Related
Is there a built-in function to display a data.frame with zero columns but still show row.names?
> df
DataFrame with 5 rows and 0 columns
> row.names(df)
[1] "ID1" "ID2" "ID3" "ID4" "ID5"
It would be useful if instead:
> df
DataFrame with 5 rows and 0 columns
ID1
ID2
ID3
ID4
ID5
I wrote a custom function to do it via cat, but would be nice to know if there's a built-in way of doing it.
library(tidyverse)
df <- df %>%
select(-everything())
cat(print(df), cat(rownames(df), sep = "\n"))
Or could also be simplified to:
df %>%
select(-everything()) %>%
cat(print(.), cat(rownames(.), sep = "\n"))
Output
data frame with 0 columns and 2 rows
A
B
Or using base R, if you don't care about the information being displayed about the dataframe.
df <- df[1]
df[1] <- rep("", nrow(df))
colnames(df) <- ""
Output
A
B
Data
df <- data.frame(a = c(1, 2),
b = c(1, 2),
c = c(4, 5))
rownames(df) <- c("A", "B")
I have a vector containing "potential" column names:
col_vector <- c("A", "B", "C")
I also have a data frame, e.g.
library(tidyverse)
df <- tibble(A = 1:2,
B = 1:2)
My goal now is to create all columns mentioned in col_vector that don't yet exist in df.
For the above exmaple, my code below works:
df %>%
mutate(!!sym(setdiff(col_vector, colnames(.))) := NA)
# A tibble: 2 x 3
A B C
<int> <int> <lgl>
1 1 1 NA
2 2 2 NA
Problem is that this code fails as soon as a) more than one column from col_vector is missing or b) no column from col_vector is missing. I thought about some sort of if_else, but don't know how to make the column creation conditional in such a way - preferably in a tidyverse way. I know I can just create a loop going through all the missing columns, but I'm wondering if there is a more direc approach.
Example data where code above fails:
df2 <- tibble(A = 1:2)
df3 <- tibble(A = 1:2,
B = 1:2,
C = 1:2)
This should work.
df[,setdiff(col_vector, colnames(df))] <- NA
Solution
This base operation might be simpler than a full-fledged dplyr workflow:
library(tidyverse) # For the setdiff() function.
# ...
# Code to generate 'df'.
# ...
# Find the subset of missing names, and create them as columns filled with 'NA'.
df[, setdiff(col_vector, names(df))] <- NA
# View results
df
Results
Given your sample col_vector and df here
col_vector <- c("A", "B", "C")
df <- tibble(A = 1:2, B = 1:2)
this solution should yield the following results:
# A tibble: 2 x 3
A B C
<int> <int> <lgl>
1 1 1 NA
2 2 2 NA
Advantages
An advantage of my solution, over the alternative linked above by #geoff, is that you need not code by hand the set of column names, as symbols and strings within the dplyr workflow.
df %>% mutate(
#####################################
A = ifelse("A" %in% names(.), A, NA),
B = ifelse("B" %in% names(.), B, NA),
C = ifelse("C" %in% names(.), B, NA)
# ...
# etc.
#####################################
)
My solution is by contrast more dynamic
##############################
df[, setdiff(col_vector, names(df))] <- NA
##############################
if you ever decide to change (or even dynamically calculate!) your variable names midstream, since it determines the setdiff() at runtime.
Note
Incredibly, #AustinGraves posted their answer at precisely the same time (2021-10-25 21:03:05Z) as I posted mine, so both answers qualify as original solutions.
I know if I have a data frame with more than 1 column, then I can use
colnames(x) <- c("col1","col2")
to rename the columns. How to do this if it's just one column?
Meaning a vector or data frame with only one column.
Example:
trSamp <- data.frame(sample(trainer$index, 10000))
head(trSamp )
# sample.trainer.index..10000.
# 1 5907862
# 2 2181266
# 3 7368504
# 4 1949790
# 5 3475174
# 6 6062879
ncol(trSamp)
# [1] 1
class(trSamp)
# [1] "data.frame"
class(trSamp[1])
# [1] "data.frame"
class(trSamp[,1])
# [1] "numeric"
colnames(trSamp)[2] <- "newname2"
# Error in names(x) <- value :
# 'names' attribute [2] must be the same length as the vector [1]
This is a generalized way in which you do not have to remember the exact location of the variable:
# df = dataframe
# old.var.name = The name you don't like anymore
# new.var.name = The name you want to get
names(df)[names(df) == 'old.var.name'] <- 'new.var.name'
This code pretty much does the following:
names(df) looks into all the names in the df
[names(df) == old.var.name] extracts the variable name you want to check
<- 'new.var.name' assigns the new variable name.
