When plotting a bar chart with monthly data, ggplot shortens the distance between February and March, making the chart look inconsistent
require(dplyr)
require(ggplot2)
require(lubridate)
## simulating sample data
set.seed(.1073)
my_df <- data.frame(my_dates = sample(seq(as.Date('2010-01-01'), as.Date('2016-12-31'), 1), 1000, replace = TRUE))
### aggregating + visualizing counts per month
my_df %>%
mutate(my_dates = round_date(my_dates, 'month')) %>%
group_by(my_dates) %>%
summarise(n_row = n()) %>%
ggplot(aes(x = my_dates, y = n_row))+
geom_bar(stat = 'identity', color = 'black',fill = 'slateblue', alpha = .5)+
scale_x_date(date_breaks = 'months', date_labels = '%y-%b') +
theme(axis.text.x = element_text(angle = 60, hjust = 1))
I would keep the dates as dates rather than factors. Yes, factors will keep the bars uniform in size but you'll have to remember to join in any months that are missing so that blank months aren't skipped and factors are easy to get out of order. I would recommend adjusting your aesthetics to reduce the effect that the black outline has on the gap between February and March.
Here are two examples:
Adjust the outline color to be white. This will reduce the contrast and makes the gap less noticible.
Set the width to 20 (days).
As an aside, you don't need to summarize the data, you can use floor_date() or round_date() in an earlier step and go straight into geom_bar().
dates <- seq(as.Date("2010-01-01"), as.Date("2016-12-31"), 1)
set.seed(.1073)
my_df <-
tibble(
my_dates = sample(dates, 1000, replace = TRUE),
floor_dates = floor_date(my_dates, "month")
)
ggplot(my_df, aes(x = floor_dates)) +
geom_bar(color = "white", fill = "slateblue", alpha = .5)
ggplot(my_df, aes(x = floor_dates)) +
geom_bar(color = "black", fill = "slateblue", alpha = .5, width = 20)
using some parts from IceCream's answer you can try this.
Of note, geom_col is now recommended to use in this case.
my_df %>%
mutate(my_dates = factor(round_date(my_dates, 'month'))) %>%
group_by(my_dates) %>%
summarise(n_row = n()) %>%
ungroup() %>%
mutate(my_dates_x = as.numeric(my_dates)) %>%
mutate(my_dates_label = paste(month(my_dates,label = T), year(my_dates))) %>%
{ggplot(.,aes(x = my_dates_x, y = n_row))+
geom_col(color = 'black',width = 0.8, fill = 'slateblue', alpha = .5) +
scale_x_continuous(breaks = .$my_dates_x, labels = .$my_dates_label) +
theme(axis.text.x = element_text(angle = 60, hjust = 1))}
You can convert it to a factor variable to use as the axis, and fix the formatting with a label argument to scale_x_discrete.
library(dplyr)
library(ggplot2)
my_df %>%
mutate(my_dates = factor(round_date(my_dates, 'month'))) %>%
group_by(my_dates) %>%
summarise(n_row = n()) %>%
ggplot(aes(x = my_dates, y = n_row))+
geom_bar(stat = 'identity', color = 'black',fill = 'slateblue', alpha = .5)+
scale_x_discrete(labels = function(x) format(as.Date(x), '%Y-%b'))+
theme(axis.text.x = element_text(angle = 60, hjust = 1))
Edit: Alternate method to account for possibly missing months which should be represented as blank spaces in the plot.
