anyone know a more straightforward approach?
You representation is equivalent to quaternion rotation, provided your rotation vectors are unit length. If you don't want to use some canned quaternion data structure you should simply ensure your rotation vectors are of unit length, and then work out the equivalent quaternion multiplications / reciprocal computation to determine the aggregate rotation. You might be able to reduce the number of multiplications or additions.
If your angle is the only thing that is changing (i.e. the axis of rotation is constant), then you can simply use a linear scaling of the angle, and, if you'd like, mod it to be in the range [0, 2π). So, if you have a rotation rate of α raidans per second, starting from an initial angle of θ0 at time t0, then the final rotation angle at time t is given by:
θ(t) = θ0+α(t-t0) mod 2π
You then just apply that rotation to your collection of vectors.
If none of this improves your performance, you should consider using a canned quaternion library as such things are already optimized for the kinds of application you're disucssing.
You can keep them as angle axis values.
Build a cross-product (anti-symmetric) matrix using the angle axis values (x,y,z) and weight the elements of this matrix by multiplying them by the angle value. Now sum up all of these cross-product matrices (one for each angle axis value) and find the final rotation matrix by using the matrix exponential.
If matrix A represents this cross-product matrix (built from Angle Axis value) then,
exp(A) is equivalent to the rotation matrix R (i.e., equivalent to your quaternion in matrix form).
Therefore,
exp (A1 + A2) = R1 * R2
probably a more expensive calucation in the end...
You should use unit quaternions rather than scaled vectors to represent your rotations. It can be shown (not by me) that any representation of rotations using three parameters will run into problems (i.e. is singular) at some point. In your case it occurs where your vector has a length of 0 (i.e. the identity) and at lengths of 2pi, 4pi, etc. In these cases the representation becomes singular. Unit quaternions and rotation matrices do not have this problem.
From your description, it sounds like you are updating your rotation state as a result of numerical integration. In this case you can update your rotation state by converting your rotational rate (\omega) to a quaternion rate (q_dot). If we represent your quaternion as q = [q0 q1 q2 q3] where q0 is the scalar part then:
q_dot = E*\omega
where
[ -q1 -q2 -q3 ]
E = [ q0 -q3 q2 ]
[ q3 q0 -q1 ]
[ -q2 q1 q0 ]
Then your update becomes
q(k+1) = q(k) + q_dot*dt
for simple integration. You could choose a different integrator if you choose.
Old question, but another example of stack overflow answering questions the OP wasn't asking. OP already listed out his reasoning for not using quaternions to represent velocity. I was in the same boat.
That said, the way you combine two angular velocities, with each represented by a vector, which represents the axis of rotation with its magnitude representing the amount of rotation.
Just add them together. Component-by-component. Hope that helps some other soul out there.