colnames(trSamp)[2] <- "newname2"
attempts to set the second column's name. Your object only has one column, so the command throws an error. This should be sufficient:
colnames(trSamp) <- "newname2"
colnames(df)[colnames(df) == 'oldName'] <- 'newName'
This is an old question, but it is worth noting that you can now use setnames from the data.table package.
library(data.table)
setnames(DF, "oldName", "newName")
# or since the data.frame in question is just one column:
setnames(DF, "newName")
# And for reference's sake, in general (more than once column)
nms <- c("col1.name", "col2.name", etc...)
setnames(DF, nms)
This can also be done using Hadley's plyr package, and the rename function.
library(plyr)
df <- data.frame(foo=rnorm(1000))
df <- rename(df,c('foo'='samples'))
You can rename by the name (without knowing the position) and perform multiple renames at once. After doing a merge, for example, you might end up with:
letterid id.x id.y
1 70 2 1
2 116 6 5
3 116 6 4
4 116 6 3
5 766 14 9
6 766 14 13
Which you can then rename in one step using:
letters <- rename(letters,c("id.x" = "source", "id.y" = "target"))
letterid source target
1 70 2 1
2 116 6 5
3 116 6 4
4 116 6 3
5 766 14 9
6 766 14 13
I think the best way of renaming columns is by using the dplyr package like this:
require(dplyr)
df = rename(df, new_col01 = old_col01, new_col02 = old_col02, ...)
It works the same for renaming one or many columns in any dataset.
I find that the most convenient way to rename a single column is using dplyr::rename_at :
library(dplyr)
cars %>% rename_at("speed",~"new") %>% head
cars %>% rename_at(vars(speed),~"new") %>% head
cars %>% rename_at(1,~"new") %>% head
# new dist
# 1 4 2
# 2 4 10
# 3 7 4
# 4 7 22
# 5 8 16
# 6 9 10
works well in pipe chaines
convenient when names are stored in variables
works with a name or an column index
clear and compact
I like the next style for rename dataframe column names one by one.
colnames(df)[which(colnames(df) == 'old_colname')] <- 'new_colname'
where
which(colnames(df) == 'old_colname')
returns by the index of the specific column.
Let df be the dataframe you have with col names myDays and temp.
If you want to rename "myDays" to "Date",
library(plyr)
rename(df,c("myDays" = "Date"))
or with pipe, you can
dfNew <- df %>%
plyr::rename(c("myDays" = "Date"))
Try:
colnames(x)[2] <- 'newname2'
This is likely already out there, but I was playing with renaming fields while searching out a solution and tried this on a whim. Worked for my purposes.
Table1$FieldNewName <- Table1$FieldOldName
Table1$FieldOldName <- NULL
Edit begins here....
This works as well.
df <- rename(df, c("oldColName" = "newColName"))
You can use the rename.vars in the gdata package.
library(gdata)
df <- rename.vars(df, from = "oldname", to = "newname")
This is particularly useful where you have more than one variable name to change or you want to append or pre-pend some text to the variable names, then you can do something like:
df <- rename.vars(df, from = c("old1", "old2", "old3",
to = c("new1", "new2", "new3"))
For an example of appending text to a subset of variables names see:
https://stackoverflow.com/a/28870000/180892
You could also try 'upData' from 'Hmisc' package.
library(Hmisc)
trSamp = upData(trSamp, rename=c(sample.trainer.index..10000. = 'newname2'))
If you know that your dataframe has only one column, you can use:
names(trSamp) <- "newname2"
The OP's question has been well and truly answered. However, here's a trick that may be useful in some situations: partial matching of the column name, irrespective of its position in a dataframe:
Partial matching on the name:
d <- data.frame(name1 = NA, Reported.Cases..WHO..2011. = NA, name3 = NA)
## name1 Reported.Cases..WHO..2011. name3
## 1 NA NA NA
names(d)[grepl("Reported", names(d))] <- "name2"
## name1 name2 name3
## 1 NA NA NA
Another example: partial matching on the presence of "punctuation":
d <- data.frame(name1 = NA, Reported.Cases..WHO..2011. = NA, name3 = NA)
## name1 Reported.Cases..WHO..2011. name3
## 1 NA NA NA
names(d)[grepl("[[:punct:]]", names(d))] <- "name2"
## name1 name2 name3
## 1 NA NA NA
These were examples I had to deal with today, I thought might be worth sharing.