library(dplyr)
library(ggplot2)
library(lubridate)
to_plot <-
my_df %>%
mutate(my_dates = round_date(my_dates, 'month'),
my_dates_ticks = interval(min(my_dates), my_dates) %/% months(1))
to_plot %>%
group_by(my_dates_ticks) %>%
summarise(n_row = n()) %>%
ggplot(aes(x = my_dates_ticks, y = n_row))+
geom_bar(stat = 'identity', color = 'black',fill = 'slateblue', alpha = .5)+
scale_x_continuous(
breaks = unique(to_plot$my_dates_ticks),
labels = function(x) format(min(to_plot$my_dates) + months(x), '%y-%b'))+
theme(axis.text.x = element_text(angle = 60, hjust = 1))
Related
I have the following data:
library(ggplot2)
library(gganimate)
library(tidyverse)
createData<- function(vintage, id){#create data
# Generate a sequence of dates from 2010-01-01 to 2025-12-31 with a quarterly frequency
Dates <- seq(from = as.Date("2010-01-01"), to = as.Date("2025-12-31"), by = "quarter")
RLG<- cumsum(sample(c(-1, 1), 64, TRUE))
df<- data.frame( Dates,RLG, vintage,id)
return(df)
}
#createData
df<- createData("2018-01-01",1) %>%
rbind(createData("2019-01-01",2))%>%
rbind(createData("2020-01-01",3)) %>%
rbind(createData("2021-01-01",4))%>%
rbind(createData("2022-01-01",5))%>%
rbind(createData("2023-01-01",6))%>%
rbind(createData("2024-01-01",7))%>%
rbind(createData("2025-01-01",8))
Which I use to make the following chart:
options(gganimate.nframes = 8*length(unique(df$vintage)), gganimate.res = 30)
p<- ggplot(df) +
aes(x = Dates, y = RLG, group = as.Date(vintage), colour = "RLG") +
geom_line()+
scale_y_continuous(labels = \(x) paste0(x, "%"))+
theme(axis.title = element_blank(),legend.position="none")+
transition_time(id)+
exit_fade(alpha = 0.5)+
shadow_mark(alpha = 0.2)
animate(p, end_pause = 30)
I would like to add a geom_rect which goes from vintage to max(Dates). At each frame, vintage will increase, so the geom_rect will shrink slightly. How can I do this without interfering with the shadow_mark and exit_fades which I am applying to the lines?
If you mean something like a progress bar you could do it like so:
create an DF for the geom which is a subset of the original
df_geom <- df |>
mutate(vintage = as.Date(vintage)) |>
group_by(id) |>
slice(n())
Use geom_segment with the DF from above.
If you want to leave shadow_mark in you can do shadow_mark(exclude_layer = 2).
p <- ggplot(df) +
aes(x = Dates, y = RLG, group = as.Date(vintage), colour = RLG) +
geom_line()+
scale_y_continuous(labels = \(x) paste0(x, "%"))+
theme(axis.title = element_blank(),legend.position="none") +
geom_segment(
data = df_geom,
mapping = aes(x=vintage, xend=Dates,
y = 18, yend = 18),
size = 10, alpha =.4, color ='lightblue'
) +
transition_time(id)+
exit_fade(alpha = 0.5)
# shadow_mark(alpha = 0.2)
animate(p)
I'm trying to combine two heatmaps. I want var_a and var_x on the y axis with for example: var_a first and then var_x. I don't know if I should do this by changing the dataframe or combining them, or if I can do this in ggplot.
Below I have some example code and a drawing of what I want (since I don't know if I explained it right).
I hope someone has ideas how I can do this either in the dataframe or in ggplot!
Example code:
df_one <- data.frame(
vars = c("var_a", "var_b", "var_c"),
corresponding_vars = c("var_x", "var_y", "var_z"),
expression_organ_1_vars = c(5, 10, 20),
expression_organ_2_vars = c(50, 2, 10),
expression_organ_3_vars = c(5, 10, 3)
)
df_one_long <- pivot_longer(df_one,
cols=3:5,
names_to = "tissueType",
values_to = "Expression")
expression.df_one <- ggplot(df_one_long,
mapping = aes(y=tissueType, x=vars, fill = Expression)) +
geom_tile()
expression.df_one
df_two <- data.frame(
corresponding_vars = c("var_x", "var_y", "var_z"),
expression_organ_1_corresponding_vars = c(100, 320, 120),
expression_organ_2_corresponding_vars = c(23, 30, 150),
expression_organ_3_corresponding_vars = c(89, 7, 200)
)
df_two_long <- pivot_longer(df_one,
cols=3:5,
names_to = "tissueType",
values_to = "Expression")
expression.df_two <- ggplot(df_two_long,
mapping = aes(y=tissueType, x=vars, fill = Expression)) +
geom_tile()
expression.df_two
Drawing:
You can bind your data frames together and pivot into a longer format so that vars and corresponding vars are in the same column, but retain a grouping variable to facet by:
df_two %>%
mutate(cor = corresponding_vars) %>%
rename_with(~sub('corresponding_', '', .x)) %>%
bind_rows(df_one %>% rename(cor = corresponding_vars)) %>%
pivot_longer(contains('expression'), names_to = 'organ') %>%
mutate(organ = gsub('expression_|_vars', '', organ)) %>%
group_by(cor) %>%
summarize(vars = vars, organ = organ, value = value,
cor = paste(sort(unique(vars)), collapse = ' cor ')) %>%
ggplot(aes(vars, organ, fill = value)) +
geom_tile(color = 'white', linewidth = 1) +
facet_grid(.~cor, scales = 'free_x', switch = 'x') +
scale_fill_viridis_c() +
coord_cartesian(clip = 'off') +
scale_x_discrete(expand = c(0, 0)) +
theme_minimal(base_size = 16) +
theme(strip.placement = 'outside',
axis.text.x = element_blank(),
axis.ticks.x.bottom = element_line(),
panel.spacing.x = unit(3, 'mm'))
Okay, so I solved the issue for my own project, which is to convert it to a scatter plot. I combined both datasets and then used a simple scatterplot.