I would simply change a column name to the dataset with the new name I want with the following code:
names(dataset)[index_value] <- "new_col_name"
I found colnames() argument easier
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/row%2Bcolnames
select some column from the data frame
df <- data.frame(df[, c( "hhid","b1005", "b1012_imp", "b3004a")])
and rename the selected column in order,
colnames(df) <- c("hhid", "income", "cost", "credit")
check the names and the values to be sure
names(df);head(df)
I would simply add a new column to the data frame with the name I want and get the data for it from the existing column. like this:
dataf$value=dataf$Article1Order
then I remove the old column! like this:
dataf$Article1Order<-NULL
This code might seem silly! But it works perfectly...
We can use rename_with to rename columns with a function (stringr functions, for example).
Consider the following data df_1:
df_1 <- data.frame(
x = replicate(n = 3, expr = rnorm(n = 3, mean = 10, sd = 1)),
y = sample(x = 1:2, size = 10, replace = TRUE)
)
names(df_1)
#[1] "x.1" "x.2" "x.3" "y"
Rename all variables with dplyr::everything():
library(tidyverse)
df_1 %>%
rename_with(.data = ., .cols = everything(.),
.fn = str_replace, pattern = '.*',
replacement = str_c('var', seq_along(.), sep = '_')) %>%
names()
#[1] "var_1" "var_2" "var_3" "var_4"
Rename by name particle with some dplyr verbs (starts_with, ends_with, contains, matches, ...).
Example with . (x variables):
df_1 %>%
rename_with(.data = ., .cols = contains('.'),
.fn = str_replace, pattern = '.*',
replacement = str_c('var', seq_along(.), sep = '_')) %>%
names()
#[1] "var_1" "var_2" "var_3" "y"
Rename by class with many functions of class test, like is.integer, is.numeric, is.factor...
Example with is.integer (y):
df_1 %>%
rename_with(.data = ., .cols = is.integer,
.fn = str_replace, pattern = '.*',
replacement = str_c('var', seq_along(.), sep = '_')) %>%
names()
#[1] "x.1" "x.2" "x.3" "var_1"
The warning:
Warning messages:
1: In stri_replace_first_regex(string, pattern, fix_replacement(replacement), :
longer object length is not a multiple of shorter object length
2: In names[cols] <- .fn(names[cols], ...) :
number of items to replace is not a multiple of replacement length
It is not relevant, as it is just an inconsistency of seq_along(.) with the replace function.
library(dplyr)
rename(data, de=de.y)
Situation
I have two data frames, df1 and df2with the same column headings
x <- c(1,2,3)
y <- c(3,2,1)
z <- c(3,2,1)
names <- c("id","val1","val2")
df1 <- data.frame(x, y, z)
names(df1) <- names
a <- c(1, 2, 3)
b <- c(1, 2, 3)
c <- c(3, 2, 1)
df2 <- data.frame(a, b, c)
names(df2) <- names
And am performing a merge
#library(dplyr) # not needed for merge
joined_df <- merge(x=df1, y=df2, c("id"),all=TRUE)
This gives me the columns in the joined_df as id, val1.x, val2.x, val1.y, val2.y
Question
Is there a way to co-locate the columns that had the same heading in the original data frames, to give the column order in the joined data frame as id, val1.x, val1.y, val2.x, val2.y?
Note that in my actual data frame I have 115 columns, so I'd like to stay clear of using joned_df <- joined_df[, c(1, 2, 4, 3, 5)] if possible.
Update/Edit: also, I would like to maintain the original order of column headings, so sorting alphabetically is not an option (-on my actual data, I realise it would work with the example I have given).
My desired output is
id val1.x val1.y val2.x val2.y
1 1 3 1 3 3
2 2 2 2 2 2
3 3 1 3 1 1
Update with solution for general case
The accepted answer solves my issue nicely.
I've adapted the code slightly here to use the original column names, without having to hard-code them in the rep function.