df.combined <- dplyr::full_join(df_two_long, df_one_long,
by = c("vars", "corresponding_vars", "tissueType"))
ggplot(df.combined,
aes(x=vars, y=tissueType, colour=Expression.x, size = Expression.y)) +
geom_point()
It's not a solution with heatmaps, but I don't know how to do that at the moment.
I have below ggplot:
library(ggplot2)
data = rbind(data.frame('val' = c(10, 30, 15), 'name' = c('A', 'B', 'C'), group = 'gr1'), data.frame('val' = c(30, 40, 12), 'name' = c('A', 'B', 'C'), group = 'gr2'))
ggplot(data, # Draw barplot with grouping & stacking
aes(x = group,
y = val,
fill = name)) +
geom_bar(stat = "identity",
position = "stack", width = .1)
With this, I am getting below plot
However, I want to connect these bars with a curved area where the area would be equal to the value of the corresponding bar-component. A close example could be like,
Is there any way to achieve this with ggplot?
Any pointer will be very helpful.
This is something like an alluvial plot. There are various extension packages that could help you create such a plot, but it is possible to do it in ggplot directly using a bit of data manipulation.
library(tidyverse)
alluvia <- data %>%
group_by(name) %>%
summarize(x = seq(1, 2, 0.01),
val = pnorm(x, 1.5, 0.15) * diff(val) + first(val))
ggplot(data,
aes(x = as.numeric(factor(group)),
y = val,
fill = name)) +
geom_bar(stat = "identity",
position = "stack", width = .1) +
geom_area(data = alluvia, aes(x = x), position = "stack", alpha = 0.5) +
scale_x_continuous(breaks = 1:2, labels = levels(factor(data$group)),
name = "Group", expand = c(0.25, 0.25)) +
scale_fill_brewer(palette = "Set2") +
theme_light(base_size = 20)
EDIT
A more generalized solution for more than 2 groups would be
library(tidyverse)
alluvia <- data %>%
mutate(group = as.numeric(factor(group)),
name = factor(name)) %>%
arrange(group) %>%
group_by(name) %>%
mutate(next_group = lead(group),
next_val = lead(val)) %>%
filter(!is.na(next_val)) %>%
group_by(name, group) %>%
summarise(x = seq(group + 0.01, next_group - 0.01, 0.01),
val = (next_val - val) * pnorm(x, group + 0.5, 0.15) + val)
ggplot(data,
aes(x = as.numeric(factor(group)),
y = val,
fill = name)) +
geom_bar(stat = "identity",
position = "stack", width = .1) +
geom_area(data = alluvia, aes(x = x), position = "stack", alpha = 0.5) +
scale_x_continuous(breaks = seq(length(unique(data$group))),
labels = levels(factor(data$group)),
name = "Group", expand = c(0.25, 0.25)) +
scale_fill_brewer(palette = "Set2") +
theme_light(base_size = 20)
I have the following code
library(tibble)
library(tidyr)
library(dplyr)
library(ggplot2)
test <- tibble(
cat1 = c(rep('foo',6),rep('bar',6)),
cat2 = rep(c('g1','g2','g3','g4','g5','g6'), 2),
zoom = rnorm(12, 0, 10),
zaps = rnorm(12, 5, 10),
buzz = rnorm(12, -5, 10)
) %>% pivot_longer(c(zoom,zaps,buzz),names_to = 'cat3', values_to='value')
test2 <- inner_join(test, summarise(group_by(test, cat1, cat2), agg = sum(value)))
ggplot(test2, aes(x = cat1, y = value, fill = cat3, label = as.integer(value))) +
geom_bar(stat = 'identity', position = 'stack') +
geom_text(position = position_stack(vjust = 0.5), size = 3, color = "#555555") +
geom_errorbar(aes(ymin = agg, ymax = agg)) +
facet_grid(~ cat2)
which produces the following chart:
I like this and I am mostly happy with it, but I would love to include a sum total label for each column (the same value as the horizontal black line) somewhere in the column, ideally either at the bottom above/below the x axis labels or above the top edge of the plot below the g1,g2...