#specify columns used in merge
merge_cols <- c("id")
# identify duplicate columns and remove those used in the 'merge'
dup_cols <- names(df1)
dup_cols <- dup_cols [! dup_cols %in% merge_cols]
# replicate each duplicate column name and append an 'x' and 'y'
dup_cols <- rep(dup_cols, each=2)
var <- c("x", "y")
newnames <- paste(dup_cols, ".", var, sep = "")
#create new column names and sort the joined df by those names
newnames <- c(merge_cols, newnames)
joined_df <- joined_df[newnames]
How about something like this
numrep <- rep(1:2, each = 2)
numrep
var <- c("x", "y")
var
newnames <- paste("val", numrep, ".", var, sep = "")
newdf <- cbind(joined_df$id, joined_df[newnames])
names(newdf)[1] <- "id"
Which should give you the dataframe like this
id val1.x val1.y val2.x val2.y
1 1 3 1 3 3
2 2 2 2 2 2
3 3 1 3 1 1
I know if I have a data frame with more than 1 column, then I can use
colnames(x) <- c("col1","col2")
to rename the columns. How to do this if it's just one column?
Meaning a vector or data frame with only one column.
Example:
trSamp <- data.frame(sample(trainer$index, 10000))
head(trSamp )
# sample.trainer.index..10000.
# 1 5907862
# 2 2181266
# 3 7368504
# 4 1949790
# 5 3475174
# 6 6062879
ncol(trSamp)
# [1] 1
class(trSamp)
# [1] "data.frame"
class(trSamp[1])
# [1] "data.frame"
class(trSamp[,1])
# [1] "numeric"
colnames(trSamp)[2] <- "newname2"
# Error in names(x) <- value :
# 'names' attribute [2] must be the same length as the vector [1]
This is a generalized way in which you do not have to remember the exact location of the variable:
# df = dataframe
# old.var.name = The name you don't like anymore
# new.var.name = The name you want to get
names(df)[names(df) == 'old.var.name'] <- 'new.var.name'
This code pretty much does the following:
names(df) looks into all the names in the df
[names(df) == old.var.name] extracts the variable name you want to check
<- 'new.var.name' assigns the new variable name.
colnames(trSamp)[2] <- "newname2"
attempts to set the second column's name. Your object only has one column, so the command throws an error. This should be sufficient:
colnames(trSamp) <- "newname2"
colnames(df)[colnames(df) == 'oldName'] <- 'newName'
This is an old question, but it is worth noting that you can now use setnames from the data.table package.
library(data.table)
setnames(DF, "oldName", "newName")
# or since the data.frame in question is just one column:
setnames(DF, "newName")
# And for reference's sake, in general (more than once column)
nms <- c("col1.name", "col2.name", etc...)
setnames(DF, nms)
This can also be done using Hadley's plyr package, and the rename function.
library(plyr)
df <- data.frame(foo=rnorm(1000))
df <- rename(df,c('foo'='samples'))
You can rename by the name (without knowing the position) and perform multiple renames at once. After doing a merge, for example, you might end up with:
letterid id.x id.y
1 70 2 1
2 116 6 5
3 116 6 4
4 116 6 3
5 766 14 9
6 766 14 13
Which you can then rename in one step using:
letters <- rename(letters,c("id.x" = "source", "id.y" = "target"))
letterid source target
1 70 2 1
2 116 6 5
3 116 6 4
4 116 6 3
5 766 14 9
6 766 14 13
I think the best way of renaming columns is by using the dplyr package like this:
require(dplyr)
df = rename(df, new_col01 = old_col01, new_col02 = old_col02, ...)
It works the same for renaming one or many columns in any dataset.
I find that the most convenient way to rename a single column is using dplyr::rename_at :
library(dplyr)
cars %>% rename_at("speed",~"new") %>% head
cars %>% rename_at(vars(speed),~"new") %>% head
cars %>% rename_at(1,~"new") %>% head
# new dist
# 1 4 2
# 2 4 10
# 3 7 4
# 4 7 22
# 5 8 16
# 6 9 10
works well in pipe chaines
convenient when names are stored in variables
works with a name or an column index
clear and compact
I like the next style for rename dataframe column names one by one.
colnames(df)[which(colnames(df) == 'old_colname')] <- 'new_colname'
where
which(colnames(df) == 'old_colname')
returns by the index of the specific column.
Let df be the dataframe you have with col names myDays and temp.
If you want to rename "myDays" to "Date",
library(plyr)
rename(df,c("myDays" = "Date"))
or with pipe, you can
dfNew <- df %>%
plyr::rename(c("myDays" = "Date"))
Try:
colnames(x)[2] <- 'newname2'
This is likely already out there, but I was playing with renaming fields while searching out a solution and tried this on a whim. Worked for my purposes.