Can I do this by changing the displayed labels soo foo in g1 would be 'foo\n8' ? or is there a generic way to tell ggplot to put a number above the bar/foo labels in the plot or above the top edge of the top column component?
You may try this way. Please let me know if I miss something or I'm wrong with your purpose.
df2 %>%
group_by(cat1, cat2) %>%
mutate(n = sum(as.integer(value))) %>%
rowwise %>%
mutate(cat1 = paste0(c(cat1, n), collapse = "\n")) %>%
ggplot(aes(x = cat1, y = value, fill = cat3, label = as.integer(value))) +
geom_bar(stat = 'identity', position = 'stack') +
geom_text(position = position_stack(vjust = 0.5), size = 3, color = "#555555") +
geom_errorbar(aes(ymin = agg, ymax = agg)) +
facet_wrap(~ cat2, scales = "free_x", ncol = 6)
Edit: keyword is 'bar chart race'
How would you go at reproducing this chart from Jaime Albella in R ?
See the animation on visualcapitalist.com or on twitter (giving several references in case one breaks).
I'm tagging this as ggplot2 and gganimate but anything that can be produced from R is relevant.
data (thanks to https://github.com/datasets/gdp )
gdp <- read.csv("https://raw.github.com/datasets/gdp/master/data/gdp.csv")
# remove irrelevant aggregated values
words <- scan(
text="world income only total dividend asia euro america africa oecd",
what= character())
pattern <- paste0("(",words,")",collapse="|")
gdp <- subset(gdp, !grepl(pattern, Country.Name , ignore.case = TRUE))
Edit:
Another cool example from John Murdoch :
Most populous cities from 1500 to 2018
Edit: added spline interpolation for smoother transitions, without making rank changes happen too fast. Code at bottom.
I've adapted an answer of mine to a related question. I like to use geom_tile for animated bars, since it allows you to slide positions.
I worked on this prior to your addition of data, but as it happens, the gapminder data I used is closely related.
library(tidyverse)
library(gganimate)
library(gapminder)
theme_set(theme_classic())
gap <- gapminder %>%
filter(continent == "Asia") %>%
group_by(year) %>%
# The * 1 makes it possible to have non-integer ranks while sliding
mutate(rank = min_rank(-gdpPercap) * 1) %>%
ungroup()
p <- ggplot(gap, aes(rank, group = country,
fill = as.factor(country), color = as.factor(country))) +
geom_tile(aes(y = gdpPercap/2,
height = gdpPercap,
width = 0.9), alpha = 0.8, color = NA) +
# text in x-axis (requires clip = "off" in coord_*)
# paste(country, " ") is a hack to make pretty spacing, since hjust > 1
# leads to weird artifacts in text spacing.
geom_text(aes(y = 0, label = paste(country, " ")), vjust = 0.2, hjust = 1) +
coord_flip(clip = "off", expand = FALSE) +
scale_y_continuous(labels = scales::comma) +
scale_x_reverse() +
guides(color = FALSE, fill = FALSE) +
labs(title='{closest_state}', x = "", y = "GFP per capita") +
theme(plot.title = element_text(hjust = 0, size = 22),
axis.ticks.y = element_blank(), # These relate to the axes post-flip
axis.text.y = element_blank(), # These relate to the axes post-flip
plot.margin = margin(1,1,1,4, "cm")) +
transition_states(year, transition_length = 4, state_length = 1) +
ease_aes('cubic-in-out')
animate(p, fps = 25, duration = 20, width = 800, height = 600)
For the smoother version at the top, we can add a step to interpolate the data further before the plotting step. It can be useful to interpolate twice, once at rough granularity to determine the ranking, and another time for finer detail. If the ranking is calculated too finely, the bars will swap position too quickly.
gap_smoother <- gapminder %>%
filter(continent == "Asia") %>%
group_by(country) %>%
# Do somewhat rough interpolation for ranking
# (Otherwise the ranking shifts unpleasantly fast.)
complete(year = full_seq(year, 1)) %>%
mutate(gdpPercap = spline(x = year, y = gdpPercap, xout = year)$y) %>%
group_by(year) %>%
mutate(rank = min_rank(-gdpPercap) * 1) %>%
ungroup() %>%
# Then interpolate further to quarter years for fast number ticking.
# Interpolate the ranks calculated earlier.
group_by(country) %>%
complete(year = full_seq(year, .5)) %>%
mutate(gdpPercap = spline(x = year, y = gdpPercap, xout = year)$y) %>%
# "approx" below for linear interpolation. "spline" has a bouncy effect.
mutate(rank = approx(x = year, y = rank, xout = year)$y) %>%
ungroup() %>%
arrange(country,year)
Then the plot uses a few modified lines, otherwise the same:
p <- ggplot(gap_smoother, ...