Table1$FieldNewName <- Table1$FieldOldName
Table1$FieldOldName <- NULL
Edit begins here....
This works as well.
df <- rename(df, c("oldColName" = "newColName"))
You can use the rename.vars in the gdata package.
library(gdata)
df <- rename.vars(df, from = "oldname", to = "newname")
This is particularly useful where you have more than one variable name to change or you want to append or pre-pend some text to the variable names, then you can do something like:
df <- rename.vars(df, from = c("old1", "old2", "old3",
to = c("new1", "new2", "new3"))
For an example of appending text to a subset of variables names see:
https://stackoverflow.com/a/28870000/180892
You could also try 'upData' from 'Hmisc' package.
library(Hmisc)
trSamp = upData(trSamp, rename=c(sample.trainer.index..10000. = 'newname2'))
If you know that your dataframe has only one column, you can use:
names(trSamp) <- "newname2"
The OP's question has been well and truly answered. However, here's a trick that may be useful in some situations: partial matching of the column name, irrespective of its position in a dataframe:
Partial matching on the name:
d <- data.frame(name1 = NA, Reported.Cases..WHO..2011. = NA, name3 = NA)
## name1 Reported.Cases..WHO..2011. name3
## 1 NA NA NA
names(d)[grepl("Reported", names(d))] <- "name2"
## name1 name2 name3
## 1 NA NA NA
Another example: partial matching on the presence of "punctuation":
d <- data.frame(name1 = NA, Reported.Cases..WHO..2011. = NA, name3 = NA)
## name1 Reported.Cases..WHO..2011. name3
## 1 NA NA NA
names(d)[grepl("[[:punct:]]", names(d))] <- "name2"
## name1 name2 name3
## 1 NA NA NA
These were examples I had to deal with today, I thought might be worth sharing.
I would simply change a column name to the dataset with the new name I want with the following code:
names(dataset)[index_value] <- "new_col_name"
I found colnames() argument easier
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/row%2Bcolnames
select some column from the data frame
df <- data.frame(df[, c( "hhid","b1005", "b1012_imp", "b3004a")])
and rename the selected column in order,
colnames(df) <- c("hhid", "income", "cost", "credit")
check the names and the values to be sure
names(df);head(df)
I would simply add a new column to the data frame with the name I want and get the data for it from the existing column. like this:
dataf$value=dataf$Article1Order
then I remove the old column! like this:
dataf$Article1Order<-NULL
This code might seem silly! But it works perfectly...
We can use rename_with to rename columns with a function (stringr functions, for example).
Consider the following data df_1:
df_1 <- data.frame(
x = replicate(n = 3, expr = rnorm(n = 3, mean = 10, sd = 1)),
y = sample(x = 1:2, size = 10, replace = TRUE)
)
names(df_1)
#[1] "x.1" "x.2" "x.3" "y"
Rename all variables with dplyr::everything():
library(tidyverse)
df_1 %>%
rename_with(.data = ., .cols = everything(.),
.fn = str_replace, pattern = '.*',
replacement = str_c('var', seq_along(.), sep = '_')) %>%
names()
#[1] "var_1" "var_2" "var_3" "var_4"
Rename by name particle with some dplyr verbs (starts_with, ends_with, contains, matches, ...).
Example with . (x variables):
df_1 %>%
rename_with(.data = ., .cols = contains('.'),
.fn = str_replace, pattern = '.*',
replacement = str_c('var', seq_along(.), sep = '_')) %>%
names()
#[1] "var_1" "var_2" "var_3" "y"
Rename by class with many functions of class test, like is.integer, is.numeric, is.factor...
Example with is.integer (y):
df_1 %>%
rename_with(.data = ., .cols = is.integer,
.fn = str_replace, pattern = '.*',
replacement = str_c('var', seq_along(.), sep = '_')) %>%
names()
#[1] "x.1" "x.2" "x.3" "var_1"
The warning:
Warning messages:
1: In stri_replace_first_regex(string, pattern, fix_replacement(replacement), :
longer object length is not a multiple of shorter object length
2: In names[cols] <- .fn(names[cols], ...) :
number of items to replace is not a multiple of replacement length
It is not relevant, as it is just an inconsistency of seq_along(.) with the replace function.
library(dplyr)
rename(data, de=de.y)