# This line for the numbers that tick up
geom_text(aes(y = gdpPercap,
label = scales::comma(gdpPercap)), hjust = 0, nudge_y = 300 ) +
...
labs(title='{closest_state %>% as.numeric %>% floor}',
x = "", y = "GFP per capita") +
...
transition_states(year, transition_length = 1, state_length = 0) +
enter_grow() +
exit_shrink() +
ease_aes('linear')
animate(p, fps = 20, duration = 5, width = 400, height = 600, end_pause = 10)
This is what I came up with, so far, based in good part on #Jon's answer.
p <- gdp %>%
# build rank, labels and relative values
group_by(Year) %>%
mutate(Rank = rank(-Value),
Value_rel = Value/Value[Rank==1],
Value_lbl = paste0(" ",round(Value/1e9))) %>%
group_by(Country.Name) %>%
# keep top 10
filter(Rank <= 10) %>%
# plot
ggplot(aes(-Rank,Value_rel, fill = Country.Name)) +
geom_col(width = 0.8, position="identity") +
coord_flip() +
geom_text(aes(-Rank,y=0,label = Country.Name,hjust=0)) + #country label
geom_text(aes(-Rank,y=Value_rel,label = Value_lbl, hjust=0)) + # value label
theme_minimal() +
theme(legend.position = "none",axis.title = element_blank()) +
# animate along Year
transition_states(Year,4,1)
animate(p, 100, fps = 25, duration = 20, width = 800, height = 600)
I might come back to improve it.
The moving grid could be simulated by removing the actual grid and having geom_segment lines moving and fading out thanks to an alpha parameter changing when it approaches 100 billion.
To have labels changing values between years (which gives a nice feeling of urgency in the original chart) I think we have no choice but multiplying the rows while interpolating labels, we'll need to interpolate Rank too.
Then with a few minor cosmetic changes we should be pretty close.
This is what I came up, I just use Jon and Moody code as a template and make few changes.
library(tidyverse)
library(gganimate)
library(gapminder)
theme_set(theme_classic())
gdp <- read.csv("https://raw.github.com/datasets/gdp/master/data/gdp.csv")
words <- scan(
text="world income only total dividend asia euro america africa oecd",
what= character())
pattern <- paste0("(",words,")",collapse="|")
gdp <- subset(gdp, !grepl(pattern, Country.Name , ignore.case = TRUE))
colnames(gdp) <- gsub("Country.Name", "country", colnames(gdp))
colnames(gdp) <- gsub("Country.Code", "code", colnames(gdp))
colnames(gdp) <- gsub("Value", "value", colnames(gdp))
colnames(gdp) <- gsub("Year", "year", colnames(gdp))
gdp$value <- round(gdp$value/1e9)
gap <- gdp %>%
group_by(year) %>%
# The * 1 makes it possible to have non-integer ranks while sliding
mutate(rank = min_rank(-value) * 1,
Value_rel = value/value[rank==1],
Value_lbl = paste0(" ",value)) %>%
filter(rank <=10) %>%
ungroup()
p <- ggplot(gap, aes(rank, group = country,
fill = as.factor(country), color = as.factor(country))) +
geom_tile(aes(y = value/2,
height = value,
width = 0.9), alpha = 0.8, color = NA) +
geom_text(aes(y = 0, label = paste(country, " ")), vjust = 0.2, hjust = 1) +
geom_text(aes(y=value,label = Value_lbl, hjust=0)) +
coord_flip(clip = "off", expand = FALSE) +
scale_y_continuous(labels = scales::comma) +
scale_x_reverse() +
guides(color = FALSE, fill = FALSE) +
labs(title='{closest_state}', x = "", y = "GDP in billion USD",
caption = "Sources: World Bank | Plot generated by Nitish K. Mishra #nitishimtech") +
theme(plot.title = element_text(hjust = 0, size = 22),
axis.ticks.y = element_blank(), # These relate to the axes post-flip
axis.text.y = element_blank(), # These relate to the axes post-flip
plot.margin = margin(1,1,1,4, "cm")) +
transition_states(year, transition_length = 4, state_length = 1) +
ease_aes('cubic-in-out')
animate(p, 200, fps = 10, duration = 40, width = 800, height = 600, renderer = gifski_renderer("gganim.gif"))
Here I am using duration 40 second, which is slow. You can change duration and make it faster or slower as you needed.